1
|
Charbonneau JA, Bennett JL, Chau K, Bliss-Moreau E. Reorganization in the macaque interoceptive-allostatic network following anterior cingulate cortex damage. Cereb Cortex 2023; 33:4334-4349. [PMID: 36066407 PMCID: PMC10110454 DOI: 10.1093/cercor/bhac346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates that the adult brain is capable of significant structural change following damage-a capacity once thought to be largely limited to developing brains. To date, most existing research on adult plasticity has focused on how exteroceptive sensorimotor networks compensate for damage to preserve function. Interoceptive networks-those that represent and process sensory information about the body's internal state-are now recognized to be critical for a wide range of physiological and psychological functions from basic energy regulation to maintaining a sense of self, but the extent to which these networks remain plastic in adulthood has not been established. In this report, we used detailed histological analyses to pinpoint precise changes to gray matter volume in the interoceptive-allostatic network in adult rhesus monkeys (Macaca mulatta) who received neurotoxic lesions of the anterior cingulate cortex (ACC) and neurologically intact control monkeys. Relative to controls, monkeys with ACC lesions had significant and selective unilateral expansion of the ventral anterior insula and significant relative bilateral expansion of the lateral nucleus of the amygdala. This work demonstrates the capacity for neuroplasticity in the interoceptive-allostatic network which, given that changes included expansion rather than atrophy, is likely to represent an adaptive response following damage.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, 1544 Newton Court, Davis, CA 95618, United States
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, 2230 Stockton Blvd, Sacramento, CA 95817, United States
- The MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, United States
| | - Kevin Chau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychology, University of California Davis, 135 Young Hall One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
2
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Spatial Binding Impairments in Visual Working Memory following Temporal Lobectomy. eNeuro 2022; 9:ENEURO.0278-21.2022. [PMID: 35168952 PMCID: PMC8906795 DOI: 10.1523/eneuro.0278-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Disorders of the medial temporal lobe (MTL) adversely affect visual working memory (vWM) performance, including feature binding. It is unclear whether these impairments generalize across visual dimensions or are specifically spatial. To address this issue, we compared performance in two tasks of 13 epilepsy patients, who had undergone a temporal lobectomy, and 15 healthy controls. In the vWM task, participants recalled the color of one of two polygons, previously displayed side by side. At recall, a location or shape probe identified the target. In the perceptual task, participants estimated the centroid of three visible disks. Patients recalled the target color less accurately than healthy controls because they frequently swapped the nontarget with the target color. Moreover, healthy controls and right temporal lobectomy patients made more swap errors following shape than space probes. Left temporal lobectomy patients, showed the opposite pattern of errors instead. Patients and controls performed similarly in the perceptual task. We conclude that left MTL damage impairs spatial binding in vWM, and that this impairment does not reflect a perceptual or attentional deficit.
Collapse
|
4
|
O’Sullivan MJ, Oestreich LKL, Wright P, Clarkson AN. OUP accepted manuscript. Brain 2022; 145:1698-1710. [PMID: 35188545 PMCID: PMC9166559 DOI: 10.1093/brain/awac070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael J. O’Sullivan
- UQ Centre for Clinical Research and Institute of Molecular Bioscience, The
University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women’s Hospital,
Brisbane, Australia
- Correspondence to: Prof Michael J. O’Sullivan Office of Research
& Implementation Building 34, Royal Brisbane and Women’s Hospital Butterfield St,
Herston, 4029, QLD, Australia E-mail:
| | - Lena K. L. Oestreich
- UQ Centre for Clinical Research and Institute of Molecular Bioscience, The
University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland,
Brisbane, Australia
| | - Paul Wright
- Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London, UK
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New
Zealand, University of Otago, Dunedin 9011, New
Zealand
| |
Collapse
|
5
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
6
|
Berlot R, Koritnik B, Pirtošek Z, Ray NJ. Preserved cholinergic forebrain integrity reduces structural connectome vulnerability in mild cognitive impairment. J Neurol Sci 2021; 425:117443. [PMID: 33865078 DOI: 10.1016/j.jns.2021.117443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022]
Abstract
Neurodegeneration leads to redistribution of processing, which is reflected in a reorganisation of the structural connectome. This might affect its vulnerability to structural damage. Cortical acetylcholine allows favourable adaptation to pathology within the memory circuit. However, it remains unclear if it acts on a broader scale, affecting reconfiguration of whole-brain networks. To investigate the role of the cholinergic basal forebrain (CBFB) in strategic lesions, twenty patients with mild cognitive impairment (MCI) and twenty elderly controls underwent magnetic resonance imaging. Whole-brain tractograms were represented as network graphs. Lesions of individual nodes were simulated by removing a node and its connections from the graph. The impact of simulated lesions was quantified as the proportional change in global efficiency. Relationships between subregional CBFB volumes, global efficiency of intact connectomes and impacts of individual simulated lesions of network nodes were assessed. In MCI but not controls, larger CBFB volumes were associated with efficient network topology and reduced impact of hippocampal, thalamic and entorhinal lesions, indicating a protective effect against the global impact of simulated strategic lesions. This suggests that the cholinergic system shapes the configuration of the connectome, thereby reducing the impact of localised damage in MCI.
Collapse
Affiliation(s)
- Rok Berlot
- Department of Neurology, University Medical Centre Ljubljana, Zaloška 2a, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Blaž Koritnik
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia; Institute of Radiology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Zaloška 2a, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nicola J Ray
- Department of Psychology, Manchester Metropolitan University, 53 Bonsall St, Manchester M15 6GX, UK
| |
Collapse
|
7
|
Khurana K, Kumar M, Bansal N. Lacidipine Prevents Scopolamine-Induced Memory Impairment by Reducing Brain Oxido-nitrosative Stress in Mice. Neurotox Res 2021; 39:1087-1102. [PMID: 33721210 DOI: 10.1007/s12640-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Cholinergic deficits and oxido-nitrosative stress are consistently associated with Alzheimer's disease (AD). Previous findings indicate that acetylcholine subdues Ca2+ current in the brain. Cholinergic antagonists (e.g., scopolamine) can instigate Ca2+-induced redox imbalance, inflammation, and cell-death pathways leading to AD-type memory impairment. Earlier, several Ca2+-channel blockers (CCB, e.g., dihydropyridine type) or cholinergic enhancers showed promising results in animal models of AD. In the present research, pretreatment effects of lacidipine (L-type CCB) on learning and memory functions were investigated using the scopolamine mouse model of AD. Swiss albino mice (20-25 g) were administered lacidipine (1 and 3 mg/kg) for 14 days. Scopolamine, an anti-muscarinic drug, was given (1 mg/kg) from days 8 to 14. The mice were subjected to elevated plus maze (EPM) and passive-avoidance (PA) paradigms. Bay-K8644 (a Ca2+-channel agonist) was administered before behavioral studies on days 13 and 14. Biochemical parameters of oxidative stress and acetylcholinesterase (AChE) activity were quantified using the whole brain. Behavioral studies showed an increase in transfer latency (TL) in the EPM test and a decrease in step-through latency (STL) in the PA test in scopolamine-administered mice. Scopolamine enhanced the AChE activity and oxidative stress in the brain of mice which resulted in memory impairment. Lacidipine prevented the amnesia against scopolamine and reduced the oxidative stress and AChE activity in the brain of mice. Bay-K8644 attenuated the lacidipine-induced improvement in memory and redox balance in scopolamine-administered mice. Lacidipine can prevent the oxidative stress and improve the cholinergic function in the brain. These properties of lacidipine can mitigate the pathogenesis of AD-type dementia.
Collapse
Affiliation(s)
- Kunal Khurana
- I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India.,Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India
| | - Manish Kumar
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, 140111, India
| | - Nitin Bansal
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India. .,Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana, 127021, India.
| |
Collapse
|
8
|
Wilson J, Yarnall AJ, Craig CE, Galna B, Lord S, Morris R, Lawson RA, Alcock L, Duncan GW, Khoo TK, O'Brien JT, Burn DJ, Taylor J, Ray NJ, Rochester L. Cholinergic Basal Forebrain Volumes Predict Gait Decline in Parkinson's Disease. Mov Disord 2021; 36:611-621. [PMID: 33382126 PMCID: PMC8048433 DOI: 10.1002/mds.28453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gait disturbance is an early, disabling feature of Parkinson's disease (PD) that is typically refractory to dopaminergic medication. The cortical cholinergic system, originating in the nucleus basalis of Meynert of the basal forebrain, has been implicated. However, it is not known if degeneration in this region relates to a worsening of disease-specific gait impairment. OBJECTIVE To evaluate associations between sub-regional cholinergic basal forebrain volumes and longitudinal progression of gait impairment in PD. METHODS 99 PD participants and 47 control participants completed gait assessments via an instrumented walkway during 2 minutes of continuous walking, at baseline and for up to 3 years, from which 16 spatiotemporal characteristics were derived. Sub-regional cholinergic basal forebrain volumes were measured at baseline via MRI and a regional map derived from post-mortem histology. Univariate analyses evaluated cross-sectional associations between sub-regional volumes and gait. Linear mixed-effects models assessed whether volumes predicted longitudinal gait changes. RESULTS There were no cross-sectional, age-independent relationships between sub-regional volumes and gait. However, nucleus basalis of Meynert volumes predicted longitudinal gait changes unique to PD. Specifically, smaller nucleus basalis of Meynert volume predicted increasing step time variability (P = 0.019) and shortening swing time (P = 0.015); smaller posterior nucleus portions predicted shortening step length (P = 0.007) and increasing step time variability (P = 0.041). CONCLUSIONS This is the first study to demonstrate that degeneration of the cortical cholinergic system predicts longitudinal progression of gait impairments in PD. Measures of this degeneration may therefore provide a novel biomarker for identifying future mobility loss and falls. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanna Wilson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- The Newcastle upon Tyne NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Chesney E. Craig
- Health, Psychology and Communities Research Centre, Department of PsychologyManchester Metropolitan UniversityManchesterUnited Kingdom
| | - Brook Galna
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- School of Biomedical, Nutritional and Sport SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Sue Lord
- Auckland University of TechnologyAucklandNew Zealand
| | - Rosie Morris
- Department of Sport, Exercise, and RehabilitationNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Rachael A. Lawson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lisa Alcock
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Gordon W. Duncan
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- NHS LothianEdinburghUnited Kingdom
| | - Tien K. Khoo
- School of Medicine & Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- School of Medicine, University of WollongongAustralia
| | - John T. O'Brien
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - David J. Burn
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Nicola J. Ray
- Health, Psychology and Communities Research Centre, Department of PsychologyManchester Metropolitan UniversityManchesterUnited Kingdom
| | - Lynn Rochester
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
9
|
Dillingham CM, Milczarek MM, Perry JC, Vann SD. Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021; 121:60-74. [PMID: 33309908 PMCID: PMC8137464 DOI: 10.1016/j.neubiorev.2020.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Michal M Milczarek
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Thiebaut de Schotten M, Croxson PL, Mars RB. Large-scale comparative neuroimaging: Where are we and what do we need? Cortex 2019; 118:188-202. [PMID: 30661736 PMCID: PMC6699599 DOI: 10.1016/j.cortex.2018.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Neuroimaging has a lot to offer comparative neuroscience. Although invasive "gold standard" techniques have a better spatial resolution, neuroimaging allows fast, whole-brain, repeatable, and multi-modal measurements of structure and function in living animals and post-mortem tissue. In the past years, comparative neuroimaging has increased in popularity. However, we argue that its most significant potential lies in its ability to collect large-scale datasets of many species to investigate principles of variability in brain organisation across whole orders of species-an ambition that is presently unfulfilled but achievable. We briefly review the current state of the field and explore what the current obstacles to such an approach are. We propose some calls to action.
Collapse
Affiliation(s)
- Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Paula L Croxson
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
11
|
Baxter MG, Crimins JL. Acetylcholine Receptor Stimulation for Cognitive Enhancement: Better the Devil You Know? Neuron 2019; 98:1064-1066. [PMID: 29953868 DOI: 10.1016/j.neuron.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Drug treatments to improve memory focus on enhancing acetylcholine. However, Vijayraghavan and colleagues (2018) show that direct stimulation of the M1 muscarinic acetylcholine receptor adversely affected neuronal activity in prefrontal cortex related to working memory for behavioral rules.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Johanna L Crimins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
12
|
Sil’kis IG. Possible Mechanisms of the Complex Effects of Acetylcholine on Theta Activity, Learning, and Memory. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Nkpaa KW, Onyeso GI, Kponee KZ. Rutin abrogates manganese-Induced striatal and hippocampal toxicity via inhibition of iron depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathway. J Trace Elem Med Biol 2019; 53:8-15. [PMID: 30910212 DOI: 10.1016/j.jtemb.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Excess exposure to Manganese (Mn) promotes oxidative stress and neuro-inflammation. Rutin (RUT) has been found to exhibit both anti-oxidative stress and anti-inflammatory properties. This study aimed to investigate the effects of RUT on Mn accumulation, endogenous iron (Fe) depletion, oxidative stress, inflammation and nuclear factor kappa B (NF-κB) signaling pathways in the hippocampus and striatum of Mn - induced rats. Rats were treated with 30 mg/kg Mn body weight alone or orally co-treated by gavage with RUT at 50 and at 100 mg/kg body weight for 35 consecutive days. Thereafter, we investigated Mn and endogenous Fe levels, acetylcholinesterase activity, oxidative stress markers, pro-inflammatory cytokines and nuclear factor kappa B (NF-κB) in the hippocampus and striatum of rats. The results indicate that Mn induced Mn - accumulation, Fe depletion, oxidative stress, inflammation and the activation of acetylcholinesterase activity and NF-κB signaling pathways in the hippocampus and striatum of the rats. However, RUT attenuated Fe depletion, oxidative stress and inflammation and suppressed acetylcholinesterase activity and NF-κB pathway via downstream regulations of tumor necrosis factor alpha, interleukin I beta and interleukin 6. Taken together, our present study demonstrates that RUT abrogates Mn - induced striatal and hippocampal toxicity via inhibition of Fe depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathways. Our results indicate that RUT may be of use as a neuroprotective agent against Mn - induced neuronal toxicity.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Choba, Rivers State, Nigeria.
| | - Godspower I Onyeso
- Department of Physiology, College of Medicine, Rivers State University, Port Harcourt, P.M.B. 5080, Rivers State, Nigeria
| | - Kale Z Kponee
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
APOE-ε4 risk variant for Alzheimer's disease modifies the association between cognitive performance and cerebral morphology in healthy middle-aged individuals. NEUROIMAGE-CLINICAL 2019; 23:101818. [PMID: 30991302 PMCID: PMC6463204 DOI: 10.1016/j.nicl.2019.101818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
The APOE-ε4 genotype is the highest genetic risk factor for Alzheimer's disease (AD). In cognitively unimpaired individuals, it has been related to altered brain morphology, function and earlier amyloid beta accumulation. However, its impact on cognitive performance is less evident. Here, we examine the impact of APOE-ε4 allele load in modulating the association between cognitive functioning and brain morphology in middle-aged healthy individuals. A high-resolution structural MRI scan was acquired and episodic memory (EM) as well as executive functions (EFs) were assessed in a sample of 527 middle-aged unimpaired individuals hosting a substantial representation of ε4-homozygous (N = 64). We adopted a voxel-wise unbiased method to assess whether the number of APOE-ε4 alleles significantly modified the associations between gray matter volumes (GMv) and performance in both cognitive domains. Even though the APOE-ε4 allele load did not exert a direct impact on any cognitive measures, it reversed the relationships between GMv and cognitive performance in a highly symmetrical topological pattern. For EM, interactions mapped onto the inferior temporal gyrus and the dorsal anterior cingulate cortex. Regarding EFs, significant interactions were observed for processing speed, working memory, and visuospatial attention in distinct brain regions. These results suggest that APOE-ε4 carriers display a structure-function association corresponding to an older age than their chronological one. Our findings additionally indicate that APOE-ε4 carriers may rely on the integrity of multiple compensatory brain systems in order to preserve their cognitive abilities, possibly due to an incipient neurodegeneration. Overall this study provides novel insights on the mechanisms through which APOE-ε4 posits an increased AD risk.
Collapse
|
15
|
Nkpaa KW, Amadi BA, Wegwu MO, Farombi EO. Ethanol increases manganese—Induced spatial learning and memory deficits via oxidative/nitrosative stress induced p53 dependent/independent hippocampal apoptosis. Toxicology 2019; 418:51-61. [DOI: 10.1016/j.tox.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
16
|
Froudist-Walsh S, Browning PG, Young JJ, Murphy KL, Mars RB, Fleysher L, Croxson PL. Macro-connectomics and microstructure predict dynamic plasticity patterns in the non-human primate brain. eLife 2018; 7:34354. [PMID: 30462609 PMCID: PMC6249000 DOI: 10.7554/elife.34354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The brain displays a remarkable ability to adapt following injury by altering its connections through neural plasticity. Many of the biological mechanisms that underlie plasticity are known, but there is little knowledge as to when, or where in the brain plasticity will occur following injury. This knowledge could guide plasticity-promoting interventions and create a more accurate roadmap of the recovery process following injury. We causally investigated the time-course of plasticity after hippocampal lesions using multi-modal MRI in monkeys. We show that post-injury plasticity is highly dynamic, but also largely predictable on the basis of the functional connectivity of the lesioned region, gradients of cell densities across the cortex and the pre-lesion network structure of the brain. The ability to predict which brain areas will plastically adapt their functional connectivity following injury may allow us to decipher why some brain lesions lead to permanent loss of cognitive function, while others do not. The brain has the ability to adapt after injury, a process known as plasticity. When one area sustains damage, for example following a car accident or stroke, other areas change their activity and structure to compensate. Understanding how this happens is critical to helping people recover from brain injuries. Certain factors may affect how well the brain can repair itself. These include how much the damaged area interacts with other areas, and which cell types different areas of the brain contain. Froudist-Walsh et al. set out to determine how these factors influence recovery from brain injury in monkeys, whose brains are similar to our own. The monkeys had damage to a structure called the hippocampus. This part of the brain has a key role in memory, which is often impaired in patients with brain injuries. The hippocampus cannot repair itself because the brain has only a limited capacity to grow new neurons. Instead, the brain attempts to compensate for disruption to the hippocampus via changes in other, undamaged areas. Using brain imaging, Froudist-Walsh et al. show that the types of changes that occur depend on how much time has passed since the injury. In the first three months, many areas of the brain change how much they coordinate their activity with other areas. Highly connected areas reduce their communication with other areas the most. In the long-term, the responses of brain areas depend more on which cell types they contain. Areas with more support cells known as “glia” – which supply nutrients and energy to neurons – are better able to adapt their connectivity up to a year after the injury. These findings may ultimately benefit people who have suffered brain injuries after accidents or stroke. They suggest that stimulating intact brain areas may be helpful in the months immediately after an injury. By contrast, long-term therapy may need to focus more on structural repair. Future studies must build on these results to discover the best ways to induce successful recovery from brain injury.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Philip Gf Browning
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| | - James J Young
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kathy L Murphy
- Comparative Biology Centre, Medical School, Newcastle University, United Kingdom
| | - Rogier B Mars
- Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Paula L Croxson
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
17
|
Choi SH, Lee AY, Park CH, Shin YS, Cho EJ. Protective effect of Carthamus tinctorius L. seed on oxidative stress and cognitive impairment induced by chronic alcohol consumption in mice. Food Sci Biotechnol 2018; 27:1475-1484. [PMID: 30319858 DOI: 10.1007/s10068-018-0472-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic alcohol consumption induces damage to the brain that can cause various forms of dementia. An abundance of acetaldehyde is produced by excessive alcohol consumption and accumulates in the body to induce oxidative stress, apoptosis, and inflammation in neuronal cells, which results in learning and cognitive decline. In the present study, C57BL/N mice were orally administered alcohol (16%) and Carthamus tinctorius L. seed (CTS) (100 and 200 mg/kg/day). Behavioral experiments showed that memory and cognitive abilities were significantly higher in the CTS groups than the alcohol-treated control group in the T-maze test, novel object recognition test, and Morris water maze test. In addition, CTS inhibited alcohol-induced lipid peroxidation and nitric oxide production in the brain, kidney, and liver. Moreover, alcohol increased acetylcholinesterase activity in the brain, but this was significantly decreased by the administration of CTS. Therefore, CTS may play role in the prevention of alcohol-related dementia.
Collapse
Affiliation(s)
- Seung Hak Choi
- 1Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| | - Ah Young Lee
- 1Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| | - Chan Hum Park
- 2Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709 Republic of Korea
| | - Yu Su Shin
- 2Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709 Republic of Korea
| | - Eun Ju Cho
- 1Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
18
|
Behavioral Effect of Chemogenetic Inhibition Is Directly Related to Receptor Transduction Levels in Rhesus Monkeys. J Neurosci 2018; 38:7969-7975. [PMID: 30082415 DOI: 10.1523/jneurosci.1422-18.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
We used inhibitory DREADDs (designer receptors exclusively activated by designer drugs) to reversibly disrupt dorsolateral prefrontal cortex (dlPFC) function in male rhesus monkeys. Monkeys were tested on a spatial delayed response task to assess working memory function after intramuscular injection of either clozapine-N-oxide (CNO) or vehicle. CNO injections given before DREADD transduction were without effect on behavior. rAAV5/hSyn-hM4Di-mCherry was injected bilaterally into the dlPFC of five male rhesus monkeys, to produce neuronal expression of the inhibitory (Gi-coupled) DREADD receptor. We quantified the percentage of DREADD-transduced cells using stereological analysis of mCherry-immunolabeled neurons. We found a greater number of immunolabeled neurons in monkeys that displayed CNO-induced behavioral impairment after DREADD transduction compared with monkeys that showed no behavioral effect after CNO. Even in monkeys that showed reliable effects of CNO on behavior after DREADD transduction, the number of prefrontal neurons transduced with DREADD receptor was on the order of 3% of total prefrontal neurons counted. This level of histological analysis facilitates our understanding of behavioral effects, or lack thereof, after DREADD vector injection in monkeys. It also implies that a functional silencing of a relatively small fraction of dlPFC neurons, albeit in a widely distributed area, is sufficient to disrupt spatial working memory.SIGNIFICANCE STATEMENT Cognitive domains such as working memory and executive function are mediated by the dorsolateral prefrontal cortex (dlPFC). Impairments in these domains are common in neurodegenerative diseases as well as normal aging. The present study sought to measure deficits in a spatial delayed response task following activation of viral-vector transduced inhibitory DREADD (designer receptor exclusively activated by designer drug) receptors in rhesus macaques and compare this to the level of transduction in dlPFC using stereology. We found a significant relationship between the extent of DREADD transduction and the magnitude of behavioral deficit following administration of the DREADD actuator compound clozapine-N-oxide (CNO). These results demonstrate it will be critical to validate transduction to ensure DREADDs remain a powerful tool for neuronal disruption.
Collapse
|
19
|
The Rhesus Monkey Hippocampus Critically Contributes to Scene Memory Retrieval, But Not New Learning. J Neurosci 2018; 38:7800-7808. [PMID: 30049888 DOI: 10.1523/jneurosci.0832-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Humans can recall a large number of memories years after the initial events. Patients with amnesia often have lesions to the hippocampus, but human lesions are imprecise, making it difficult to identify the anatomy underlying memory impairments. Rodent studies enable great precision in hippocampal manipulations, but not investigation of many interleaved memories. Thus it is not known how lesions restricted to the hippocampus affect the retrieval of multiple sequentially encoded memories. Furthermore, disagreement exists as to whether hippocampal inactivations lead to temporally graded or ungraded amnesia, which could be a consequence of differences between rodent and human studies. In the current study, rhesus monkeys of both sexes received either bilateral neurotoxic hippocampal lesions or remained unoperated controls and were tested on recognition and new learning of visual object-in-place scenes. Monkeys with hippocampal lesions were significantly impaired at remembering scenes that were encoded before the lesion. We did not observe any temporal gradient effect of the lesion on memory recognition, with recent and remote memories being equally affected by the lesion. Monkeys with hippocampal lesions showed no deficits in learning new scenes. Thus, the hippocampus, like other cortical regions, may be engaged in the acquisition and storage of new memories, but the role of the damaged hippocampus can be taken over by spared hippocampal tissue or extra-hippocampal regions following a lesion. These findings illustrate the utility of experimental paradigms for studying retrograde and anterograde amnesia that make use of the capacity of nonhuman primates to rapidly acquire many distinct visual memories.SIGNIFICANCE STATEMENT Recalling old memories, creating new memories, and the process by which memories transition from temporary to permanent storage all may rely on the hippocampus. Whether the hippocampus is necessary for encoding and retrieval of multiple related visual memories in primates is not known. Monkeys that learned many visual memory problems before precise lesions of the hippocampus were impaired at recalling those memories after hippocampal damage regardless of when the memories were formed, but could learn new memory problems at a normal rate. This suggests the hippocampus is normally vital for retrieval of complex visual memories regardless of their age, and also points to the importance of investigating mechanisms by which memories may be acquired in the presence of hippocampal damage.
Collapse
|
20
|
Abstract
Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis on the etiology of AD. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly, and AD patients that pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review revisits these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusively approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis on the basis of two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree in detecting signs of cholinergic dysfunctions much earlier than initially believed. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses, providing the brain with efficient compensatory mechanisms to delay the conversion into AD. Active research in this field should provide new insight into development of multitherapies incorporating cholinergic manipulation, as well as early biomarkers of AD enabling earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.
Collapse
|
21
|
APOE-Sensitive Cholinergic Sprouting Compensates for Hippocampal Dysfunctions Due to Reduced Entorhinal Input. J Neurosci 2017; 36:10472-10486. [PMID: 27707979 DOI: 10.1523/jneurosci.1174-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
Brain mechanisms compensating for cerebral lesions may mitigate the progression of chronic neurodegenerative disorders such as Alzheimer's disease (AD). Mild cognitive impairment (MCI), which often precedes AD, is characterized by neuronal loss in the entorhinal cortex (EC). This loss leads to a hippocampal disconnection syndrome that drives clinical progression. The concomitant sprouting of cholinergic terminals in the hippocampus has been proposed to compensate for reduced EC glutamatergic input. However, in absence of direct experimental evidence, the compensatory nature of the cholinergic sprouting and its putative mechanisms remain elusive. Transgenic mice expressing the human APOE4 allele, the main genetic risk factor for sporadic MCI/AD, display impaired cholinergic sprouting after EC lesion. Using these mice as a tool to manipulate cholinergic sprouting in a disease-relevant way, we showed that this sprouting was necessary and sufficient for the acute compensation of EC lesion-induced spatial memory deficit before a slower glutamatergic reinnervation took place. We also found that partial EC lesion generates abnormal hyperactivity in EC/dentate networks. Dentate hyperactivity was abolished by optogenetic stimulation of cholinergic fibers. Therefore, control of dentate hyperactivity by cholinergic sprouting may be involved in functional compensation after entorhinal lesion. Our results also suggest that dentate hyperactivity in MCI patients may be directly related to EC neuronal loss. Impaired sprouting during the MCI stage may contribute to the faster cognitive decline reported in APOE4 carriers. Beyond the amyloid contribution, the potential role of both cholinergic sprouting and dentate hyperactivity in AD symptomatogenesis should be considered in designing new therapeutic approaches. SIGNIFICANCE STATEMENT Currently, curative treatment trials for Alzheimer's disease (AD) have failed. The endogenous ability of the brain to cope with neuronal loss probably represents one of the most promising therapeutic targets, but the underlying mechanisms are still unclear. Here, we show that the mammalian brain is able to manage several deleterious consequences of the loss of entorhinal neurons on hippocampal activity and cognitive performance through a fast cholinergic sprouting followed by a slower glutamatergic reinnervation. The cholinergic sprouting is gender dependent and highly sensitive to the genetic risk factor APOE4 Our findings highlight the specific impact of early loss of entorhinal input on hippocampal hyperactivity and cognitive deficits characterizing early stages of AD, especially in APOE4 carriers.
Collapse
|
22
|
Grothe MJ, Scheef L, Bäuml J, Meng C, Daamen M, Baumann N, Zimmer C, Teipel S, Bartmann P, Boecker H, Wolke D, Wohlschläger A, Sorg C. Reduced Cholinergic Basal Forebrain Integrity Links Neonatal Complications and Adult Cognitive Deficits After Premature Birth. Biol Psychiatry 2017; 82:119-126. [PMID: 28129944 DOI: 10.1016/j.biopsych.2016.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/23/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prematurely born individuals have an increased risk for long-term neurocognitive impairments. In animal models, development of the cholinergic basal forebrain (cBF) is selectively vulnerable to adverse effects of perinatal stressors, and impaired cBF integrity results in lasting cognitive deficits. We hypothesized that cBF integrity is impaired in prematurely born individuals and mediates adult cognitive impairments associated with prematurity. METHODS We used magnetic resonance imaging-based volumetric assessments of a cytoarchitectonically defined cBF region of interest to determine differences in cBF integrity between 99 adults who were born very preterm and/or with very low birth weight and 106 term-born control subjects from the same birth cohort. Magnetic resonance imaging-derived cBF volumes were studied in relation to neonatal clinical complications after delivery and intelligence measures (IQ) in adulthood. RESULTS In adults who were born very preterm and/or with very low birth weight, cBF volumes were significantly reduced compared with term-born adults (-4.5% [F1,202 = 11.82, p = .001]). Lower cBF volume in adults who were born very preterm and/or with very low birth weight was specifically associated with both neonatal complications (rpart,92 = -.35, p < .001) and adult IQ (rpart,88 = .33, p = .001) even after controlling for global gray matter and white matter volume. In a path analytic model, cBF volume significantly mediated the association between neonatal complications and adult cognitive deficits. CONCLUSIONS We provide first-time evidence in humans that cBF integrity is impaired after premature birth and links neonatal complications with long-term cognitive outcome. Data suggest that cholinergic system abnormalities may play a relevant role for long-term neurocognitive impairments associated with premature delivery.
Collapse
Affiliation(s)
| | - Lukas Scheef
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Josef Bäuml
- Department of Neuroradiology, Technische Universität München, Munich, Germany; Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Chun Meng
- Department of Neuroradiology, Technische Universität München, Munich, Germany; Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität München, Munich, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Peter Bartmann
- Department of Radiology, and Department of Neonatology, University Hospital Bonn, Bonn
| | - Henning Boecker
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Dieter Wolke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Afra Wohlschläger
- Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Psychiatry, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
24
|
Reduction in Pain and Inflammation Associated With Chronic Low Back Pain With the Use of the Medical Food Theramine. Am J Ther 2017; 23:e1353-e1362. [PMID: 25237981 PMCID: PMC5102273 DOI: 10.1097/mjt.0000000000000068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of chronic back pain is a challenge for physicians. Although standard treatments exert a modest effect, they are associated with narcotic addiction and serious side effects from nonsteroidal antiinflammatory agents. Moreover, neurotransmitter depletion from both the pain syndrome and therapy may contribute to a poor treatment outcome. Neurotransmitter deficiency may be related both to increased turnover rate and inadequate neurotransmitter precursors from the diet, particularly for essential and semi-essential amino acids. Theramine, an amino acid blend 68405-1 (AAB), is a physician-prescribed only medical food. It contains neurotransmitter precursors and systems for increasing production and preventing attenuation of neurotransmitters. A double-blind controlled study of AAB, low-dose ibuprofen, and the coadministration of the 2 agents were performed. The primary end points included the Roland Morris index and Oswestry disability scale. The cohort included 122 patients aged between 18 and 75 years. The patients were randomized to 1 of 3 groups: AAB alone, ibuprofen alone, and the coadministration of the 2 agents. In addition, C-reactive protein, interleukin 6, and plasma amino acid concentrations were measured at baseline and 28 days time points. After treatment, the Oswestry Disability Index worsened by 4.52% in the ibuprofen group, improved 41.91% in the AAB group, and improved 62.15% in the combination group. The Roland Morris Index worsened by 0.73% in the ibuprofen group, improved by 50.3% in the AAB group, and improved 63.1% in the combination group. C-reactive protein in the ibuprofen group increased by 60.1%, decreased by 47.1% in the AAB group, and decreased by 36% in the combination group. Similar changes were seen in interleukin 6. Arginine, serine, histidine, and tryptophan levels were substantially reduced before treatment in the chronic pain syndrome and increased toward normal during treatment. There was a direct correlation between improvement in amino acid concentration and treatment response. Treatment with amino acid precursors was associated with substantial improvement in chronic back pain, reduction in inflammation, and improvement in back pain correlated with increased amino acid precursors to neurotransmitters in blood.
Collapse
|
25
|
Palmer D, Creighton S, Prado VF, Prado MA, Choleris E, Winters BD. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav Brain Res 2016; 311:267-278. [DOI: 10.1016/j.bbr.2016.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
26
|
Pugh J, Maslen H. 'Drugs That Make You Feel Bad'? Remorse-Based Mitigation and Neurointerventions. CRIMINAL LAW AND PHILOSOPHY 2015; 11:499-522. [PMID: 29104701 PMCID: PMC5664325 DOI: 10.1007/s11572-015-9383-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In many jurisdictions, an offender's remorse is considered to be a relevant factor to take into account in mitigation at sentencing. The growing philosophical interest in the use of neurointerventions in criminal justice raises an important question about such remorse-based mitigation: to what extent should technologically facilitated remorse be honoured such that it is permitted the same penal significance as standard instances of remorse? To motivate this question, we begin by sketching a tripartite account of remorse that distinguishes cognitive, affective and motivational elements of remorse. We then describe a number of neurointerventions that might plausibly be used to enhance abilities that are relevant to these different elements of remorse. Having described what we term the 'moral value' view of the justification of remorse-based mitigation (according to which remorse-based mitigation is justified insofar as mitigation serves as a deserved form of response to the moral value of the offender's remorse), we then consider whether using neurointerventions to facilitate remorse would undermine its moral value, and thus make it inappropriate to honour such remorse in the criminal justice system. We respond to this question by claiming that the form of moral understanding that is incorporated into a genuinely remorseful response grounds remorse's moral value. In view of this claim, we conclude by arguing that neurointerventions need not undermine remorse's moral value on this approach, and that the remorse that such interventions might facilitate could also be authentic to the recipient of the neurointerventions that we discuss.
Collapse
Affiliation(s)
- Jonathan Pugh
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Suite 8, Littlegate House, St Ebbes Street, Oxford, OX1 1PT UK
| | - Hannah Maslen
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Suite 8, Littlegate House, St Ebbes Street, Oxford, OX1 1PT UK
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford, OX1 3BD UK
| |
Collapse
|
27
|
Cholinergic basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment. J Neurosci 2015; 35:739-47. [PMID: 25589767 DOI: 10.1523/jneurosci.3617-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fornix and hippocampus are critical to recollection in the healthy human brain. Fornix degeneration is a feature of aging and Alzheimer's disease. In the presence of fornix damage in mild cognitive impairment (MCI), a recognized prodrome of Alzheimer's disease, recall shows greater dependence on other tracts, notably the parahippocampal cingulum (PHC). The current aims were to determine whether this shift is adaptive and to probe its relationship to cholinergic signaling, which is also compromised in Alzheimer's disease. Twenty-five human participants with MCI and 20 matched healthy volunteers underwent diffusion MRI, behavioral assessment, and volumetric measurement of the basal forebrain. In a regression model for recall, there was a significant group × fornix interaction, indicating that the association between recall and fornix structure was weaker in patients. The opposite trend was present for the left PHC. To further investigate this pattern, two regression models were generated to account for recall performance: one based on fornix microstructure and the other on both fornix and left PHC. The realignment to PHC was positively correlated with free recall but not non-memory measures, implying a reconfiguration that is beneficial to residual memory. There was a positive relationship between realignment to PHC and basal forebrain gray matter volume despite this region demonstrating atrophy at a group level, i.e., the cognitive realignment to left PHC was most apparent when cholinergic areas were relatively spared. Therefore, cholinergic systems appear to enable adaptation to injury even as they degenerate, which has implications for functional restoration.
Collapse
|
28
|
Lu CL, Tang S, Meng ZJ, He YY, Song LY, Liu YP, Ma N, Li XY, Guo SC. Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci 2014; 21:51. [PMID: 24885898 PMCID: PMC4045917 DOI: 10.1186/1423-0127-21-51] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/18/2014] [Indexed: 11/29/2022] Open
Abstract
Background Excessive manganese exposure induced cognitive deficit. Several lines of evidence have demonstrated that taurine improves cognitive impairment induced by numerous neurotoxins. However, the role of taurine on manganese-induced damages in learning and memory is still elusive. This goal of this study was to investigate the beneficial effect of taurine on learning and memory capacity impairment by manganese exposure in an animal model. Results The escape latency in the Morris Water Maze test was significantly longer in the rats injected with manganese than that in the rats received both taurine and manganese. Similarly, the probe trial showed that the annulus crossings were significantly greater in the taurine plus manganese treated rats than those in the manganese-treated rats. However, the blood level of manganese was not altered by the taurine treatment. Interestingly, the exposure of manganese led to a significant increase in the acetylcholinesterase activity and an evidently decrease in the choline acetyltransferase activity, which were partially restored by the addition of taurine. Additionally, we identified 9 differentially expressed proteins between the rat hippocampus treated by manganese and the control or the manganese plus taurine in the proteomic analysis using the 2-dimensional gel electrophoresis followed by the tandem mass spectrometry (MS/MS). Most of these proteins play a role in energy metabolism, oxidative stress, inflammation, and neuron synapse. Conclusions In summary, taurine restores the activity of AChE and ChAT, which are critical for the regulation of acetylcholine. We have identified seven differentially expressed proteins specifically induced by manganese and two proteins induced by taurine from the rat hippocampus. Our results support that taurine improves the impaired learning and memory ability caused by excessive exposure of manganese.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xi-Yi Li
- Department of Food and Nutrition, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, 530021 Nanning, Guangxi, P,R, China.
| | | |
Collapse
|
29
|
Correa-Basurto J, Bello M, Rosales-Hernández M, Hernández-Rodríguez M, Nicolás-Vázquez I, Rojo-Domínguez A, Trujillo-Ferrara J, Miranda R, Flores-Sandoval C. QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites. Chem Biol Interact 2014; 209:1-13. [DOI: 10.1016/j.cbi.2013.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
|
30
|
Harada S, Yamazaki Y, Nishioka H, Tokuyama S. Neuroprotective effect through the cerebral sodium–glucose transporter on the development of ischemic damage in global ischemia. Brain Res 2013; 1541:61-8. [DOI: 10.1016/j.brainres.2013.09.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/02/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022]
|
31
|
Testing long-term memory in animal models of schizophrenia: Suggestions from CNTRICS. Neurosci Biobehav Rev 2013; 37:2141-8. [DOI: 10.1016/j.neubiorev.2013.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/30/2013] [Accepted: 06/10/2013] [Indexed: 12/27/2022]
|
32
|
Reduced plasticity and mild cognitive impairment-like deficits after entorhinal lesions in hAPP/APOE4 mice. Neurobiol Aging 2013; 34:2683-93. [PMID: 23706647 DOI: 10.1016/j.neurobiolaging.2013.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 11/20/2022]
Abstract
Mild cognitive impairment (MCI) is a clinical condition that often precedes Alzheimer disease (AD). Compared with apolipoprotein E-ε3 (APOE3), the apolipoprotein E-ε4 (APOE4) allele is associated with an increased risk of developing MCI and spatial navigation impairments. In MCI, the entorhinal cortex (EC), which is the main innervation source of the dentate gyrus, displays partial neuronal loss. We show that bilateral partial EC lesions lead to marked spatial memory deficits and reduced synaptic density in the dentate gyrus of APOE4 mice compared with APOE3 mice. Genotype and lesion status did not affect the performance in non-navigational tasks. Thus, partial EC lesions in APOE4 mice were sufficient to induce severe spatial memory impairments and synaptic loss in the dentate gyrus. In addition, lesioned APOE4 mice showed no evidence of reactional increase in cholinergic terminals density as opposed to APOE3 mice, suggesting that APOE4 interferes with the ability of the cholinergic system to respond to EC input loss. These findings provide a possible mechanism underlying the aggravating effect of APOE4 on the cognitive outcome of MCI patients.
Collapse
|