1
|
te Rietmolen N, Strijkers K, Morillon B. Moving rhythmically can facilitate naturalistic speech perception in a noisy environment. Proc Biol Sci 2025; 292:20250354. [PMID: 40199360 PMCID: PMC11978457 DOI: 10.1098/rspb.2025.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The motor system is known to process temporal information, and moving rhythmically while listening to a melody can improve auditory processing. In three interrelated behavioural experiments, we demonstrate that this effect translates to speech processing. Motor priming improves the efficiency of subsequent naturalistic speech-in-noise processing under specific conditions. (i) Moving rhythmically at the lexical rate (~1.8 Hz) significantly improves subsequent speech processing compared to moving at other rates, such as the phrasal or syllabic rates. (ii) The impact of such rhythmic motor priming is not influenced by whether it is self-generated or triggered by an auditory beat. (iii) Overt lexical vocalization, regardless of its semantic content, also enhances the efficiency of subsequent speech processing. These findings provide evidence for the functional role of the motor system in processing the temporal dynamics of naturalistic speech.
Collapse
Affiliation(s)
- Noémie te Rietmolen
- Institute for Language, Communication, and the Brain (ILCB), Aix-Marseille Université, Marseille, France
| | - Kristof Strijkers
- Laboratoire Parole et Langage (LPL), Aix-Marseille Université & CNRS, Aix-en-Provence, France
| | - Benjamin Morillon
- INSERM, Institut de Neurosciences des Systèmes (INS), Aix Marseille Université, Marseille, France
| |
Collapse
|
2
|
Taghilou H, Rezaei M, Valizadeh A, Hashemi Nosratabad T, Nazari MA. Predicting an EEG-Based hypnotic time estimation with non-linear kernels of support vector machine algorithm. Cogn Neurodyn 2024; 18:3629-3646. [PMID: 39712110 PMCID: PMC11655758 DOI: 10.1007/s11571-024-10088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 12/24/2024] Open
Abstract
Our ability to measure time is vital for daily life, technology use, and even mental health; however, separating pure time perception from other mental processes (like emotions) is a research challenge requiring precise tests to isolate and understand brain activity solely related to time estimation. To address this challenge, we designed an experiment utilizing hypnosis alongside electroencephalography (EEG) to assess differences in time estimation, namely underestimation and overestimation. Hypnotic induction is designed to reduce awareness and meta-awareness, facilitating a detachment from the immediate environment. This reduced information processing load minimizes the need for elaborate internal thought during hypnosis, further simplifying the cognitive landscape. To predict time perception based on brain activity during extended durations (5 min), we employed artificial intelligence techniques. Utilizing Support Vector Machines (SVMs) with both radial basis function (RBF) and polynomial kernels, we assessed their effectiveness in classifying time perception-related brain patterns. We evaluated various feature combinations and different algorithms to identify the most accurate configuration. Our analysis revealed an impressive 80.9% classification accuracy for time perception detection using the RBF kernel, demonstrating the potential of AI in decoding this complex cognitive function.
Collapse
Affiliation(s)
- Hoda Taghilou
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mazaher Rezaei
- Department of Clinical Psychology, Beheshti Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | | | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Buzi G, Eustache F, Droit-Volet S, Desaunay P, Hinault T. Towards a neurodevelopmental cognitive perspective of temporal processing. Commun Biol 2024; 7:987. [PMID: 39143328 PMCID: PMC11324894 DOI: 10.1038/s42003-024-06641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The ability to organize and memorize the unfolding of events over time is a fundamental feature of cognition, which develops concurrently with the maturation of the brain. Nonetheless, how temporal processing evolves across the lifetime as well as the links with the underlying neural substrates remains unclear. Here, we intend to retrace the main developmental stages of brain structure, function, and cognition linked to the emergence of timing abilities. This neurodevelopmental perspective aims to untangle the puzzling trajectory of temporal processing aspects across the lifetime, paving the way to novel neuropsychological assessments and cognitive rehabilitation strategies.
Collapse
Affiliation(s)
- Giulia Buzi
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Francis Eustache
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, Clermont-Ferrand, France
| | - Pierre Desaunay
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
- Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Thomas Hinault
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France.
| |
Collapse
|
4
|
Wang X, Shi S, Bao Y. Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit. Psych J 2024; 13:355-368. [PMID: 38105556 PMCID: PMC11169752 DOI: 10.1002/pchj.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023]
Abstract
Durations in the several seconds' range are cognitively accessible during active timing. Functional neuroimaging studies suggest the engagement of the basal ganglia (BG) and supplementary motor area (SMA). However, their functional relevance and arrangement remain unclear because non-timing cognitive processes temporally coincide with the active timing. To examine the potential contamination by parallel processes, we introduced a sensory control and a motor control to the duration-reproduction task. By comparing their hemodynamic functions, we decomposed the neural activities in multiple brain loci linked to different cognitive processes. Our results show a dissociation of two cortical neural circuits: the SMA for both active timing and motor preparation, followed by a prefrontal-parietal circuit related to duration working memory. We argue that these cortical processes represent duration as the content but at different levels of abstraction, while the subcortical structures, including the BG and thalamus, provide the logistic basis of timing by coordinating the temporal framework across brain structures.
Collapse
Affiliation(s)
- Xuanyu Wang
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Shunyu Shi
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
| | - Yan Bao
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Institute of Medical Psychology, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
| |
Collapse
|
5
|
Bader F, Wiener M. Neuroimaging Signatures of Metacognitive Improvement in Sensorimotor Timing. J Neurosci 2024; 44:e1789222023. [PMID: 38129131 PMCID: PMC10904090 DOI: 10.1523/jneurosci.1789-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Error monitoring is an essential human ability underlying learning and metacognition. In the time domain, humans possess a remarkable ability to learn and adapt to temporal intervals, yet the neural mechanisms underlying this are not clear. Recently, we demonstrated that humans improve sensorimotor time estimates when given the chance to incorporate previous trial feedback ( Bader and Wiener, 2021), suggesting that humans are metacognitively aware of their own timing errors. To test the neural basis of this metacognitive ability, human participants of both sexes underwent fMRI while they performed a visual temporal reproduction task with randomized supra-second intervals (1.5-6 s). Crucially, each trial was repeated following feedback, allowing a "re-do" to learn from the successes or errors in the initial trial. Behaviorally, we replicated our previous finding of improved re-do trial performance despite temporally uninformative (i.e., early or late) feedback. For neuroimaging, we observed a dissociation between estimating and reproducing time intervals. Estimation engaged the default mode network (DMN), including the superior frontal gyri, precuneus, and posterior cingulate, whereas reproduction activated regions associated traditionally with the "timing network" (TN), including the supplementary motor area (SMA), precentral gyrus, and right supramarginal gyrus. Notably, greater and more extensive DMN involvement was observed in re-do trials, whereas for the TN, it was more constrained. Task-based connectivity between these networks demonstrated higher inter-network correlation primarily when estimating initial trials, while re-do trial communication was higher during reproduction. Overall, these results suggest that the DMN and TN jointly mediate subjective self-awareness to improve timing performance.
Collapse
Affiliation(s)
- Farah Bader
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| |
Collapse
|
6
|
Protopapa F, Kulashekhar S, Hayashi MJ, Kanai R, Bueti D. Effective connectivity in a duration selective cortico-cerebellar network. Sci Rep 2023; 13:20674. [PMID: 38001253 PMCID: PMC10673930 DOI: 10.1038/s41598-023-47954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
How the human brain represents millisecond unit of time is far from clear. A recent neuroimaging study revealed the existence in the human premotor cortex of a topographic representation of time i.e., neuronal units selectively responsive to specific durations and topographically organized on the cortical surface. By using high resolution functional Magnetic Resonance Images here, we go beyond this previous work, showing duration preferences across a wide network of cortical and subcortical brain areas: from cerebellum to primary visual, parietal, premotor and prefrontal cortices. Most importantly, we identify the effective connectivity structure between these different brain areas and their duration selective neural units. The results highlight the role of the cerebellum as the network hub and that of medial premotor cortex as the final stage of duration recognition. Interestingly, when a specific duration is presented, only the communication strength between the units selective to that specific duration and to the neighboring durations is affected. These findings link for the first time, duration preferences within single brain region with connectivity dynamics between regions, suggesting a communication mode that is partially duration specific.
Collapse
Affiliation(s)
| | | | - Masamichi J Hayashi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ryota Kanai
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Araya, Inc., Tokyo, Japan
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
7
|
Bracca V, Cantoni V, Gadola Y, Rivolta J, Cosseddu M, Turrone R, Caratozzolo S, Di Luca M, Padovani A, Borroni B, Benussi A. Neurophysiological correlates of altered time awareness in Alzheimer's disease and frontotemporal dementia. Neurol Sci 2023; 44:3515-3522. [PMID: 37247033 DOI: 10.1007/s10072-023-06877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Alterations in time awareness have been reported in dementia, particularly in Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the neurophysiological correlates underlying these alterations remain largely unexplored. This study aimed to investigate the neurophysiological correlates of altered time awareness in AD and FTD patients. METHODS A total of 150 participants (50 AD patients, 50 FTD patients, and 50 healthy controls [HC]) underwent a standardized neuropsychological assessment, an altered time awareness survey, and transcranial magnetic stimulation (TMS) to assess cholinergic (short latency afferent inhibition-SAI), GABAergic (short interval intracortical inhibition-SICI), and glutamatergic (intracortical facilitation-ICF) circuits. RESULTS In AD patients, the most frequent symptom was difficulty in ordering past events (52.0%), while FTD patients primarily struggled with estimating temporal intervals between events (40.0%). Significant differences were observed between HC and both patient groups, as well as between AD and FTD patients in their tendency to re-live past events. Binomial logistic regression analysis revealed that impairments in glutamatergic and cholinergic circuits significantly predicted the likelihood of participants manifesting altered time awareness symptoms. CONCLUSIONS This study provides novel insights into the neurophysiological correlates of altered time awareness in AD and FTD patients, highlighting the involvement of specific neurotransmitter circuits, particularly glutamatergic and cholinergic circuits. Further research is needed to explore the potential clinical implications and therapeutic targets arising from these findings.
Collapse
Affiliation(s)
- Valeria Bracca
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Yasmine Gadola
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Jasmine Rivolta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Maura Cosseddu
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Salvatore Caratozzolo
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
8
|
Cantarella G, Vianello G, Vezzadini G, Frassinetti F, Ciaramelli E, Candini M. Time bisection and reproduction: Evidence for a slowdown of the internal clock in right brain damaged patients. Cortex 2023; 167:303-317. [PMID: 37595392 DOI: 10.1016/j.cortex.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/20/2023]
Abstract
Previous studies show that the right hemisphere is involved in time processing, and that damage to the right hemisphere is associated with a tendency to perceive time intervals as shorter than they are, and to reproduce time intervals as longer than they are. Whether time processing deficits following right hemisphere damage are related and what is their neurocognitive basis is unclear. In this study, right brain damaged (RBD) patients, left brain damaged (LBD) patients, and healthy controls underwent a time bisection task and a time reproduction task involving time intervals varying between each other by milliseconds (short durations) or seconds (long durations). The results show that in the time bisection task RBD patients underestimated time intervals compared to LBD patients and healthy controls, while they reproduced time intervals as longer than they are. Time underestimation and over-reproduction in RBD patients applied to short but not long time intervals, and were correlated. Voxel-based lesion-symptom mapping (VLSM) showed that time underestimation was associated with lesions to a right cortico-subcortical network involving the insula and inferior frontal gyrus. A small portion of this network was also associated with time over-reproduction. Our findings are consistent with a slowdown of an 'internal clock' timing mechanism following right brain damage, which likely underlies both the underestimation and the over-reproduction of time intervals, and their (overlapping) neural bases.
Collapse
Affiliation(s)
- Giovanni Cantarella
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Center for Studies and Research of Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Greta Vianello
- Istituti Clinici Scientifici Maugeri IRCCS, Castel Goffredo, Italy
| | | | - Francesca Frassinetti
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Castel Goffredo, Italy
| | - Elisa Ciaramelli
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Center for Studies and Research of Cognitive Neuroscience, University of Bologna, Cesena, Italy.
| | - Michela Candini
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Monfort V, Pfeuty M, Masson I, Kop JL, Brissart H, Maillard L. Preserved time but altered numerosity processing in epileptic patients with postoperative lesion in the inferior frontal gyrus. Brain Cogn 2022; 160:105865. [DOI: 10.1016/j.bandc.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
10
|
Szelag E, Stanczyk M, Szymaszek A. Sub- and Supra-Second Timing in Auditory Perception: Evidence for Cross-Domain Relationships. Front Neurosci 2022; 15:812533. [PMID: 35095407 PMCID: PMC8791025 DOI: 10.3389/fnins.2021.812533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies indicate that there are at least two levels of temporal processing: the sub- and supra-second domains. The relationship between these domains remains unclear. The aim of this study was to test whether performance on the sub-second level is related to that on the supra-second one, or whether these two domains operate independently. Participants were 118 healthy adults (mean age = 23 years). The sub-second level was studied with a temporal-order judgment task and indexed by the Temporal Order Threshold (TOT), on which lower values corresponded to better performance. On the basis of TOT results, the initial sample was classified into two groups characterized by either higher temporal efficiency (HTE) or lower temporal efficiency (LTE). Next, the efficiency of performance on the supra-second level was studied in these two groups using the subjective accentuation task, in which participants listened to monotonous sequences of beats and were asked to mentally accentuate every n-th beat to create individual rhythmic patterns. The extent of temporal integration was assessed on the basis of the number of beats being united and better performance corresponded to longer units. The novel results are differences between groups in this temporal integration. The HTE group integrated beats in significantly longer units than did the LTE group. Moreover, for tasks with higher mental load, the HTE group relied more on a constant time strategy, whereas the LTE group relied more on mental counting, probably because of less efficient temporal integration. These findings provide insight into associations between sub- and supra-second levels of processing and point to a common time keeping system, which is active independently of temporal domain.
Collapse
Affiliation(s)
- Elzbieta Szelag
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
11
|
Garcés MS, Alústiza I, Albajes-Eizagirre A, Goena J, Molero P, Radua J, Ortuño F. An fMRI Study Using a Combined Task of Interval Discrimination and Oddball Could Reveal Common Brain Circuits of Cognitive Change. Front Psychiatry 2021; 12:786113. [PMID: 34987432 PMCID: PMC8721204 DOI: 10.3389/fpsyt.2021.786113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Recent functional neuroimaging studies suggest that the brain networks responsible for time processing are involved during other cognitive processes, leading to a hypothesis that time-related processing is needed to perform a range of tasks across various cognitive functions. To examine this hypothesis, we analyze whether, in healthy subjects, the brain structures activated or deactivated during performance of timing and oddball-detection type tasks coincide. To this end, we conducted two independent signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging (fMRI) studies assessing the cerebral generators of the responses elicited by tasks based on timing and oddball-detection paradigms. Finally, we undertook a multimodal meta-analysis to detect brain regions common to the findings of the two previous meta-analyses. We found that healthy subjects showed significant activation in cortical areas related to timing and salience networks. The patterns of activation and deactivation corresponding to each task type partially coincided. We hypothesize that there exists a time and change-detection network that serves as a common underlying resource used in a broad range of cognitive processes.
Collapse
Affiliation(s)
- María Sol Garcés
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain
| | - Javier Goena
- Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Patricio Molero
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Joaquim Radua
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain.,Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet SE, Solna, Sweden
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
12
|
Yu X, Chen Y, Luo T, Huang X. Neural Oscillations Associated With Auditory Duration Maintenance in Working Memory in Tasks With Controlled Difficulty. Front Psychol 2020; 11:545935. [PMID: 33013593 PMCID: PMC7494732 DOI: 10.3389/fpsyg.2020.545935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
The neural representation of the external events duration in working memory (WM) remains to be understood. It has been reported that there were different neural representations below and above 3 s/2 s for visual/auditory duration, respectively. However, these studies had limitations in experimental design, i.e., the interference of task difficulty was not assessed. Consequently, the results of these studies require verification. In the present study, we eliminated these limitations using an exploratory experiment in which the probe stimulus conditions were reset, while the other settings remained similar to those used in previous studies. In the exploratory experiment, we found that accuracy and reaction times were comparable among all the four duration conditions, suggesting that task difficulty was accurately matched. In the formal experiment, theta and alpha oscillations were examined using electroencephalogram recordings during the maintenance of the auditory duration in working memory, after removing the interference of task difficulty. Electroencephalogram results indicated that there were no significant differences in theta band power among different length of durations retained in working memory, whereas the alpha band power was significantly lower in the 3-s and 4-s duration conditions than in the 1-s and 2-s conditions. The findings suggest that different internal representations of auditory durations above and below the 2-s threshold are maintained in working memory. Also, our study provides evidence that the duration representation segmentation is associated with the length of the auditory duration retained in working memory, but not with task difficulty.
Collapse
Affiliation(s)
- Xiaolin Yu
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Youguo Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Luo
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Xiting Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Abstract
Abstract
Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
Collapse
Affiliation(s)
- Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Teghil A, Di Vita A, D'Antonio F, Boccia M. Inter-individual differences in resting-state functional connectivity are linked to interval timing in irregular contexts. Cortex 2020; 128:254-269. [DOI: 10.1016/j.cortex.2020.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
|
15
|
Requena-Komuro MC, Marshall CR, Bond RL, Russell LL, Greaves C, Moore KM, Agustus JL, Benhamou E, Sivasathiaseelan H, Hardy CJD, Rohrer JD, Warren JD. Altered Time Awareness in Dementia. Front Neurol 2020; 11:291. [PMID: 32373055 PMCID: PMC7186333 DOI: 10.3389/fneur.2020.00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 01/28/2023] Open
Abstract
Our awareness of time, specifically of longer intervals spanning hours, days, months, and years, is critical for ensuring our sense of self-continuity. Disrupted time awareness over such intervals is a clinical feature in a number of frontotemporal dementia syndromes and Alzheimer's disease, but has not been studied and compared systematically in these diseases. We used a semi-structured caregiver survey to capture time-related behavioral alterations in 71 patients representing all major sporadic and genetic syndromes of frontotemporal dementia, in comparison to 28 patients with typical Alzheimer's disease and nine with logopenic aphasia, and 32 healthy older individuals. Survey items pertained to apparent difficulties ordering past personal events or estimating time intervals between events, temporal rigidity and clockwatching, and propensity to relive past events. We used a logistic regression model including diagnosis, age, gender, and disease severity as regressors to compare the proportions of individuals exhibiting each temporal awareness symptom between diagnostic groups. Gray matter associations of altered time awareness were assessed using voxel-based morphometry. All patient groups were significantly more prone to exhibit temporal awareness symptoms than healthy older individuals. Clinical syndromic signatures were identified. While patients with typical and logopenic Alzheimer's disease most frequently exhibited disturbed event ordering or interval estimation, patients with semantic dementia were most prone to temporal rigidity and clockwatching and those with behavioral variant frontotemporal dementia commonly exhibited all these temporal symptoms as well as a propensity to relive past events. On voxel-based morphometry, the tendency to relive past events was associated with relative preservation of a distributed left-sided temporo-parietal gray matter network including hippocampus. These findings reveal a rich and complex picture of disturbed temporal awareness in major dementia syndromes, with stratification of frontotemporal dementia syndromes from Alzheimer's disease. This is the first study to assess symptoms of altered temporal awareness across frontotemporal dementia syndromes and provides a motivation for future work directed to the development of validated clinical questionnaires, analysis of underlying neurobiological mechanisms and design of interventions.
Collapse
Affiliation(s)
- Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J Cogn Neurosci 2019; 31:1796-1826. [DOI: 10.1162/jocn_a_01459] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.
Collapse
Affiliation(s)
- Andrea Nani
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| |
Collapse
|
17
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
18
|
Zimmermann M, Kubik V, Persson J, Mäntylä T. Monitoring Multiple Deadlines Relies on Spatial Processing in Posterior Parietal Cortex. J Cogn Neurosci 2019; 31:1468-1483. [PMID: 31210563 DOI: 10.1162/jocn_a_01435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Proactively coordinating one's actions is an important aspect of multitasking performance due to overlapping task sequences. In this study, we used fMRI to investigate neural mechanisms underlying monitoring of multiple overlapping task sequences. We tested the hypothesis that temporal control demands in multiple-task monitoring are offloaded onto spatial processes by representing patterns of temporal deadlines in spatial terms. Results showed that increased demands on time monitoring (i.e., responding to concurrent deadlines of one to four component tasks) increasingly activated regions in the left inferior parietal lobe and the precuneus. Moreover, independent measures of spatial abilities correlated with multiple-task performance beyond the contribution of working memory. Together, these findings suggest that monitoring and coordination of temporally overlapping task timelines rely on cortical processes involved in spatial information processing. We suggest that the precuneus is involved in tracking of multiple task timelines, whereas the inferior parietal lobe constructs spatial representations of the temporal relations of these overlapping timelines. These findings are consistent with the spatial offloading hypothesis and add new insights into the neurocognitive mechanisms underlying the coordination of multiple tasks.
Collapse
Affiliation(s)
| | - Veit Kubik
- Stockholm University.,Humboldt University zu Berlin.,Martin-Luther-University Halle-Wittenberg
| | - Jonas Persson
- Aging Research Center, Karolinska Institute & Stockholm University, Stockholm, Sweden.,Örebro University
| | | |
Collapse
|
19
|
Prolonged subjective duration near the hands: Effects of hand proximity on temporal reproduction. Psychon Bull Rev 2019; 26:1303-1309. [PMID: 31144134 DOI: 10.3758/s13423-019-01614-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been reported that human visual perception and attention are altered when the hands are nearby. Previous studies indicate that placing hands near stimuli enhances a subject's temporal sensitivity. However, few researchers have investigated the effect of hand proximity on reproducing temporal duration. Moreover, the delayed attentional disengagement and enhanced magnocellular visual processing theories provide two distinct predictions of the hand proximity effect on reproduced duration. Delayed attentional disengagement near hands will cause prolonged reproductions, whereas enhanced magnocellular visual processing predicts more accurate reproduction in the peri-hand space. The current study is the first to show that a short temporal duration is reproduced for a longer period near hands than far from hands in the dual-responding-hand condition, and this hand-proximity effect is attenuated in the single-responding-hand condition. These findings together with two further studies suggest that reproducing a temporal duration is modulated by hand proximity through prolonged attentional switch.
Collapse
|
20
|
Protopapa F, Hayashi MJ, Kulashekhar S, van der Zwaag W, Battistella G, Murray MM, Kanai R, Bueti D. Chronotopic maps in human supplementary motor area. PLoS Biol 2019; 17:e3000026. [PMID: 30897088 PMCID: PMC6428248 DOI: 10.1371/journal.pbio.3000026] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear. Here, in two experiments using ultrahigh-field 7-Tesla (7T) functional magnetic resonance imaging (fMRI), we show that in the medial premotor cortex (supplementary motor area [SMA]) of the human brain, neural units tuned to different durations are orderly mapped in contiguous portions of the cortical surface so as to form chronomaps. The response of each portion in a chronomap is enhanced by neighboring durations and suppressed by nonpreferred durations represented in distant portions of the map. These findings suggest duration-sensitive tuning as a possible neural mechanism underlying the recognition of time and demonstrate, for the first time, that the representation of an abstract feature such as time can be instantiated by a topographical arrangement of duration-sensitive neural populations. Sensing the passage of time is a common experience of our everyday life activity. Even without a watch, we can, for example, tell whether the bus we are waiting for is late. The neuronal mechanism that enables us to sense the passage of time is largely unknown. Here, we asked healthy human volunteers to discriminate between visual events of varying durations while we measured brain activity via functional magnetic resonance imaging (fMRI). The results show that distinct portions of the supplementary motor area (SMA)—a region of the cerebral cortex important for both motor preparation and time perception—respond preferentially to different durations. The portions of the SMA responding to similar durations are in close spatial proximity on the cortex, and their response is greater for preferred and neighboring durations and suppressed for distant ones. The spatial arrangement of duration-selective portions of the SMA could be the mechanism that enables us to efficiently sense that a certain duration has elapsed.
Collapse
Affiliation(s)
| | - Masamichi J. Hayashi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | | | - Wietske van der Zwaag
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Spinozisme Centre for Neuroimaging, Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Giovanni Battistella
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Micah M. Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- The EEG Brain Mapping Core, Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland
- The Ophthalmology Service, Fondation Asile des Aveugles and University of Lausanne, Lausanne, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ryota Kanai
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Araya, Inc., Tokyo, Japan
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
21
|
Salillas E, Korostenskaja M, Kleineschay T, Mehta S, Vega A, Castillo EM. A MEG Study on the Processing of Time and Quantity: Parietal Overlap but Functional Divergence. Front Psychol 2019; 10:139. [PMID: 30778314 PMCID: PMC6369182 DOI: 10.3389/fpsyg.2019.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
A common magnitude system for the processing of time and numerosity, supported by areas in the posterior parietal cortex, has been proposed by some authors. The present study aims to investigate possible intersections between the neural processing of non-numerical (time) and numerical magnitudes in the posterior parietal lobe. Using Magnetoencephalography for the comparison of brain source activations during the processing of duration and numerosity contrasts, we demonstrate parietal overlap as well as dissociations between these two dimensions. Within the parietal cortex, the main areas of overlap were bilateral precuneus, bilateral intraparietal sulci, and right supramarginal gyrus. Interestingly, however, these regions did not equivalently correlated with the behavior for the two dimensions: left and right precuneus together with the right supramarginal gyrus accounted functionally for durational judgments, whereas numerosity judgments were accounted by the activation pattern in the right intraparietal sulcus. Present results, indeed, demonstrate an overlap between the neural substrates for processing duration and quantity. However, the functional relevance of parietal overlapping areas for each dimension is not the same. In fact, our data indicates that the same parietal sites rule differently non-numerical and numerical dimensions, as parts of broader networks.
Collapse
Affiliation(s)
- Elena Salillas
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Milena Korostenskaja
- Functional Brain Mapping and Brain Computer Interface Laboratory, Florida Hospital for Children, Orlando, FL, United States.,MEG Lab, Florida Hospital for Children, Orlando, FL, United States.,Florida Epilepsy Center, Florida Hospital, Orlando, FL, United States
| | - Tara Kleineschay
- MEG Lab, Florida Hospital for Children, Orlando, FL, United States.,Florida Epilepsy Center, Florida Hospital, Orlando, FL, United States
| | - Shivani Mehta
- Functional Brain Mapping and Brain Computer Interface Laboratory, Florida Hospital for Children, Orlando, FL, United States
| | - Alexandra Vega
- Functional Brain Mapping and Brain Computer Interface Laboratory, Florida Hospital for Children, Orlando, FL, United States
| | - Eduardo Martinez Castillo
- MEG Lab, Florida Hospital for Children, Orlando, FL, United States.,Florida Epilepsy Center, Florida Hospital, Orlando, FL, United States
| |
Collapse
|
22
|
Hsu HT, Lee WK, Shyu KK, Yeh TK, Chang CY, Lee PL. Analyses of EEG Oscillatory Activities during Slow and Fast Repetitive Movements using Holo-Hilbert Spectral Analysis. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1659-1668. [PMID: 30010582 DOI: 10.1109/tnsre.2018.2855804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neural oscillatory activities existing in multiple fre-quency bands usually represent different levels of neurophysiolog-ical meanings, from micro-scale to macro-scale organizations. In this study, we adopted Holo-Hilbert spectral analysis (HHSA) to study the amplitude-modulated (AM) and frequency-modulated (FM) components in sensorimotor Mu rhythm, induced by slow- and fast-rate repetitive movements. The HHSA-based approach is a two-layer empirical mode decomposition (EMD) architecture, which firstly decomposes the EEG signal into a series of frequency-modulated intrinsic mode functions (IMF) and then decomposes each frequency-modulated IMF into a set of amplitude-modulated IMFs. With the HHSA, the FM and AM components were incor-porated with their instantaneous power to achieve full-informa-tional spectral analysis. We observed that the instantaneous power induced by slow-rate movements was significantly higher than that induced by fast-rate movements (p < 0.01, Wilcoxon signed rank test). The alpha-band AM frequencies induced by slow-rate movements were higher than those induced by fast-rate move-ments, while no statistical difference was found in beta-band AM frequencies. In addition, to study the functional coupling between the primary sensorimotor area and other brain regions, spectral coherence was applied and statistical difference was found in frontal area in slow-rate versus fast-rate movements. The discrep-ancy between slow- and fast-rate movements might be owing to the change of motor functional modes from default mode network (DMN) to automatic timing with the increase of movement rates. The use of HHSA for oscillatory activity analysis can be an effi-cient tool to provide informative interaction among different fre-quency bands.
Collapse
|
23
|
Hashimoto Y, Yotsumoto Y. The Amount of Time Dilation for Visual Flickers Corresponds to the Amount of Neural Entrainments Measured by EEG. Front Comput Neurosci 2018; 12:30. [PMID: 29867423 PMCID: PMC5949346 DOI: 10.3389/fncom.2018.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
The neural basis of time perception has long attracted the interests of researchers. Recently, a conceptual model consisting of neural oscillators was proposed and validated by behavioral experiments that measured the dilated duration in perception of a flickering stimulus (Hashimoto and Yotsumoto, 2015). The model proposed that flickering stimuli cause neural entrainment of oscillators, resulting in dilated time perception. In this study, we examined the oscillator-based model of time perception, by collecting electroencephalography (EEG) data during an interval-timing task. Initially, subjects observed a stimulus, either flickering at 10-Hz or constantly illuminated. The subjects then reproduced the duration of the stimulus by pressing a button. As reported in previous studies, the subjects reproduced 1.22 times longer durations for flickering stimuli than for continuously illuminated stimuli. The event-related potential (ERP) during the observation of a flicker oscillated at 10 Hz, reflecting the 10-Hz neural activity phase-locked to the flicker. Importantly, the longer reproduced duration was associated with a larger amplitude of the 10-Hz ERP component during the inter-stimulus interval, as well as during the presentation of the flicker. The correlation between the reproduced duration and the 10-Hz oscillation during the inter-stimulus interval suggested that the flicker-induced neural entrainment affected time dilation. While the 10-Hz flickering stimuli induced phase-locked entrainments at 10 Hz, we also observed event-related desynchronizations of spontaneous neural oscillations in the alpha-frequency range. These could be attributed to the activation of excitatory neurons while observing the flicker stimuli. In addition, neural activity at approximately the alpha frequency increased during the reproduction phase, indicating that flicker-induced neural entrainment persisted even after the offset of the flicker. In summary, our results suggest that the duration perception is mediated by neural oscillations, and that time dilation induced by flickering visual stimuli can be attributed to neural entrainment.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Department of Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Ballotta D, Lui F, Porro CA, Nichelli PF, Benuzzi F. Modulation of neural circuits underlying temporal production by facial expressions of pain. PLoS One 2018; 13:e0193100. [PMID: 29447256 PMCID: PMC5814051 DOI: 10.1371/journal.pone.0193100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.
Collapse
Affiliation(s)
- Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
25
|
Floegel M, Kell CA. Functional hemispheric asymmetries during the planning and manual control of virtual avatar movements. PLoS One 2017; 12:e0185152. [PMID: 28957344 PMCID: PMC5619738 DOI: 10.1371/journal.pone.0185152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Both hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere’s specialization for visuospatial processing is well-documented in perceptual tasks. This study operationalized temporal and spatial processing demands during visuomotor processing and investigated hemispheric asymmetries in neural activation during the unimanual control of a visual cursor by grip force. Functional asymmetries were investigated separately for visuomotor planning and online control during functional magnetic resonance imaging in 19 young, healthy, right-handed participants. The expected cursor movement was coded with different visual trajectories. During planning when spatial processing demands predominated, activity was right-lateralized in a hand-independent manner in the inferior temporal lobe, occipito-parietal border, and ventral premotor cortex. When temporal processing demands overweighed spatial demands, BOLD responses during planning were left-lateralized in the temporo-parietal junction. During online control of the cursor, right lateralization was not observed. Instead, left lateralization occurred in the intraparietal sulcus. Our results identify movement phase and spatiotemporal demands as important determinants of dynamic hemispheric asymmetries during visuomotor processing. We suggest that, within a bilateral visuomotor network, the right hemisphere exhibits a processing preference for planning global spatial movement features whereas the left hemisphere preferentially times local features of visual movement trajectories and adjusts movement online.
Collapse
Affiliation(s)
- Mareike Floegel
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
26
|
Neural oscillations associated with auditory duration maintenance in working memory. Sci Rep 2017; 7:5695. [PMID: 28720790 PMCID: PMC5515924 DOI: 10.1038/s41598-017-06078-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The neural representation of auditory duration remains unknown. Here, we used electroencephalogram (EEG) recordings to investigate neural oscillations during the maintenance of auditory duration in working memory (WM). EEG analyses indicated that the auditory duration length was not associated with changes in the theta band amplitude, whereas the alpha band amplitudes during 3-s and 4-s auditory duration conditions were lower than during the 1-s and 2-s conditions. Moreover, the alpha band amplitude and accuracy were positively correlated in the 2-s duration condition. We also found that the neural representation of auditory duration is segmented, with a critical threshold point of approximately 2 s, which is shorter than that for visual duration (3 s). The results emphasised the involvement of the alpha band in auditory duration maintenance in WM. Our study's findings indicate that different internal representations of auditory durations are maintained in WM below and above 2 s from the perspective of electrophysiology. Additionally, the critical threshold point is related to the sensory modality of duration.
Collapse
|
27
|
Zhang M, Zhang L, Yu Y, Liu T, Luo W. Women Overestimate Temporal Duration: Evidence from Chinese Emotional Words. Front Psychol 2017; 8:4. [PMID: 28149285 PMCID: PMC5241309 DOI: 10.3389/fpsyg.2017.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have proven the effect of emotion on temporal perception, using various emotional stimuli. However, research investigating this issue from the lexico-semantic perspective and gender difference remains scarce. In this study, participants were presented with different types of emotional words designed in classic temporal bisection tasks. In Experiment 1 where the arousal level of emotional words was controlled, no pure effect of valence on temporal perception was found; however, we observed the overestimation of women relative to men. Furthermore, in Experiment 2, an orthogonal design of valence and arousal with neutral condition was employed to study the arousal-mechanism of temporal distortion effect and its difference between genders. The results showed that the gender difference observed in Experiment 1 was robust and was not influenced by valence and arousal. Taken together, our findings suggest a stable gender difference in the temporal perception of semantic stimuli, which might be related to some intrinsic properties of linguistic stimuli and sex differences in brain structure as well as physiological features. The automatic processing of time information was also discussed.
Collapse
Affiliation(s)
- Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal UniversityDalian, China; Department of Psychology, Minnan Normal UniversityZhangzhou, China
| | - Lingcong Zhang
- Department of Psychology, Minnan Normal University Zhangzhou, China
| | - Yibing Yu
- Department of Psychology, Minnan Normal University Zhangzhou, China
| | - Tiantian Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal UniversityDalian, China; Department of Psychology, Minnan Normal UniversityZhangzhou, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal UniversityDalian, China; Laboratory of Cognition and Mental Health, Chongqing University of Arts and SciencesChongqing, China
| |
Collapse
|
28
|
Hsu CC, Lee WK, Shyu KK, Chang HH, Yeh TK, Hsu HT, Chang CY, Lan GY, Lee PL. Study of Repetitive Movements Induced Oscillatory Activities in Healthy Subjects and Chronic Stroke Patients. Sci Rep 2016; 6:39046. [PMID: 27976723 PMCID: PMC5157038 DOI: 10.1038/srep39046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022] Open
Abstract
Repetitive movements at a constant rate require the integration of internal time counting and motor neural networks. Previous studies have proved that humans can follow short durations automatically (automatic timing) but require more cognitive efforts to track or estimate long durations. In this study, we studied sensorimotor oscillatory activities in healthy subjects and chronic stroke patients when subjects were performing repetitive finger movements. We found the movement-modulated changes in alpha and beta oscillatory activities were decreased with the increase of movement rates in finger lifting of healthy subjects and the non-paretic hands in stroke patients, whereas no difference was found in the paretic-hand movements at different movement rates in stroke patients. The significant difference in oscillatory activities between movements of non-paretic hands and paretic hands could imply the requirement of higher cognitive efforts to perform fast repetitive movements in paretic hands. The sensorimotor oscillatory response in fast repetitive movements could be a possible indicator to probe the recovery of motor function in stroke patients.
Collapse
Affiliation(s)
- Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wai-Keung Lee
- Department of Rehabilitation, Tao Yuan General Hospital, Taoyuan, Taiwan
| | - Kuo-Kai Shyu
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Kuang Yeh
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hao-Teng Hsu
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Chun-Yen Chang
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Gong-Yau Lan
- Section of General Diagnostic Radiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| |
Collapse
|
29
|
Leocadio Miguel MA, Menna-Barreto L. Sleep pressure and time perception in university students. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1191669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Gilaie-Dotan S, Ashkenazi H, Dar R. A Possible Link between Supra-Second Open-Ended Timing Sensitivity and Obsessive-Compulsive Tendencies. Front Behav Neurosci 2016; 10:127. [PMID: 27445725 PMCID: PMC4922302 DOI: 10.3389/fnbeh.2016.00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/06/2016] [Indexed: 12/04/2022] Open
Abstract
One of the main characteristics of obsessive-compulsive disorder (OCD) is the persistent feeling of uncertainty, affecting many domains of actions and feelings. It was recently hypothesized that OCD uncertainty is related to attenuated access to internal states. As supra-second timing is associated with bodily and interoceptive awareness, we examined whether supra-second timing would be associated with OC tendencies. We measured supra-second (~9 s) and sub-second (~450 ms) timing along with control non-temporal perceptual tasks in a group of 60 university students. Supra-second timing was measured either with fixed criterion tasks requiring to temporally discriminate between two predefined fixed interval durations (9 vs. 9.9 s), or with an open-ended task requiring to discriminate between 9 s and longer intervals which were of varying durations that were not a priori known to the participants. The open-ended task employed an adaptive Bayesian procedure that efficiently estimated the duration difference required to discriminate 9 s from longer intervals. We also assessed symptoms of OCD, depression, and anxiety. Open-ended supra-second temporal sensitivity was correlated with OC tendencies, as predicted (even after controlling for depression and anxiety), whereas the other tasks were not. Higher OC tendencies were associated with lower timing sensitivity to 9 s intervals such that participants with higher OC tendency scores required longer interval differences to discriminate 9 s from longer intervals. While these results need to be substantiated in future research, they suggest that open-ended timing tasks, as those encountered in real-life (e.g., estimating how long it would take to complete a task), might be adversely affected in OCD.
Collapse
Affiliation(s)
- Sharon Gilaie-Dotan
- UCL Institute of Cognitive Neuroscience, University College London London, UK
| | - Hamutal Ashkenazi
- School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel
| | - Reuven Dar
- School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
31
|
Perceived visual time depends on motor preparation and direction of hand movements. Sci Rep 2016; 6:27947. [PMID: 27283474 PMCID: PMC4901279 DOI: 10.1038/srep27947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/25/2016] [Indexed: 12/04/2022] Open
Abstract
Perceived time undergoes distortions when we prepare and perform movements, showing compression and/or expansion for visual, tactile and auditory stimuli. However, the actual motor system contribution to these time distortions is far from clear. In this study we investigated visual time perception during preparation of isometric contractions and real movements of the hand in two different directions (right/left). Comparable modulations of visual event-timing are found in the isometric and in the movement condition, excluding explanations based on movement-induced sensory masking or attenuation. Most importantly, and surprisingly, visual time depends on the movement direction, being expanded for hand movements pointing away from the body and compressed in the other direction. Furthermore, the effect of movement direction is not constant, but rather undergoes non-monotonic modulations in the brief moments preceding movement initiation. Our findings indicate that time distortions are strongly linked to the motor system, and they may be unavoidable consequences of the mechanisms subserving sensory-motor integration.
Collapse
|
32
|
Murai Y, Yotsumoto Y. Context-Dependent Neural Modulations in the Perception of Duration. Front Integr Neurosci 2016; 10:12. [PMID: 27013993 PMCID: PMC4781865 DOI: 10.3389/fnint.2016.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Recent neuroimaging studies have revealed that distinct brain networks are recruited in the perception of sub- and supra-second timescales, whereas psychophysical studies have suggested that there are common or continuous mechanisms for perceiving these two durations. The present study aimed to elucidate the neural implementation of such continuity by examining the neural correlates of peri-second timing. We measured neural activity during a duration reproduction task using functional magnetic resonance imaging. Our results replicate the findings of previous studies in showing that separate neural networks are recruited for sub-versus supra-second time perception: motor systems including the motor cortex and the supplementary motor area for sub-second perception, and the frontal, parietal, and auditory cortical areas for supra-second perception. We further found that the peri-second perception activated both the sub- and supra-second networks, and that the timing system that processed duration perception in previous trials was more involved in subsequent peri-second processing. These results indicate that the sub- and supra-second timing systems overlap at around 1 s, and cooperate to optimally encode duration based on the hysteresis of previous trials.
Collapse
Affiliation(s)
- Yuki Murai
- Department of Life Sciences, The University of TokyoTokyo, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
33
|
Neural Network of Predictive Motor Timing in the Context of Gender Differences. Neural Plast 2016; 2016:2073454. [PMID: 27019753 PMCID: PMC4785273 DOI: 10.1155/2016/2073454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum.
Collapse
|
34
|
Shima S, Murai Y, Hashimoto Y, Yotsumoto Y. Duration Adaptation Occurs Across the Sub- and Supra-Second Systems. Front Psychol 2016; 7:114. [PMID: 26903920 PMCID: PMC4746325 DOI: 10.3389/fpsyg.2016.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
After repetitive exposure to a stimulus of relatively short duration, a subsequent stimulus of long duration is perceived as being even longer, and after repetitive exposure to a stimulus of relatively long duration, a subsequent stimulus of short duration is perceived as being even shorter. This phenomenon is called duration adaptation, and has been reported only for sub-second durations. We examined whether duration adaptation also occurs for supra-second durations (Experiment 1) and whether duration adaptation occurs across sub- and supra-second durations (Experiment 2). Duration adaptation occurred not only for sub-second durations, but also for supra-second durations and across sub- and supra-second durations. These results suggest that duration adaptation involves an interval-independent system or two functionally related systems that are associated with both the sub- and supra-second durations.
Collapse
Affiliation(s)
- Shuhei Shima
- Department of Integrated Sciences, The University of Tokyo Tokyo, Japan
| | - Yuki Murai
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yuki Hashimoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
35
|
Hashimoto Y, Yotsumoto Y. Effect of Temporal Frequency Spectra of Flicker on Time Perception: Behavioral Testing and Simulations Using a Striatal Beat Frequency Model. TIMING & TIME PERCEPTION 2015. [DOI: 10.1163/22134468-03002049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When a visually presented stimulus flickers, the perceived stimulus duration exceeds the actual duration. This effect is called ‘time dilation’. On the basis of recent electrophysiological findings, we hypothesized that this flicker induced time dilation is caused by distortions of the internal clock, which is composed of many oscillators with many intrinsic vibration frequencies. To examine this hypothesis, we conducted behavioral experiments and a neural simulation. In the behavioral experiments, we measured flicker induced time dilation at various flicker frequencies. The stimulus was either a steadily presented patch or a flickering patch. The temporal frequency spectrum of the flickering patch was either single peaked at 10.9, 15, or 30 Hz, peaked with a narrow band at 8–12 or 12–16 Hz, or peaked with broad band at 4–30 Hz. Time dilation was observed with 10.9 Hz, 15 Hz, 30 Hz, or 8–12 Hz flickers, but not with 12–16 Hz or 4–30 Hz flickers. These results indicate that both the peak frequency and the width of the frequency distribution contribute to time dilation. To explain our behavioral results in the context of a physiological model, we proposed a model that combined the Striatal Beat Frequency Model and neural entrainment. The simulation successfully predicted the effect of flicker frequency locality and frequency specificity on time dilation, as observed in the behavioral experiments.
Collapse
|
36
|
Hayashi MJ, Ditye T, Harada T, Hashiguchi M, Sadato N, Carlson S, Walsh V, Kanai R. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex. PLoS Biol 2015; 13:e1002262. [PMID: 26378440 PMCID: PMC4574920 DOI: 10.1371/journal.pbio.1002262] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/21/2015] [Indexed: 11/29/2022] Open
Abstract
Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. A series of functional magnetic resonance imaging (fMRI) adaptation experiments provide empirical evidence for the existence of neural populations in the human inferior parietal lobule that are tuned to specific durations of time. The human brain has the ability to estimate the passage of time, which allows us to perform complex cognitive tasks such as playing music, dancing, and understanding speech. Scientists have just begun to understand which brain areas become active when we estimate time. However, it still remains a mystery how exactly the information about time is represented in the brain. In this study, we hypothesized that time might be represented by neurons that are specifically tuned to a specific duration, as has been known for simple visual features such as the orientation and the motion direction in the visual cortex. To test this idea, we performed multiple functional magnetic resonance imaging (fMRI) adaptation experiments in which we sought evidence of neuronal adaptation, that is, a reduction in the responsiveness of neurons to repeated presentations of similar durations. Our experiments revealed that the level of brain activity in the right inferior parietal lobule (IPL) was strongly reduced when a stimulus of the same duration was repeatedly presented. This finding was reproduced for a range of subsecond durations. Our results indicate that neurons in the human IPL are tuned to specific preferred durations.
Collapse
Affiliation(s)
- Masamichi J. Hayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- School of Psychology, University of Sussex, Brighton, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Thomas Ditye
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Tokiko Harada
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Maho Hashiguchi
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Synnöve Carlson
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ryota Kanai
- School of Psychology, University of Sussex, Brighton, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Department of Neuroinformatics, Araya Brain Imaging, Tokyo, Japan
| |
Collapse
|
37
|
Yuasa K, Yotsumoto Y. Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations. PLoS One 2015; 10:e0135646. [PMID: 26292285 PMCID: PMC4546296 DOI: 10.1371/journal.pone.0135646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 12/27/2022] Open
Abstract
When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.
Collapse
Affiliation(s)
- Kenichi Yuasa
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Coull JT, Charras P, Donadieu M, Droit-Volet S, Vidal F. SMA Selectively Codes the Active Accumulation of Temporal, Not Spatial, Magnitude. J Cogn Neurosci 2015. [PMID: 26226079 DOI: 10.1162/jocn_a_00854] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Estimating duration depends on the sequential integration (accumulation) of temporal information in working memory. Using fMRI, we directly compared the accumulation of information in temporal versus spatial domains. Participants estimated either the duration or distance of the dynamic trajectory of a moving dot or, in a control condition, a static line stimulus. Comparing the duration versus distance of static lines activated an extensive cortico-striatal network. By contrast, comparing the duration versus distance of dynamic trajectories, both of which required sequential integration of information, activated SMA alone. Indeed, activity in SMA, as well as right inferior occipital cortex, increased parametrically as a function of stimulus duration and also correlated with individual differences in the propensity to overestimate stimulus duration. By contrast, activity in primary visual cortex increased parametrically as a function of stimulus distance. Crucially, a direct comparison of the parametric responses to duration versus distance revealed that activity in SMA increased incrementally as a function of stimulus duration but not as a function of stimulus distance. Collectively, our results indicate that SMA responds to the active accumulation of information selectively in the temporal domain.
Collapse
Affiliation(s)
| | - Pom Charras
- Aix-Marseille University and CNRS, Marseille, France
| | | | | | - Franck Vidal
- Aix-Marseille University and CNRS, Marseille, France
| |
Collapse
|
39
|
Morillon B, Schroeder CE. Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Ann N Y Acad Sci 2015; 1337:26-31. [PMID: 25773613 DOI: 10.1111/nyas.12629] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal oscillations are comprised of rhythmic fluctuations of excitability that are synchronized in ensembles of neurons and thus function as temporal filters that dynamically organize sensory processing. When perception relies on anticipatory mechanisms, ongoing oscillations also provide a neurophysiological substrate for temporal prediction. In this article, we review evidence for this account with a focus on auditory perception. We argue that such "oscillatory temporal predictions" can selectively amplify neuronal sensitivity to inputs that occur in a predicted, task-relevant rhythm and optimize temporal selection. We elaborate this argument for a prototypic example, speech processing, where information is present at multiple time scales, with delta, theta, and low-gamma oscillations being specifically and simultaneously engaged, enabling multiplexing. We then consider the origin of temporal predictions, specifically the idea that the motor system is involved in the generation of such prior information. Finally, we place temporal predictions in the general context of internal models, discussing how they interact with feature-based or spatial predictions. We propose that complementary predictions interact synergistically according to a dominance hierarchy, shaping perception in the form of a multidimensional filter mechanism.
Collapse
Affiliation(s)
- Benjamin Morillon
- Department of Psychiatry, Columbia University Medical Center, New York, New York; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Morillon B, Hackett TA, Kajikawa Y, Schroeder CE. Predictive motor control of sensory dynamics in auditory active sensing. Curr Opin Neurobiol 2015; 31:230-8. [PMID: 25594376 PMCID: PMC4898262 DOI: 10.1016/j.conb.2014.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.
Collapse
Affiliation(s)
- Benjamin Morillon
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Troy A Hackett
- Department of Speech and Hearing, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yoshinao Kajikawa
- Translational Cognitive Neuroscience Program, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Charles E Schroeder
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Translational Cognitive Neuroscience Program, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
41
|
The 3-second rule in hereditary pure cerebellar ataxia: a synchronized tapping study. PLoS One 2015; 10:e0118592. [PMID: 25706752 PMCID: PMC4337906 DOI: 10.1371/journal.pone.0118592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
The '3-second rule' has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients.
Collapse
|
42
|
Chen YG, Chen X, Kuang CW, Huang XT. Neural oscillatory correlates of duration maintenance in working memory. Neuroscience 2015; 290:389-97. [PMID: 25637487 DOI: 10.1016/j.neuroscience.2015.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
Abstract
Working memory (WM) is a core element of temporal information processing, but little is known about the internal representation and neuronal underpinnings of the duration maintenance in WM. The neural oscillations during maintenance of duration in WM were examined using electroencephalogram (EEG) recordings. The EEG results showed that theta amplitude was not modulated by the length of duration retained in WM, while alpha amplitude decreased in a 4-s duration condition compared with 1-s, 2-s, and 3-s duration conditions. The amplitude of alpha power positively correlated with accuracy for the 3-s duration condition. The results suggest that alpha activity is involved in duration maintenance in WM. Our study provides electrophysiological evidence that different internal representations are retained in WM for durations below and above about 3s.
Collapse
Affiliation(s)
- Y G Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing 400715, China.
| | - X Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing 400715, China
| | - C W Kuang
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing 400715, China
| | - X T Huang
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
43
|
Marshall AT, Kirkpatrick K. Everywhere and everything: The power and ubiquity of time. INTERNATIONAL JOURNAL OF COMPARATIVE PSYCHOLOGY 2015; 28:http://escholarship.org/uc/item/8hg831n3. [PMID: 28392622 PMCID: PMC5382961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Anticipatory timing plays a critical role in many aspects of human and non-human animal behavior. Timing has been consistently observed in the range of milliseconds to hours, and demonstrates a powerful influence on the organization of behavior. Anticipatory timing is acquired early in associative learning and appears to guide association formation in important ways. Importantly, timing participates in regulating goal-directed behaviors in many schedules of reinforcements, and plays a critical role in value-based decision making under concurrent schedules. In addition to playing a key role in fundamental learning processes, timing often dominates when temporal cues are available concurrently with other stimulus dimensions. Such control by the passage of time has even been observed when other cues provide more accurate information and can lead to sub-optimal behaviors. The dominance of temporal cues in governing anticipatory behavior suggests that time may be inherently more salient than many other stimulus dimensions. Discussions of the interface of the timing system with other cognitive processes are provided to demonstrate the powerful and primitive nature of time as a stimulus dimension.
Collapse
|
44
|
Pfeuty M, Dilharreguy B, Gerlier L, Allard M. fMRI identifies the right inferior frontal cortex as the brain region where time interval processing is altered by negative emotional arousal. Hum Brain Mapp 2014; 36:981-95. [PMID: 25366500 DOI: 10.1002/hbm.22680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/29/2022] Open
Abstract
The reason why human beings are inclined to overestimate the duration of highly arousing negative events remains enigmatic. The issue about what neurocognitive mechanisms and neural structures support the connection between time perception and emotion was addressed here by an event-related neuroimaging study involving a localizer task, followed by the main experiment. The localizer task, in which participants had to categorize either the duration or the average color of visual stimuli aimed at identifying the neural structures constitutive of a duration-specific network. The aim of the main experiment, in which participants had to categorize the presentation time of either neutral or emotionally negative visual stimuli, was to unmask which parts of the previously identified duration-specific network are sensitive to emotionally negative arousal. The duration-specific network that we uncovered from the localizer task comprised the cerebellum bilaterally as well as the orbitofrontal, the anterior cingulate, the anterior insular, and the inferior frontal cortices in the right hemisphere. Strikingly, the imaging data from the main experiment underscored that the right inferior frontal cortex (IFC) was the only region within the duration-specific network whose activity was increased in the face of emotionally negative pictures compared to neutral ones. Remarkably too, the extent of neural activation induced by emotionally negative pictures (compared to neutral ones) in this region correlated with a behavioral index reflecting the extent to which emotionally negative pictures were overestimated compared to neutral ones. The results are discussed in relation to recent models and studies suggesting that the right anterior insular cortex/IFC is of central importance in time perception.
Collapse
Affiliation(s)
- Micha Pfeuty
- University of Bordeaux, INCIA Department, CNRS UMR 5287, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
45
|
Herrmann B, Henry MJ, Scharinger M, Obleser J. Supplementary motor area activations predict individual differences in temporal-change sensitivity and its illusory distortions. Neuroimage 2014; 101:370-9. [DOI: 10.1016/j.neuroimage.2014.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022] Open
|
46
|
Morillon B, Schroeder CE, Wyart V. Motor contributions to the temporal precision of auditory attention. Nat Commun 2014; 5:5255. [PMID: 25314898 PMCID: PMC4199392 DOI: 10.1038/ncomms6255] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. Motor activities, such as rhythmic movements, are implicated in regulating attention. Here, the authors find that rhythmic movements sharpen the temporal selection of auditory stimuli by facilitating the perception of relevant stimuli, while actively suppressing the interference from irrelevant stimuli.
Collapse
Affiliation(s)
- Benjamin Morillon
- Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, USA
| | - Charles E Schroeder
- 1] Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, USA [2] Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, New York 10962, USA
| | - Valentin Wyart
- Département d'Etudes Cognitives, Laboratoire de Neurosciences Cognitives, Inserm unit 960, Ecole Normale Supérieure, Paris 75005, France
| |
Collapse
|
47
|
Dayan E, Sella I, Mukovskiy A, Douek Y, Giese MA, Malach R, Flash T. The Default Mode Network Differentiates Biological From Non-Biological Motion. Cereb Cortex 2014; 26:234-245. [PMID: 25217472 DOI: 10.1093/cercor/bhu199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing.
Collapse
Affiliation(s)
- Eran Dayan
- Department of Computer Science and Applied Mathematics.,Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,Present Address: Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irit Sella
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Albert Mukovskiy
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Center for Integrative Neuroscience, University Clinic Tübingen, Tübingen 72076, Germany
| | | | - Martin A Giese
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Center for Integrative Neuroscience, University Clinic Tübingen, Tübingen 72076, Germany
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics
| |
Collapse
|
48
|
El Haj M, Omigie D, Moroni C. Time reproduction during high and low attentional tasks in Alzheimer’s Disease “A watched kettle never boils”. Brain Cogn 2014; 88:1-5. [DOI: 10.1016/j.bandc.2014.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
49
|
Arnal LH, Doelling KB, Poeppel D. Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy. Cereb Cortex 2014; 25:3077-85. [PMID: 24846147 DOI: 10.1093/cercor/bhu103] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to generate temporal predictions is fundamental for adaptive behavior. Precise timing at the time-scale of seconds is critical, for instance to predict trajectories or to select relevant information. What mechanisms form the basis for such accurate timing? Recent evidence suggests that (1) temporal predictions adjust sensory selection by controlling neural oscillations in time and (2) the motor system plays an active role in inferring "when" events will happen. We hypothesized that oscillations in the delta and beta bands are instrumental in predicting the occurrence of auditory targets. Participants listened to brief rhythmic tone sequences and detected target delays while undergoing magnetoencephalography recording. Prior to target occurrence, we found that coupled delta (1-3 Hz) and beta (18-22 Hz) oscillations temporally align with upcoming targets and bias decisions towards correct responses, suggesting that delta-beta coupled oscillations underpin prediction accuracy. Subsequent to target occurrence, subjects update their decisions using the magnitude of the alpha-band (10-14 Hz) response as internal evidence of target timing. These data support a model in which the orchestration of oscillatory dynamics between sensory and motor systems is exploited to accurately select sensory information in time.
Collapse
Affiliation(s)
- Luc H Arnal
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Keith B Doelling
- Department of Psychology, New York University, New York, NY 10003, USA
| | - David Poeppel
- Department of Psychology, New York University, New York, NY 10003, USA NYUAD Institute, New York University Abu Dhabi, 129188 Abu Dhabi, UAE
| |
Collapse
|
50
|
Kösem A, Gramfort A, van Wassenhove V. Encoding of event timing in the phase of neural oscillations. Neuroimage 2014; 92:274-84. [DOI: 10.1016/j.neuroimage.2014.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/21/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022] Open
|