1
|
Morioka K, Tazoe T, Huie JR, Hayakawa K, Okazaki R, Guandique CF, Almeida CA, Haefeli J, Hamanoue M, Endoh T, Tanaka S, Bresnahan JC, Beattie MS, Ogata T, Ferguson AR. Disuse plasticity limits spinal cord injury recovery. iScience 2025; 28:112180. [PMID: 40224010 PMCID: PMC11987634 DOI: 10.1016/j.isci.2025.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Use-dependent plasticity after spinal cord injury (SCI) enhances neuromotor function, however, the optimal timing to initiate rehabilitation remains controversial. To test impacts of early disuse, we established a rodent model of transient hindlimb suspension in acute phase SCI. Early disuse in the first 2-week after SCI undermined recovery on open-field locomotion, kinematics, and swim tests even after 6-week of normal gravity reloading. Early disuse produced chronic spinal circuit hyper-excitability in H-reflex and interlimb reflex tests. Quantitative synaptoneurosome analysis of lumboventral spinal cords revealed shifts in AMPA receptor (AMPAR) subunit GluA1 localization and serine 881 phosphorylation, reflecting enduring synaptic memories of early disuse stored in the spinal cord. Automated confocal analysis of motoneurons revealed persistent shifts toward GluA2-lacking, calcium-permeable AMPARs in disuse subjects. Unsupervised machine learning associated multidimensional synaptic changes with persistent recovery deficits in SCI. The results argue for early aggressive rehabilitation to prevent disuse plasticity that limits SCI recovery.
Collapse
Affiliation(s)
- Kazuhito Morioka
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute (OTI), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toshiki Tazoe
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Neural Prosthesis Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J. Russell Huie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic and Spine Surgery, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Rentaro Okazaki
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Cristian F. Guandique
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Carlos A. Almeida
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jenny Haefeli
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Makoto Hamanoue
- Department of Physiology, Advanced Medical Research Center, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Endoh
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Faculty of Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jacqueline C. Bresnahan
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michael S. Beattie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Adam R. Ferguson
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System (SFVAHCS), San Francisco, CA, USA
| |
Collapse
|
2
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
3
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
4
|
Hoy KC, Strain MM, Turtle JD, Lee KH, Huie JR, Hartman JJ, Tarbet MM, Harlow ML, Magnuson DSK, Grau JW. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. J Neurosci 2020; 40:9186-9209. [PMID: 33097637 PMCID: PMC7687054 DOI: 10.1523/jneurosci.2683-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.
Collapse
Affiliation(s)
- Kevin C Hoy
- Case Comprehensive Cancer Center/Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Misty M Strain
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas 78234
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Kuan H Lee
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - J Russell Huie
- Department of Neuroscience, University of California San Francisco, San Francisco, California 94110
| | - John J Hartman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Megan M Tarbet
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Mark L Harlow
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40202
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
5
|
Reynolds JA, Henwood MK, Turtle JD, Baine RE, Johnston DT, Grau JW. Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury. Front Syst Neurosci 2019; 13:44. [PMID: 31551720 PMCID: PMC6746957 DOI: 10.3389/fnsys.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).
Collapse
Affiliation(s)
- Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel E Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - David T Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Brumley MR, Strain MM, Devine N, Bozeman AL. The Spinal Cord, Not to Be Forgotten: the Final Common Path for Development, Training and Recovery of Motor Function. Perspect Behav Sci 2018; 41:369-393. [PMID: 31976401 DOI: 10.1007/s40614-018-00177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Research on learning, memory, and neural plasticity has long focused on the brain. However, the spinal cord also exhibits these phenomena to a remarkable degree. Following a spinal cord injury, the isolated spinal cord in vivo can adapt to the environment and benefit from training. The amount of plasticity or recovery of function following a spinal injury often depends on the age at which the injury occurs. In this overview, we discuss learning in the spinal cord, including associative conditioning, neural mechanisms, development, and applications to clinical populations. We take an integrated approach to the spinal cord, one that combines basic and experimental information about experience-dependent learning in animal models to clinical treatment of spinal cord injuries in humans. From such an approach, an important goal is to better inform therapeutic treatments for individuals with spinal cord injuries, as well as develop a more accurate and complete account of spinal cord and behavioral functioning.
Collapse
Affiliation(s)
- Michele R Brumley
- 1Department of Psychology, Idaho State University, 921 South 8th Avenue, Stop 8112, Pocatello, ID 83209-8112 USA
| | - Misty M Strain
- 2United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX USA
| | - Nancy Devine
- 3Department of Physical and Occupational Therapy, Idaho State University, Pocatello, ID USA
| | - Aimee L Bozeman
- 1Department of Psychology, Idaho State University, 921 South 8th Avenue, Stop 8112, Pocatello, ID 83209-8112 USA
| |
Collapse
|
7
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
8
|
Magerl W, Hansen N, Treede RD, Klein T. The human pain system exhibits higher-order plasticity (metaplasticity). Neurobiol Learn Mem 2018; 154:112-120. [PMID: 29631001 DOI: 10.1016/j.nlm.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
The human pain system can be bidirectionally modulated by high-frequency (HFS; 100 Hz) and low-frequency (LFS; 1 Hz) electrical stimulation of nociceptors leading to long-term potentiation or depression of pain perception (pain-LTP or pain-LTD). Here we show that priming a test site by very low-frequency stimulation (VLFS; 0.05 Hz) prevented pain-LTP probably by elevating the threshold (set point) for pain-LTP induction. Conversely, prior HFS-induced pain-LTP was substantially reversed by subsequent VLFS, suggesting that preceding HFS had primed the human nociceptive system for pain-LTD induction by VLFS. In contrast, the pain elicited by the pain-LTP-precipitating conditioning HFS stimulation remained unaffected. In aggregate these experiments demonstrate that the human pain system expresses two forms of higher-order plasticity (metaplasticity) acting in either direction along the pain-LTD to pain-LTP continuum with similar shifts in thresholds for LTD and LTP as in synaptic plasticity, indicating intriguing new mechanisms for the prevention of pain memory and the erasure of hyperalgesia related to an already established pain memory trace. There were no apparent gender differences in either pain-LTP or metaplasticity of pain-LTP. However, individual subjects appeared to present with an individual balance of pain-LTD to pain-LTP (a pain plasticity "fingerprint").
Collapse
Affiliation(s)
- Walter Magerl
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | - Niels Hansen
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany; Department of Psychiatry and Psychotherapy & Department of Epileptology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Thomas Klein
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Devinney MJ, Mitchell GS. Spinal activation of protein kinase C elicits phrenic motor facilitation. Respir Physiol Neurobiol 2017; 256:36-42. [PMID: 29081358 DOI: 10.1016/j.resp.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
The protein kinase C family regulates many cellular functions, including multiple forms of neuroplasticity. The novel PKCθ and atypical PKCζ isoforms have been implicated in distinct forms of spinal, respiratory motor plasticity, including phrenic motor facilitation (pMF) following acute intermittent hypoxia or inactivity, respectively. Although these PKC isoforms are critical in regulating spinal motor plasticity, other isoforms may be important for phrenic motor plasticity. We tested the impact of conventional/novel PKC activator, phorbol 12-myristate 13-acetate (PMA) on pMF. Rats given cervical intrathecal injections of PMA exhibited pMF, which was abolished by pretreatment of broad-spectrum PKC inhibitors bisindolymalemide 1 (BIS) or NPC-15437 (NPC). Because PMA fails to activate atypical PKC isoforms, and NPC does not block PKCθ, this finding demonstrates that classical/novel PKC isoforms besides PKCθ are sufficient to elicit pMF. These results advance our understanding of mechanisms producing respiratory motor plasticity, and may inspire new treatments for disorders that compromise breathing, such as ALS, spinal injury and obstructive sleep apnea.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, 53706, United States
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
10
|
Huang YJ, Lee KH, Grau JW. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization. Exp Neurol 2017; 288:38-50. [PMID: 27818188 DOI: 10.1016/j.expneurol.2016.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABAA agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Kuan H Lee
- Center for Pain Research, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
12
|
Hansen CN, Faw TD, White S, Buford JA, Grau JW, Basso DM. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury. Front Neural Circuits 2016; 10:11. [PMID: 26973469 PMCID: PMC4773638 DOI: 10.3389/fncir.2016.00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared axonal systems and adaptive plasticity in locomotor networks and highlights a critical window for activity-based rehabilitation.
Collapse
Affiliation(s)
- Christopher N. Hansen
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| | - Timothy D. Faw
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
- Neuroscience Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Susan White
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
| | - John A. Buford
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| | - James W. Grau
- Department of Psychology, Texas A&M UniversityCollege Station, TX, USA
| | - D. Michele Basso
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
13
|
AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury. eNeuro 2015; 2:eN-NWR-0091-15. [PMID: 26668821 PMCID: PMC4677690 DOI: 10.1523/eneuro.0091-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.
Collapse
|
14
|
Abstract
Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons.
Collapse
|
15
|
Strickland ER, Woller SA, Garraway SM, Hook MA, Grau JW, Miranda RC. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Front Neural Circuits 2014; 8:117. [PMID: 25278846 PMCID: PMC4166958 DOI: 10.3389/fncir.2014.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/03/2014] [Indexed: 11/13/2022] Open
Abstract
Uncontrollable nociceptive stimulation adversely affects recovery in spinally contused rats. Spinal cord injury (SCI) results in altered microRNA (miRNA) expression both at, and distal to the lesion site. We hypothesized that uncontrollable nociception further influences SCI-sensitive miRNAs and associated gene targets, potentially explaining the progression of maladaptive plasticity. Our data validated previously described sensitivity of miRNAs to SCI alone. Moreover, following SCI, intermittent noxious stimulation decreased expression of miR124 in dorsal spinal cord 24 h after stimulation and increased expression of miR129-2 in dorsal, and miR1 in ventral spinal cord at 7 days. We also found that brain-derived neurotrophic factor (BDNF) mRNA expression was significantly down-regulated 1 day after SCI alone, and significantly more so, after SCI followed by tailshock. Insulin-like growth factor-1 (IGF-1) mRNA expression was significantly increased at both 1 and 7 days post-SCI, and significantly more so, 7 days post-SCI with shock. MiR1 expression was positively and significantly correlated with IGF-1, but not BDNF mRNA expression. Further, stepwise linear regression analysis indicated that a significant proportion of the changes in BDNF and IGF-1 mRNA expression were explained by variance in two groups of miRNAs, implying co-regulation. Collectively, these data show that uncontrollable nociception which activates sensorimotor circuits distal to the injury site, influences SCI-miRNAs and target mRNAs within the lesion site. SCI-sensitive miRNAs may well mediate adverse consequences of uncontrolled sensorimotor activation on functional recovery. However, their sensitivity to distal sensory input also implicates these miRNAs as candidate targets for the management of SCI and neuropathic pain.
Collapse
Affiliation(s)
- Eric R Strickland
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| | - Sarah A Woller
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Sandra M Garraway
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| | - James W Grau
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| |
Collapse
|
16
|
Grau JW, Huie JR, Lee KH, Hoy KC, Huang YJ, Turtle JD, Strain MM, Baumbauer KM, Miranda RM, Hook MA, Ferguson AR, Garraway SM. Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Front Neural Circuits 2014; 8:100. [PMID: 25249941 PMCID: PMC4157609 DOI: 10.3389/fncir.2014.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Kuan H Lee
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Kevin C Hoy
- Department of Neurosciences, MetroHealth Medical Center and Case Western Reserve University Cleveland, OH, USA
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Joel D Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | | | - Rajesh M Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
17
|
Strickland ER, Woller SA, Hook MA, Grau JW, Miranda RC. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochem Int 2014; 77:40-9. [PMID: 24867772 DOI: 10.1016/j.neuint.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
Increased pain sensitivity is a common sequela to spinal cord injury (SCI). Moreover, drugs like morphine, though critical for pain management, elicit pro-inflammatory effects that exacerbate chronic pain symptoms. Previous reports showed that SCI results in the induction and suppression of several microRNAs (miRNAs), both at the site of injury, as well as in segments of the spinal cord distal to the injury site. We hypothesized that morphine would modulate the expression of these miRNAs, and that expression of these SCI-sensitive miRNAs may predict adaptation of distal nociceptive circuitry following SCI. To determine whether morphine treatment further dysregulates SCI-sensitive miRNAs, their expression was examined by qRT-PCR in sham controls and in response to vehicle and morphine treatment following contusion in rats, at either 2 or 15 days post-SCI. Our data indicated that expression of miR1, miR124, and miR129-2 at the injury site predicted the nociceptive response mediated by spinal regions distal to the lesion site, suggesting a molecular mechanism for the interaction of SCI with adaptation of functionally intact distal sensorimotor circuitry. Moreover, the SCI-induced miRNA, miR21 was induced by subsequent morphine administration, representing an alternate, and hitherto unidentified, maladaptive response to morphine exposure. Contrary to predictions, mRNA for the pro-inflammatory interleukin-6 receptor (IL6R), an identified target of SCI-sensitive miRNAs, was also induced following SCI, indicating dissociation between miRNA and target gene expression. Moreover, IL6R mRNA expression was inversely correlated with locomotor function suggesting that inflammation is a predictor of decreased spinal cord function. Collectively, our data indicate that miR21 and other SCI-sensitive miRNAs may constitute therapeutic targets, not only for improving functional recovery following SCI, but also for attenuating the effects of SCI on pain sensitivity.
Collapse
Affiliation(s)
- Eric R Strickland
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Sarah A Woller
- Texas A&M University, Department of Psychology, College Station, TX 77843-4235, USA
| | - Michelle A Hook
- Texas A&M University, Department of Psychology, College Station, TX 77843-4235, USA
| | - James W Grau
- Texas A&M University, Department of Psychology, College Station, TX 77843-4235, USA
| | - Rajesh C Miranda
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA.
| |
Collapse
|
18
|
An K, Zhen C, Liu ZH, Zhao Q, Liu HP, Zhong XL, Huang WQ. Spinal protein kinase Mζ contributes to the maintenance of peripheral inflammation-primed persistent nociceptive sensitization after plantar incision. Eur J Pain 2014; 19:39-47. [PMID: 24782097 DOI: 10.1002/ejp.517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Previous studies suggest that persistent post-surgical pain (PPSP) is correlated with preoperative pain status and amplification of central sensitization. Protein kinase Mζ (PKMζ) is an essential substrate of the late long-term potentiation underlying central sensitization, which is one mechanism of pain memory formation. However, the potential contributions of spinal PKMζ to PPSP, a condition in which preoperative pain is prevalent, are not known. METHODS Here, a modified 'hyperalgesia priming' model was established to simulate the clinical situation. This model used intraplantar injections of carrageenan (Car) as priming stimuli to elicit persistent nociceptive sensitization after plantar incision in rats. Upon treatment with PKMζ inhibitor ZIP, Scr-ZIP or protein kinase Cs (PKCs) inhibitor NPC-15437, altered behaviour and spinal PKMζ/PKCs expression were observed. RESULTS A long-lasting hypersensitivity induced by Car-priming was identified and precipitated by subsequent plantar incision in this 'two-hit' paradigm. Post-treatment with ZIP, but not Scr-ZIP and NPC-15437, after the resolution of Car-priming selectively relieved hypersensitivity. In contrast, pre-priming NPC-15437 treatment only prevented Car-induced initial transient hyperalgesia. Immunoassays showed a significant decrease in spinal PKMζ expression after plantar incision with post-priming ZIP treatment as compared with Scr-ZIP and NPC-15437, but no notable differences in PKCs expression were observed. CONCLUSIONS Spinal PKCs solely contribute to the initial induction of persistent pain, whereas PKMζ plays an essential role in spinal plasticity storage. PKMζ is responsible for the maintenance of peripheral inflammation-primed PPSP. Therefore, spinal PKMζ may be a therapeutic target to prevent surgery-induced chronic pain in patients with preoperative pain.
Collapse
Affiliation(s)
- K An
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Carballosa-Gonzalez MM, Vitores A, Hentall ID. Hindbrain raphe stimulation boosts cyclic adenosine monophosphate and signaling proteins in the injured spinal cord. Brain Res 2013; 1543:165-72. [PMID: 24246733 DOI: 10.1016/j.brainres.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 12/20/2022]
Abstract
Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI.
Collapse
Affiliation(s)
| | - Alberto Vitores
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ian D Hentall
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
20
|
van Rooijen DE, Marinus J, Schouten AC, Noldus LP, van Hilten JJ. Muscle Hyperalgesia Correlates With Motor Function in Complex Regional Pain Syndrome Type 1. THE JOURNAL OF PAIN 2013; 14:446-54. [DOI: 10.1016/j.jpain.2012.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 12/10/2012] [Indexed: 01/21/2023]
|
21
|
Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation. J Neurosci 2013; 32:16510-20. [PMID: 23152633 DOI: 10.1523/jneurosci.2631-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life.
Collapse
|
22
|
Time-dependent cross talk between spinal serotonin 5-HT2A receptor and mGluR1 subserves spinal hyperexcitability and neuropathic pain after nerve injury. J Neurosci 2012; 32:13568-81. [PMID: 23015446 DOI: 10.1523/jneurosci.1364-12.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. Upregulation of the serotonin receptor 2A (5-HT(2A)R) in dorsal horn neurons promotes spinal hyperexcitation and impairs spinal μ-opioid mechanisms during neuropathic pain. We investigated the involvement of spinal glutamate receptors, including metabotropic receptors (mGluRs) and NMDA, in 5-HT(2A)R-induced hyperexcitability after spinal nerve ligation (SNL) in rat. High-affinity 5-HT(2A)R agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2) enhanced C-fiber-evoked dorsal horn potentials after SNL, which was prevented by mGluR1 antagonist AIDA [(RS)-1-aminoindan-1,5-dicarboxylic acid] but not by group II mGluR antagonist LY 341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid] or NMDA antagonist d-AP5 [D-(-)-2-amino-5-phosphonopentanoic acid]. 5-HT(2A)R and mGluR1 were found to be coexpressed in postsynaptic densities in dorsal horn neurons. In the absence of SNL, pharmacological stimulation of 5-HT(2A)R with TCB-2 both induced rapid bilateral upregulation of mGluR1 expression in cytoplasmic and synaptic fractions of spinal cord homogenates, which was attenuated by PKC inhibitor chelerythrine, and enhanced evoked potentials during costimulation of mGluR1 with 3,5-DHPG [(RS)-3,5-dihydroxyphenylglycine]. SNL was followed by bilateral upregulation of mGluR1 in 5-HT(2A)R-containing postsynaptic densities. Upregulation of mGluR1 in synaptic compartments was partially prevented by chronic administration of selective 5-HT(2A)R antagonist M100907 [(R)-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-pipidinemethanol], confirming 5-HT(2A)R-mediated control of mGluR1 upregulation triggered by SNL. Changes in thermal and mechanical pain thresholds following SNL were increasingly reversed over the days after injury by chronic 5-HT(2A)R blockade. These results emphasize a role for 5-HT(2A)R in hyperexcitation and pain after nerve injury and support mGluR1 upregulation as a novel feedforward activation mechanism contributing to 5-HT(2A)R-mediated facilitation.
Collapse
|
23
|
Ferguson AR, Huie JR, Crown ED, Baumbauer KM, Hook MA, Garraway SM, Lee KH, Hoy KC, Grau JW. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front Physiol 2012; 3:399. [PMID: 23087647 PMCID: PMC3468083 DOI: 10.3389/fphys.2012.00399] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI.
Collapse
Affiliation(s)
- Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ferguson AR, Huie JR, Crown ED, Grau JW. Central nociceptive sensitization vs. spinal cord training: opposing forms of plasticity that dictate function after complete spinal cord injury. Front Physiol 2012; 3:396. [PMID: 23060820 PMCID: PMC3463829 DOI: 10.3389/fphys.2012.00396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/15/2012] [Indexed: 11/13/2022] Open
Abstract
The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive) stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI) field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome) learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training). Conversely intradermal formalin impaired future spinal learning (24 h post-injection). Because formalin-induced central sensitization has been shown to involve NMDA receptor activation, we tested whether pre-treatment with NMDA would also affect spinal learning in manner similar to formalin. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24 h. These data provide strong evidence for an opposing relationship between nociceptive plasticity and use-dependent learning in the spinal cord. The present work has clinical implications given recent findings that adaptive spinal training improves recovery in humans with SCI. Nociception below the SCI may undermine this rehabilitation potential.
Collapse
Affiliation(s)
- Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | | | | | | |
Collapse
|
25
|
Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats. Neuroscience 2012; 227:119-33. [PMID: 23036621 DOI: 10.1016/j.neuroscience.2012.09.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
Abstract
Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed-spaced legshocks produced hyporeactivity. The impact of fixed-spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60-180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed-spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed-spaced stimulation lasted 24h. Treatment with fixed-spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed-spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR.
Collapse
|
26
|
Chen ML, Cao H, Chu YX, Cheng LZ, Liang LL, Zhang YQ, Zhao ZQ. Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: multiple glial-neuronal dialogues in the rat spinal cord. THE JOURNAL OF PAIN 2012; 13:945-958. [PMID: 22968128 DOI: 10.1016/j.jpain.2012.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/06/2012] [Accepted: 06/26/2012] [Indexed: 01/16/2023]
Abstract
UNLABELLED The glial function in morphine tolerance has been explored, but its mechanisms remain unclear. Our previous study has showed that microglia-expressed P2X7 receptors (P2X7R) contribute to the induction of tolerance to morphine analgesia in rats. This study further explored the potential downstream mechanisms of P2X7R underlying morphine tolerance. The results revealed that the blockade of P2X7 receptor by P2X7R antagonist or targeting small interfering RNA (siRNA) reduced tolerance to morphine analgesia in the pain behavioral test and spinal extracellular recordings in vivo and whole-cell recording of the spinal cord slice in vitro. Chronic morphine treatment induced an increase in the expression of interleukin (IL)-18 by microglia, IL-18 receptor (IL-18R) by astrocytes, and protein kinase Cγ (PKCγ) by neurons in the spinal dorsal horn, respectively, which was blocked by a P2X7R antagonist or targeting siRNA. Chronic morphine treatment also induced an increased release of D-serine from the spinal astrocytes. Further, both D-amino acid oxygenase (DAAO), a degrading enzyme of D-serine, and bisindolylmaleimide α (BIM), a PKC inhibitor, attenuated morphine tolerance. The present study demonstrated a spinal mechanism underlying morphine tolerance, in which chronic morphine triggered multiple dialogues between glial and neuronal cells in the spinal cord via a cascade involving a P2X7R-IL-18-D-serine-N-methyl-D-aspartate receptor (NMDAR)-PKCγ-mediated signaling pathway. PERSPECTIVE The present study shows that glia-neuron interaction via a cascade (P2X7R-IL-18-D-serine-NMDAR-PKCγ) in the spinal cord plays an important role in morphine tolerance. This article may represent potential new therapeutic targets for preventing morphine analgesic tolerance in clinical management of chronic pain.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Institute of Neurobiology, Institutes of Brain Science & State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Hoy KC, Huie JR, Grau JW. AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord. Behav Brain Res 2012; 236:319-326. [PMID: 22982187 DOI: 10.1016/j.bbr.2012.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/18/2022]
Abstract
Previous research has demonstrated that the spinal cord is capable of a simple form of instrumental learning. Spinally transected rats that receive shock to a hind leg in an extended position quickly learn to maintain the leg in a flexed position, reducing net shock exposure whenever that leg is flexed. Subjects that receive shock independent of leg position (uncontrollable shock) do not exhibit an increase in flexion duration and later fail to learn when tested with controllable shock (learning deficit). The present study examined the role of the ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in spinal learning. Intrathecal application of the AMPA receptor antagonist CNQX disrupted performance of a spinal instrumental learning in a dose dependent fashion (Experiment 1). CNQX also disrupted the maintenance of the instrumental response (Experiment 2) and blocked the induction of the learning deficit (Experiment 3). Intrathecal application of the agonist AMPA had a non-monotonic effect, producing a slight facilitation of performance at a low dose and disrupting learning at a high concentration (Experiment 4). Within the dose range tested, intrathecal application of AMPA did not have a long-term effect (Experiment 5). The results suggest that AMPA-mediated transmission plays an essential role in both instrumental learning and the induction of the learning deficit.
Collapse
Affiliation(s)
- Kevin C Hoy
- Texas A&M University, College Station, TX 77843-4235, United States.
| | - J Russell Huie
- University of California, San Francisco, CA, United States
| | - James W Grau
- Texas A&M University, College Station, TX 77843-4235, United States
| |
Collapse
|
28
|
Grau JW, Huie JR, Garraway SM, Hook MA, Crown ED, Baumbauer KM, Lee KH, Hoy KC, Ferguson AR. Impact of behavioral control on the processing of nociceptive stimulation. Front Physiol 2012; 3:262. [PMID: 22934018 PMCID: PMC3429038 DOI: 10.3389/fphys.2012.00262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/23/2012] [Indexed: 12/24/2022] Open
Abstract
How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huie JR, Baumbauer KM, Lee KH, Bresnahan JC, Beattie MS, Ferguson AR, Grau JW. Glial tumor necrosis factor alpha (TNFα) generates metaplastic inhibition of spinal learning. PLoS One 2012; 7:e39751. [PMID: 22745823 PMCID: PMC3379985 DOI: 10.1371/journal.pone.0039751] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022] Open
Abstract
Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury.
Collapse
Affiliation(s)
- J. Russell Huie
- Department of Psychology, Texas A&M University, College Station, Texas, United States of America
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (JRH); (ARF)
| | - Kyle M. Baumbauer
- Department of Psychology, Texas A&M University, College Station, Texas, United States of America
| | - Kuan H. Lee
- Department of Psychology, Texas A&M University, College Station, Texas, United States of America
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Michael S. Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (JRH); (ARF)
| | - James W. Grau
- Department of Psychology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
30
|
Baumbauer KM, Grau JW. Timing in the absence of supraspinal input III: regularly spaced cutaneous stimulation prevents and reverses the spinal learning deficit produced by peripheral inflammation. Behav Neurosci 2011; 125:37-45. [PMID: 21319886 DOI: 10.1037/a0022009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the absence of brain input, spinal systems can adapt to new environmental relations. For example, spinally transected rats given a legshock each time the leg is extended exhibit a progressive increase in flexion duration that minimizes net shock exposure, a simple form of instrumental learning. This capacity for learning is modulated by prior stimulation; both variable shock and inflammation produce a lasting inhibition of learning. An extended exposure to fixed spaced shock has no adverse effect on learning and opposes the consequences of variable shock. The present studies expand on these findings and demonstrate that fixed stimulation ameliorates the impact of peripheral inflammation. Spinally transected rats were administered 900 fixed spaced legshocks before (Experiment 1) or 1,800 legshocks after (Experiment 2) a subcutaneous hindpaw injection of capsaicin. Learning was assessed 24 hr later. Treatment with fixed shock attenuated the capsaicin-induced inhibition of learning. These findings suggest that fixed stimulation promotes adaptive plasticity and may foster recovery after injury.
Collapse
Affiliation(s)
- Kyle M Baumbauer
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
31
|
Huie JR, Garraway SM, Baumbauer KM, Hoy KC, Beas BS, Montgomery KS, Bizon JL, Grau JW. Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation. Neuroscience 2011; 200:74-90. [PMID: 22056599 DOI: 10.1016/j.neuroscience.2011.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/22/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration. This simple form of response-outcome (instrumental) learning is not observed when shock is given independent of leg position (uncontrollable stimulation). Uncontrollable electrical stimulation also induces a lasting effect that impairs learning for up to 48 h. Training with controllable shock can counter the adverse consequences of uncontrollable stimulation, to both prevent and reverse the learning deficit. Here it is shown that the protective and restorative effect of instrumental training depends on BDNF. Cellular assays showed that controllable stimulation increased BDNF mRNA expression and protein within the lumbar spinal cord. These changes were associated with an increase in the BDNF receptor TrkB protein within the dorsal horn. Evidence is then presented that these changes play a functional role in vivo. Application of a BDNF inhibitor (TrkB-IgG) blocked the protective effect of instrumental training. Direct (intrathecal) application of BDNF substituted for instrumental training to block both the induction and expression of the learning deficit. Uncontrollable stimulation also induced an increase in mechanical reactivity (allodynia), and this too was prevented by BDNF. TrkB-IgG blocked the restorative effect of instrumental training and intrathecal BDNF substituted for training to reverse the deficit. Taken together, these findings outline a critical role for BDNF in mediating the beneficial effects of controllable stimulation on spinal plasticity.
Collapse
Affiliation(s)
- J R Huie
- Department of Psychology, Mail Stop 4235, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 2011; 186:146-60. [PMID: 21513774 DOI: 10.1016/j.neuroscience.2011.03.063] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/03/2011] [Accepted: 03/28/2011] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) is medically and socioeconomically debilitating. Currently, there is a paucity of effective therapies that promote regeneration at the injury site, and limited understanding of mechanisms that can be utilized to therapeutically manipulate spinal cord plasticity. MicroRNAs (miRNAs) constitute novel targets for therapeutic intervention to promote repair and regeneration. Microarray comparisons of the injury sites of contused and sham rat spinal cords, harvested 4 and 14 days following SCI, showed that 32 miRNAs, including miR124, miR129, and miR1, were significantly down-regulated, whereas SNORD2, a translation-initiation factor, was induced. Additionally, three miRNAs including miR21 were significantly induced, indicating adaptive induction of an anti-apoptotic response in the injured cord. Validation of miRNA expression by qRT-PCR and in situ hybridization assays revealed that the influence of SCI on miRNA expression persists up to 14 days and expands both anteriorly and caudally beyond the lesion site. Specifically, changes in miR129-2 and miR146a expression significantly explained the variability in initial injury severity, suggesting that these specific miRNAs may serve as biomarkers and therapeutic targets for SCI. Moreover, the pattern of miRNA changes coincided spatially and temporally with the appearance of SOX2, nestin, and REST immunoreactivity, suggesting that aberrant expression of these miRNAs may not only reflect the emergence of stem cell niches, but also the reemergence in surviving neurons of a pre-neuronal phenotype. Finally, bioinformatics analysis of validated miRNA-targeted genes indicates that miRNA dysregulation may explain apoptosis susceptibility and aberrant cell cycle associated with a loss of neuronal identity, which underlies the pathogenesis of secondary SCI.
Collapse
|
33
|
Beattie MS, Ferguson AR, Bresnahan JC. AMPA-receptor trafficking and injury-induced cell death. Eur J Neurosci 2010; 32:290-7. [PMID: 20646045 DOI: 10.1111/j.1460-9568.2010.07343.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AMPA receptors (AMPARs) are critical for synaptic plasticity, and are subject to alterations based on subunit composition and receptor trafficking to and from the plasma membrane. One of the most potent regulators of AMPAR trafficking is the pro-inflammatory cytokine tumor necrosis factor (TNF)α, which is involved in physiological regulation of synaptic strength (Beattie et al., (2002) Science, 295, 2282-2285; Stellwagen and Malenka, (2006) Nature, 440, 1054-1059) and is also present at high concentrations after CNS injury. Here, we review evidence that TNF can rapidly alter the surface expression of AMPARs so that the proportion of Ca(++) -permeable receptors is increased and that this increase, in combination with increased levels of extracellular glutamate after injury, plays an important role in enhancing excitotoxic cell death after CNS injury. Thus, the pathophysiological hijacking of a critical regulator of synaptic plasticity and homeostasis by the secondary injury cascade may represent a new therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Michael S Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, Bldg. 1, Rm 101, San Francisco, CA 94110, USA.
| | | | | |
Collapse
|
34
|
Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis. J Neurosci 2009; 29:14383-93. [PMID: 19923273 DOI: 10.1523/jneurosci.3583-09.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The detection of temporal regularity allows organisms to predict the occurrence of future events. When events occur in an irregular manner, uncertainty is increased, and negative outcomes can ensue (e.g., stress). The present study shows that spinal neurons can discriminate between variable- and fixed-spaced stimulation and that the detection of regularity requires training and engages a form of NMDA receptor-mediated plasticity. The impact of stimulus exposure was assessed using a spinally mediated instrumental response, wherein spinally transected rats are given legshock whenever one hindlimb is extended. Over time, they learn to maintain the leg in a flexed position that minimizes net shock exposure. Prior exposure to 180-900 tailshocks given in a variable (unpredictable) manner inhibited this learning. A learning deficit was not observed when 900 tailshocks were applied using a fixed (predictable) spacing. Fixed-spaced stimulation did not have a divergent effect when fewer (180) shocks were presented, implying that the abstraction of temporal regularity required repeated exposure (training). Moreover, fixed-spaced stimulation both prevented and reversed the learning deficit. The protective effect of fixed-spaced shock lasted 48 h, and was prevented by pretreatment with the NMDA receptor antagonist MK-801. Administration of the protein synthesis inhibitor cycloheximide after training blocked the long-term effect. Inhibiting BDNF function, using TrkB-IgG, also eliminated the beneficial effect of fixed-spaced stimulation. The results suggest that spinal systems can detect regularity and that this type of stimulation promotes adaptive plasticity, which may foster recovery after spinal injury.
Collapse
|
35
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2402] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
36
|
Viwatpinyo K, Chongthammakun S. Activation of group I metabotropic glutamate receptors leads to brain-derived neurotrophic factor expression in rat C6 cells. Neurosci Lett 2009; 467:127-30. [PMID: 19822193 DOI: 10.1016/j.neulet.2009.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), which mediates neuronal growth, neuroprotection and synaptic modulation, is expressed in neurons and glial cells. The present study investigated the expression of BDNF in response to the activation of group I metabotropic glutamate receptors (mGluRs) by (S)-3,5-Dihydroxyphenylglycine (DHPG) in rat C6 glioma cells. The increase in BDNF mRNA in DHPG-stimulated cells, which peaked by 12h after DHPG exposure, was attenuated by the mGluR5 inhibitor MPEP, but not by the mGluR1 inhibitor CPCCOEt. DHPG-induced BDNF mRNA expression reduced in cultures pretreated with protein kinase C (PKC) inhibitor, GFX, but not with calcium/calmodulin kinase II (CaMKII) inhibitor, KN-93. Immunostaining revealed high BDNF expression in cytoplasm of C6 cells after 48h of incubation with 1muM DHPG, but this was lower in MPEP-pretreated cells. These results indicate that activation of group I mGluRs induces BDNF mRNA and protein expression via mGluR5 subtype and PKC-dependent signaling pathway in C6 glioma cells.
Collapse
Affiliation(s)
- Kittikun Viwatpinyo
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | |
Collapse
|
37
|
Jindrich DL, Joseph MS, Otoshi CK, Wei RY, Zhong H, Roy RR, Tillakaratne NJ, Edgerton VR. Spinal learning in the adult mouse using the Horridge paradigm. J Neurosci Methods 2009; 182:250-4. [DOI: 10.1016/j.jneumeth.2009.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 01/26/2023]
|
38
|
Thörn Pérez C, Hill RH, Manira AE, Grillner S. Endocannabinoids Mediate Tachykinin-Induced Effects in the Lamprey Locomotor Network. J Neurophysiol 2009; 102:1358-65. [DOI: 10.1152/jn.00294.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spinal network underlying locomotion in lamprey is composed of excitatory and inhibitory interneurons mediating fast ionotropic action. In addition, several modulator systems are activated as locomotion is initiated, including the tachykinin system and the metabotropic glutamate receptor 1 (mGluR1), the latter operating partially via the endocannabinoid system. The effects of mGluR1 agonists and tachykinins resemble each other. Like mGluR1 agonists, the tachykinin substance P accelerates the burst rate and reduces the crossed inhibition in an activity-dependent fashion. The present study therefore explores whether tachykinins also use the endocannabinoid system to modulate the locomotor frequency. By monitoring fictive locomotion, we were able to compare the facilitatory effects exerted by applying substance P (1 μM, 20 min), on the burst frequency before and during application of the endocannabinoid CB1 receptor antagonist AM251 (2–5 μM). By using two different lamprey species, we showed that the response to substance P on the burst frequency is significantly reduced during the application of AM251. To examine whether endocannabinoids are involved in the substance P–mediated modulation of reciprocal inhibition, the commissural axons were stimulated, while recording intracellularly from motoneurons. We compare the effect of substance P on the amplitude of the contralateral compound glycinergic inhibitory postsynaptic potential (IPSP) in control and in the presence of AM251. The blockade of CB1 receptors reduced the substance P–mediated decrease in the amplitude by 29%. The present findings suggest that the effects of substance P on the increase in the locomotor burst frequency and depression of IPSPs are mediated partially via release of endocannabinoids acting through CB1 receptors.
Collapse
|