1
|
Fan HC, Yang MT, Lin LC, Chiang KL, Chen CM. Clinical and Genetic Features of Dravet Syndrome: A Prime Example of the Role of Precision Medicine in Genetic Epilepsy. Int J Mol Sci 2023; 25:31. [PMID: 38203200 PMCID: PMC10779156 DOI: 10.3390/ijms25010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Dravet syndrome (DS), also known as severe myoclonic epilepsy of infancy, is a rare and drug-resistant form of developmental and epileptic encephalopathies, which is both debilitating and challenging to manage, typically arising during the first year of life, with seizures often triggered by fever, infections, or vaccinations. It is characterized by frequent and prolonged seizures, developmental delays, and various other neurological and behavioral impairments. Most cases result from pathogenic mutations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene, which encodes a critical voltage-gated sodium channel subunit involved in neuronal excitability. Precision medicine offers significant potential for improving DS diagnosis and treatment. Early genetic testing enables timely and accurate diagnosis. Advances in our understanding of DS's underlying genetic mechanisms and neurobiology have enabled the development of targeted therapies, such as gene therapy, offering more effective and less invasive treatment options for patients with DS. Targeted and gene therapies provide hope for more effective and personalized treatments. However, research into novel approaches remains in its early stages, and their clinical application remains to be seen. This review addresses the current understanding of clinical DS features, genetic involvement in DS development, and outcomes of novel DS therapies.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan;
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Li M, Yang L, Qian W, Ray S, Lu Z, Liu T, Zou YY, Naumann RK, Wang H. A novel rat model of Dravet syndrome recapitulates clinical hallmarks. Neurobiol Dis 2023:106193. [PMID: 37295561 DOI: 10.1016/j.nbd.2023.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Dravet syndrome (DS) is a debilitating infantile epileptic encephalopathy characterized by seizures induced by high body temperature (hyperthermia), sudden unexpected death in epilepsy (SUDEP), cognitive impairment, and behavioral disturbances. The most common cause of DS is haploinsufficiency of the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1. In current mouse models of DS, the epileptic phenotype is strictly dependent on the genetic background and most mouse models exhibit drastically higher SUDEP rates than patients. Therefore, we sought to develop an alternative animal model for DS. Here, we report the generation and characterization of a Scn1a halploinsufficiency rat model of DS by disrupting the Scn1a allele. Scn1a+/- rats show reduced Scn1a expression in the cerebral cortex, hippocampus and thalamus. Homozygous null rats die prematurely. Heterozygous animals are highly susceptible to heat-induced seizures, the clinical hallmark of DS, but are otherwise normal in survival, growth, and behavior without seizure induction. Hyperthermia-induced seizures activate distinct sets of neurons in the hippocampus and hypothalamus in Scn1a+/- rats. Electroencephalogram (EEG) recordings in Scn1a+/- rats reveal characteristic ictal EEG with high amplitude bursts with significantly increased delta and theta power. After the initial hyperthermia-induced seizures, non-convulsive, and convulsive seizures occur spontaneously in Scn1a+/- rats. In conclusion, we generate a Scn1a haploinsufficiency rat model with phenotypes closely resembling DS, providing a unique platform for establishing therapies for DS.
Collapse
Affiliation(s)
- Miao Li
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixin Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weixin Qian
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Saikat Ray
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zhonghua Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Robert K Naumann
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Scaramuzzino L, Cifelli P, D’Andrea T, Martinello K, Fucile S, Palma E, Gambardella A, Ruffolo G, Cuda G, Parrotta EI. Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity. Biomedicines 2022; 10:biomedicines10051075. [PMID: 35625812 PMCID: PMC9138645 DOI: 10.3390/biomedicines10051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Pierangelo Cifelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of Aquila, 67100 Aquila, Italy;
| | - Tiziano D’Andrea
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | | | - Sergio Fucile
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS Neuromed, Via Atinense, 86077 Pozzilli, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS San Raffaele Roma, Via della Pisana, 00163 Rome, Italy
- Correspondence: (G.R.); (G.C.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
- Correspondence: (G.R.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| |
Collapse
|
4
|
Chancey JH, Howard MA. Synaptic Integration in CA1 Pyramidal Neurons Is Intact despite Deficits in GABAergic Transmission in the Scn1a Haploinsufficiency Mouse Model of Dravet Syndrome. eNeuro 2022; 9:ENEURO.0080-22.2022. [PMID: 35523580 PMCID: PMC9116933 DOI: 10.1523/eneuro.0080-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Mutations of SCN1A, which encodes the voltage-gated sodium channel Nav1.1, can cause epilepsy disorders such as Dravet syndrome (DS) that are comorbid with wide-ranging neurologic dysfunction. Many studies suggest that Nav1.1 haploinsufficiency causes forebrain GABAergic interneuron hypoexcitability, while pyramidal neuron physiology is mostly unaltered, and that this serves as a primary cell physiology phenotype linking mutation to disease. We hypothesized that deficits in inhibition would alter synaptic integration during activation of the hippocampal microcircuit, thus disrupting cellular information processing and leading to seizures and cognitive deficits. We tested this hypothesis using ex vivo whole-cell recordings from CA1 pyramidal neurons in a heterozygous Scn1a knock-out mouse model and wild-type (WT) littermates, measuring responses to single and patterned synaptic stimulation and spontaneous synaptic activity. Overall, our experiments reveal a surprising normalcy of excitatory and inhibitory synaptic temporal integration in the hippocampus of Scn1a haploinsufficient mice. While miniature IPSCs and feedforward inhibition and were decreased, we did not identify a pattern or frequency of input that caused a failure of synaptic inhibition. We further show that reduced GABA release probability and subsequent reduced short-term depression may act to overcome deficits in inhibition normalizing input/output functions in the Scn1a haploinsufficient hippocampus. These experiments show that CA1 pyramidal neuron synaptic processing is surprisingly robust, even during decreased interneuron function, and more complex circuit activity is likely required to reveal altered function in the hippocampal microcircuit.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| | - MacKenzie Allen Howard
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| |
Collapse
|
5
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Interneuron Dysfunction in a New Mouse Model of SCN1A GEFS. eNeuro 2021; 8:ENEURO.0394-20.2021. [PMID: 33658306 PMCID: PMC8174035 DOI: 10.1523/eneuro.0394-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within SCN1A result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a Drosophila knock-in model. To examine the behavioral and cellular effects of this mutation in mammals, we introduced the equivalent KT mutation into the mouse (Mus musculus) Scn1a (Scn1aKT) gene using CRISPR/Cas9 and generated mutant lines in two widely used genetic backgrounds: C57BL/6NJ and 129X1/SvJ. In both backgrounds, mice homozygous for the KT mutation had spontaneous seizures and died by postnatal day (P)23. There was no difference in mortality of heterozygous KT mice compared with wild-type littermates up to six months old. Heterozygous mutants exhibited heat-induced seizures at ∼42°C, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices at permissive temperatures, current-clamp recordings revealed a significantly depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin (PV)-expressing inhibitory CA1 interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. These results suggest that a constitutive decrease in inhibitory interneuron excitability contributes to the seizure phenotype in the mouse model.
Collapse
|
7
|
Ohmori I, Kobayashi K, Ouchida M. Scn1a and Cacna1a mutations mutually alter their original phenotypes in rats. Neurochem Int 2020; 141:104859. [PMID: 33045260 DOI: 10.1016/j.neuint.2020.104859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
This study aimed to examine the effects of Cacna1a mutation on the phenotype of Scn1a-associated epilepsy in rats. We used rats with an N1417H missense mutation in the Scn1a gene and others with an M251K mutation in the Cacna1a gene. Scn1a/Cacna1a double mutant rats were generated by mating both Scn1a and Cacna1a mutants. We investigated general health and the epileptic phenotype in all these genotypes. The onset threshold of hyperthermia-induced seizures was examined at 5 weeks and spontaneous seizures were monitored using video-EEG recordings from 6 to 12 weeks of age. Scn1a/Cacna1a double mutants showed significantly reduced threshold for hyperthermia-sensitive seizures onset compared with the Scn1a mutants and had absence seizures having 6-7 c/s spike-wave bursts with changes in the spike-wave pattern, whereas Cacna1a mutants had regular 6-7 c/s spike-wave bursts. In Scn1a/Cacna1a double mutants, 6-7 c/s spike-wave bursts were accompanied with eyelid myoclonia and continuously shifting generalized clonic seizures, which were not observed in either Scn1a or Cacna1a mutants. Although a curvature of the spine was observed in rats of all these genotypes, the degree of curvature was more pronounced in Scn1a/Cacna1a double mutants, followed by Cacna1a and Scn1a mutants. Our results indicate that Cacna1a and Scn1a mutations mutually alter their original phenotypes in rats. The phenotype of absence seizures with eyelid myoclonia, generalized clonic seizures, and of spine curvature in the Scn1a/Cacna1a double mutants were similar to that observed in patients with Dravet syndrome.
Collapse
Affiliation(s)
- Iori Ohmori
- Graduate School of Education, Okayama University, Tsushima 3-chome 1-1, Kita-ku, Okayama, 700-8530, Japan; Department of Child Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan; Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan.
| | - Kiyoka Kobayashi
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
8
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
9
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
10
|
Ponce A, Castillo A, Hinojosa L, Martinez-Rendon J, Cereijido M. The expression of endogenous voltage-gated potassium channels in HEK293 cells is affected by culture conditions. Physiol Rep 2019; 6:e13663. [PMID: 29665277 PMCID: PMC5903699 DOI: 10.14814/phy2.13663] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
HEK293 cells are widely used as a host for expression of heterologous proteins; yet, little care has been taken to characterize their endogenous membrane components, including ion channels. In this work, we aimed to describe the biophysical and pharmacological properties of endogenous, voltage‐dependent potassium currents (IKv). We also examined how its expression depends on culture conditions. We used the electrophysiological technique of whole‐cell patch clamp to record ion currents from HEK293 cells. We found that HEK cells express endogenous, voltage‐dependent potassium currents. We also found that diverse culture conditions, such as the passage number, the cell density, the type of serum that complements the culture media and the substratum, affect the magnitude and shape of IKv, resulting from the relative contribution of fast, slow, and noninactivating component currents. Incubation of cells in mature monolayers with trypsin–EDTA, notoriously reduces the magnitude and modifies the shape of voltage‐dependent potassium endogenous currents; nonetheless HEK cells recover IKv′s magnitude and shape within 6 h after replating, with a process that requires synthesis of new mRNA and protein subunits, as evidenced by the fact that actinomycin D and cycloheximide, inhibitors of synthesis of mRNA and protein, respectively, impair the recovery of IKv after trypsinization. In addition to be useful as a model expression system, HEK293 may be useful to understand how cells regulate the density of ion channels on the membrane.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Center For Research and Advanced Studies (Cinvestav), México D. F., México
| | - Aida Castillo
- Department of Physiology, Biophysics and Neurosciences, Center For Research and Advanced Studies (Cinvestav), México D. F., México
| | - Lorena Hinojosa
- Department of Physiology, Biophysics and Neurosciences, Center For Research and Advanced Studies (Cinvestav), México D. F., México
| | - Jacqueline Martinez-Rendon
- Department of Physiology, Biophysics and Neurosciences, Center For Research and Advanced Studies (Cinvestav), México D. F., México
| | - Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, Center For Research and Advanced Studies (Cinvestav), México D. F., México
| |
Collapse
|
11
|
Kuo FS, Cleary CM, LoTurco JJ, Chen X, Mulkey DK. Disordered breathing in a mouse model of Dravet syndrome. eLife 2019; 8:e43387. [PMID: 31025941 PMCID: PMC6506208 DOI: 10.7554/elife.43387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Dravet syndrome (DS) is a form of epilepsy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Respiratory failure is a leading cause of SUDEP, and DS patients' frequently exhibit disordered breathing. Despite this, mechanisms underlying respiratory dysfunction in DS are unknown. We found that mice expressing a DS-associated Scn1a missense mutation (A1783V) conditionally in inhibitory neurons (Slc32a1cre/+::Scn1aA1783V fl/+; defined as Scn1aΔE26) exhibit spontaneous seizures, die prematurely and present a respiratory phenotype including hypoventilation, apnea, and a diminished ventilatory response to CO2. At the cellular level in the retrotrapezoid nucleus (RTN), we found inhibitory neurons expressing the Scn1a A1783V variant are less excitable, whereas glutamatergic chemosensitive RTN neurons, which are a key source of the CO2/H+-dependent drive to breathe, are hyper-excitable in slices from Scn1aΔE26 mice. These results show loss of Scn1a function can disrupt respiratory control at the cellular and whole animal levels.
Collapse
Affiliation(s)
- Fu-Shan Kuo
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Colin M Cleary
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph J LoTurco
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Xinnian Chen
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Daniel K Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| |
Collapse
|
12
|
Saboory E, Ghadimkhani M, Roshan-Milani S, Derafshpour L, Mohammadi S, Dindarian S, Mohammadi H. Effect of early-life inflammation and magnesium sulfate on hyperthermia-induced seizures in infant rats: Susceptibility to pentylenetetrazol-induced seizures later in life. Dev Psychobiol 2018; 61:96-106. [PMID: 30338516 DOI: 10.1002/dev.21781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
This study investigated the effect of inflammation and MgSO4 pretreatment on behaviors caused by hyperthermia (HT) and the effect of these interventions on PTZ-induced seizure a week later. In this experimental study, rat pups experienced inflammation on postnatal day 10 (P10). On P18-19, the pups received either saline or MgSO4 then subjected to hyperthermia. On P25-26, PTZ-induced seizure was initiated in the rats. Neonatal inflammation increased the susceptibility to HT-induced seizure. Inflammation and HT increased the susceptibility to PTZ-induced seizure. Pretreatment with MgSO4 before hyperthermia decreased the susceptibility to both HT- and PTZ-induced seizure. Furthermore, calcium and magnesium blood levels significantly decreased compared to control rats. It can be concluded that neonatal inflammation potentiates while pretreatment with MgSO4 attenuates HT-induced seizures. Also, neonatal inflammation and HT potentiate PTZ-induced seizure initiated one week later.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ghadimkhani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
Ogiwara I, Miyamoto H, Tatsukawa T, Yamagata T, Nakayama T, Atapour N, Miura E, Mazaki E, Ernst SJ, Cao D, Ohtani H, Itohara S, Yanagawa Y, Montal M, Yuzaki M, Inoue Y, Hensch TK, Noebels JL, Yamakawa K. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun Biol 2018; 1:96. [PMID: 30175250 PMCID: PMC6115194 DOI: 10.1038/s42003-018-0099-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.
Collapse
Affiliation(s)
- Ikuo Ogiwara
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Laboratory for Neuronal Circuit Development, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Yamagata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tojo Nakayama
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Pediatrics, Tohoku University School of Medicine, Sendai, 980-8574, Japan.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nafiseh Atapour
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Laboratory for Neuronal Circuit Development, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Eriko Miura
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Sara J Ernst
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dezhi Cao
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan.,Neurology Department, Shenzhen Children's Hospital, 518026, Guangdong, China
| | - Hideyuki Ohtani
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,FIRST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan
| | - Takao K Hensch
- Laboratory for Neuronal Circuit Development, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.,Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Application of genome editing technologies in rats for human disease models. J Hum Genet 2017; 63:115-123. [DOI: 10.1038/s10038-017-0346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 02/02/2023]
|
15
|
Pellock JM, Arzimanoglou A, D'Cruz O, Holmes GL, Nordli D, Shinnar S. Extrapolating evidence of antiepileptic drug efficacy in adults to children ≥2 years of age with focal seizures: The case for disease similarity. Epilepsia 2017; 58:1686-1696. [PMID: 28755452 DOI: 10.1111/epi.13859] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Expediting pediatric access to new antiseizure drugs is particularly compelling, because epileptic seizures are the most common serious neurological symptom in children. Analysis of antiepileptic drug (AED) efficacy outcomes of randomized controlled trials, conducted during the past 20 years in different populations and a broad range of study sites and countries, has shown considerable consistency for each drug between adult and pediatric populations. Historically, the majority of regulatory approvals for AEDs have been for seizure types and not for specific epilepsy syndromes. Available data, both anatomical and neurophysiological, support a similar pathophysiology of focal seizures in adults and young children, and suggest that by age 2 years the structural and physiological milieu upon which seizures develop is similar. Although the distribution of specific etiologies and epilepsy syndromes is different in children from in adults, this should not impact approvals of efficacy based on seizure type, because the pathophysiology of focal seizures and the drug responsiveness of these seizure types are quite similar. Safety and pharmacokinetics cannot be extrapolated from adults to children. The scientific rationale, clinical consensus, and published data support a future approach accepting efficacy data from adult trials and focusing exclusively on prospective pharmacokinetic, tolerability, and safety studies and long-term follow-up in children. Whereas tolerability studies can be compared easily in children and adults, safety studies require large numbers of patients followed for many years.
Collapse
Affiliation(s)
- John M Pellock
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| | - Alexis Arzimanoglou
- Department of Clinical Epileptology, Sleep Disorders, and Functional Pediatric Neurology, University Hospitals of Lyon, Lyon, France.,Epilepsy, Sleep, and Neurophysiology Section, Neurology Service, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - O'Neill D'Cruz
- Consulting and Neurological Services, Chapel Hill, North Carolina, U.S.A
| | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, U.S.A
| | - Douglas Nordli
- Division of Pediatric Neurology, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, U.S.A
| | - Shlomo Shinnar
- Departments of Neurology, Pediatrics, and Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | | |
Collapse
|
16
|
Dutton SBB, Dutt K, Papale LA, Helmers S, Goldin AL, Escayg A. Early-life febrile seizures worsen adult phenotypes in Scn1a mutants. Exp Neurol 2017; 293:159-171. [PMID: 28373025 DOI: 10.1016/j.expneurol.2017.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/27/2023]
Abstract
Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A, encoding the Nav1.1 channel, are responsible for a number of epilepsy disorders including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS). Patients with SCN1A mutations often experience prolonged early-life febrile seizures (FSs), raising the possibility that these events may influence epileptogenesis and lead to more severe adult phenotypes. To test this hypothesis, we subjected 21-23-day-old mice expressing the human SCN1A GEFS+ mutation R1648H to prolonged hyperthermia, and then examined seizure and behavioral phenotypes during adulthood. We found that early-life FSs resulted in lower latencies to induced seizures, increased severity of spontaneous seizures, hyperactivity, and impairments in social behavior and recognition memory during adulthood. Biophysical analysis of brain slice preparations revealed an increase in epileptiform activity in CA3 pyramidal neurons along with increased action potential firing, providing a mechanistic basis for the observed worsening of adult phenotypes. These findings demonstrate the long-term negative impact of early-life FSs on disease outcomes. This has important implications for the clinical management of this patient population and highlights the need for therapeutic interventions that could ameliorate disease progression.
Collapse
Affiliation(s)
- Stacey B B Dutton
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA; Department of Biology, Agnes Scott College, Atlanta, GA 30030, USA
| | - Karoni Dutt
- Departments of Microbiology & Molecular Genetics and Anatomy & Neurobiology, University of California, Irvine, CA 92697, USA
| | - Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Sandra Helmers
- Department of Neurology, Emory University, Atlanta, GA 30022, USA
| | - Alan L Goldin
- Departments of Microbiology & Molecular Genetics and Anatomy & Neurobiology, University of California, Irvine, CA 92697, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA.
| |
Collapse
|
17
|
Feng B, Chen Z. Generation of Febrile Seizures and Subsequent Epileptogenesis. Neurosci Bull 2016; 32:481-92. [PMID: 27562688 DOI: 10.1007/s12264-016-0054-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
Febrile seizures (FSs) occur commonly in children aged from 6 months to 5 years. Complex (repetitive or prolonged) FSs, but not simple FSs, can lead to permanent brain modification. Human infants and immature rodents that have experienced complex FSs have a high risk of subsequent temporal lobe epilepsy. However, the causes of FSs and the mechanisms underlying the subsequent epileptogenesis remain unknown. Here, we mainly focus on two major questions concerning FSs: how fever triggers seizures, and how epileptogenesis occurs after FSs. The risk factors responsible for the occurrence of FSs and the epileptogenesis after prolonged FSs are thoroughly summarized and discussed. An understanding of these factors can provide potential therapeutic targets for the prevention of FSs and also yield biomarkers for identifying patients at risk of epileptogenesis following FSs.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Abo El Fotoh WMM, Abd El Naby SAA, Habib MSED, ALrefai AA, Kasemy ZA. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children. Seizure 2016; 41:75-80. [PMID: 27498208 DOI: 10.1016/j.seizure.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Despite the advances in the pharmacological treatment of epilepsy, pharmacoresistance still remains challenging. Understanding of the pharmacogenetic causes is critical to predict drug response hence providing a basis for personalized medications. Genetic alteration in activity of drug target and drug metabolizing proteins could explain the development of pharmacoresistant epilepsy. So the aim of this study was to explore whether SCN1A c.3184 A/G (rs2298771) and CYP3A5*3 (rs776746) polymorphisms could serve as genetic based biomarkers to predict pharmacoresistance among Egyptian epileptic children. METHODS Genotyping of SCN1A c.3184 A/G and CYP3A5*3 polymorphisms using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was performed in 65 healthy control subjects and 130 patients with epilepsy, of whom 50 were drug resistant and 80 were drug responsive. RESULTS There was a significant higher frequency of the AG genotype (p=0.001) and G allele (p=0.006) of SCN1A polymorphism in epileptic patients than in controls. Also their frequency was significantly higher in drug resistant patients in comparison with drug responders (p=0.005 and 0.054 respectively). No significant association between CYP3A5*3 polymorphism and drug-resistance was found. CONCLUSIONS Overall, results confirmed the claimed role of SCN1A c.3184 A/G polymorphism in epilepsy and moreover in development of pharmacoresistance among Egyptian epileptic children. CYP3A5*3 variants have no contributing effect on pharmacoresistance among Egyptian epileptic children.
Collapse
Affiliation(s)
| | | | | | - Abeer Ahmed ALrefai
- Lecturer of Medical Biochemistry, Faculty of Medicine, Menoufia University, Egypt.
| | - Zeinab A Kasemy
- Lecturer of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Egypt.
| |
Collapse
|
19
|
Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission. Sci Rep 2016; 6:27420. [PMID: 27265781 PMCID: PMC4893657 DOI: 10.1038/srep27420] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis.
Collapse
|
20
|
Ghadimkhani M, Saboory E, Roshan-Milani S, Mohammdi S, Rasmi Y. Effect of magnesium sulfate on hyperthermia and pentylen-tetrazol-induced seizure in developing rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:608-14. [PMID: 27482341 PMCID: PMC4951599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVES Febrile seizures (FS) are the most common type of convulsive events among children. Its prevalence has been estimated to be 2-5% in children between 3 months and 5 years old. Also, blood and CSF magnesium levels have been demonstrated to be reduced in children with FS. This study investigates the effect of MgSo4 pretreatment on the behaviors caused by hyperthermia (HT) and effect of these two on pentylen-tetrazol (PTZ)-induced seizure later in life. MATERIALS AND METHODS Thirty two Wistar rats were assigned to 2 groups: saline-hyperthermia-pentylentetrazol (SHP) and magnesium-hyperthermia-pentylentetrazol (MHP). In both groups, HT was induced at the age of 18-19 days old. Before the HT, MHP group received MgSo4 and SHP group received normal saline intraperitoneally (IP). Behaviors of the rats were recorded during the HT. Then, in half of each group (n=8) at the age of 25-26 days old and in other half at the age of 78-79 days, seizure was induced by PTZ. RESULTS The HT successfully caused convulsive behaviors in the rats and pretreatment with MgSo4 before HT attenuated HT-induced convulsive behaviors. PTZ-induced seizures a week later was more severe than those of 2 months later. CONCLUSION It can be concluded that pretreatment with MgSO4 inhibits HT-induced seizure and, in a long run, this intervention reduced PTZ-induced seizure later in life.
Collapse
Affiliation(s)
- Maryam Ghadimkhani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran,Corresponding author: Ehsan Saboory. Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. Tel: +98-443-2770698; Fax: +98-443-2780801; ;
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sedra Mohammdi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
22
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
23
|
Bowyer JF, Hanig JP. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature (Austin) 2014; 1:172-82. [PMID: 27626044 PMCID: PMC5008711 DOI: 10.4161/23328940.2014.982049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.
Collapse
|
24
|
Serikawa T, Mashimo T, Kuramoro T, Voigt B, Ohno Y, Sasa M. Advances on genetic rat models of epilepsy. Exp Anim 2014; 64:1-7. [PMID: 25312505 PMCID: PMC4329510 DOI: 10.1538/expanim.14-0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Considering the suitability of laboratory rats in epilepsy research, we and other groups
have been developing genetic models of epilepsy in this species. After epileptic rats or
seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits
were usually genetically-fixed by selective breeding. So far, the absence seizure models
GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic
seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER
have been established. Dissection of the genetic bases including causative genes in these
epileptic rat models would be a significant step toward understanding epileptogenesis.
N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to
develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with
an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model
rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type
1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant
stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea
(MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2
(EA2) model rats. Thus, epileptic rat models have been established on the two paths:
‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel
epileptic rat models will be extensively promoted by the use of sophisticated genome
editing technologies.
Collapse
Affiliation(s)
- Tadao Serikawa
- Graduate School of Medicine, Kyoto University, Sakyo-ku 606-8501; Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Ohmori I, Kawakami N, Liu S, Wang H, Miyazaki I, Asanuma M, Michiue H, Matsui H, Mashimo T, Ouchida M. Methylphenidate improves learning impairments and hyperthermia-induced seizures caused by an Scn1a mutation. Epilepsia 2014; 55:1558-67. [PMID: 25154505 DOI: 10.1111/epi.12750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Developmental disorders including cognitive deficit, hyperkinetic disorder, and autistic behaviors are frequently comorbid in epileptic patients with SCN1A mutations. However, the mechanisms underlying these developmental disorders are poorly understood and treatments are currently unavailable. Using a rodent model with an Scn1a mutation, we aimed to elucidate the pathophysiologic basis and potential therapeutic treatments for developmental disorders stemming from Scn1a mutations. METHODS We conducted behavioral analyses on rats with the N1417H-Scn1a mutation. With high-performance liquid chromatography, we measured dopamine and its metabolites in the frontal cortex, striatum, nucleus accumbens, and midbrain. Methylphenidate was administered intraperitoneally to examine its effects on developmental disorder-like behaviors and hyperthermia-induced seizures. RESULTS Behavioral studies revealed that Scn1a-mutant rats had repetitive behavior, hyperactivity, anxiety-like behavior, spatial learning impairments, and motor imbalance. Dopamine levels in the striatum and nucleus accumbens in Scn1a-mutant rats were significantly lower than those in wild-type rats. In Scn1a-mutant rats, methylphenidate, by increasing dopamine levels in the synaptic cleft, improved hyperactivity, anxiety-like behavior, and spatial learning impairments. Surprisingly, methylphenidate also strongly suppressed hyperthermia-induced seizures. SIGNIFICANCE Dysfunction of the mesolimbic dopamine reward pathway may contribute to the hyperactivity and learning impairments in Scn1a-mutant rats. Methylphenidate was effective for treating hyperactivity, learning impairments, and hyperthermia-induced seizures. We propose that methylphenidate treatment may ameliorate not only developmental disorders but also epileptic seizures in patients with SCN1A mutations.
Collapse
Affiliation(s)
- Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Medical Ethics, Graduate School and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function. Science 2014; 345:1255263. [PMID: 25082707 DOI: 10.1126/science.1255263] [Citation(s) in RCA: 791] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The success story of fast-spiking, parvalbumin-positive (PV(+)) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV(+) interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the "small world" of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV(+) interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV(+) interneurons for therapeutic purposes.
Collapse
Affiliation(s)
- Hua Hu
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Jian Gan
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
27
|
Volkers L, Kahlig KM, Das JHG, van Kempen MJA, Lindhout D, Koeleman BPC, Rook MB. Febrile temperatures unmask biophysical defects in Nav1.1 epilepsy mutations supportive of seizure initiation. ACTA ACUST UNITED AC 2014; 142:641-53. [PMID: 24277604 PMCID: PMC3840920 DOI: 10.1085/jgp.201311042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Generalized epilepsy with febrile seizures plus (GEFS+) is an early onset febrile epileptic syndrome with therapeutic responsive (a)febrile seizures continuing later in life. Dravet syndrome (DS) or severe myoclonic epilepsy of infancy has a complex phenotype including febrile generalized or hemiclonic convulsions before the age of 1, followed by intractable myoclonic, complex partial, or absence seizures. Both diseases can result from mutations in the Nav1.1 sodium channel, and initially, seizures are typically triggered by fever. We previously characterized two Nav1.1 mutants—R859H (GEFS+) and R865G (DS)—at room temperature and reported a mixture of biophysical gating defects that could not easily predict the phenotype presentation as either GEFS+ or DS. In this study, we extend the characterization of Nav1.1 wild-type, R859H, and R865G channels to physiological (37°C) and febrile (40°C) temperatures. At physiological temperature, a variety of biophysical defects were detected in both mutants, including a hyperpolarized shift in the voltage dependence of activation and a delayed recovery from fast and slow inactivation. Interestingly, at 40°C we also detected additional gating defects for both R859H and R865G mutants. The GEFS+ mutant R859H showed a loss of function in the voltage dependence of inactivation and an increased channel use-dependency at 40°C with no reduction in peak current density. The DS mutant R865G exhibited reduced peak sodium currents, enhanced entry into slow inactivation, and increased use-dependency at 40°C. Our results suggest that fever-induced temperatures exacerbate the gating defects of R859H or R865G mutants and may predispose mutation carriers to febrile seizures.
Collapse
Affiliation(s)
- Linda Volkers
- Department of Medical Genetics, Division of Biomedical Genetics, and 2 Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 AB Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Ricketts T, McGoldrick P, Fratta P, de Oliveira HM, Kent R, Phatak V, Brandner S, Blanco G, Greensmith L, Acevedo-Arozena A, Fisher EMC. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects. PLoS One 2014; 9:e85962. [PMID: 24465814 PMCID: PMC3897576 DOI: 10.1371/journal.pone.0085962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community.
Collapse
Affiliation(s)
- Thomas Ricketts
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Philip McGoldrick
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Pietro Fratta
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | | | - Rosie Kent
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Vinaya Phatak
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Gonzalo Blanco
- Biology Department, University of York, York, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Abraham Acevedo-Arozena
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Elizabeth M. C. Fisher
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| |
Collapse
|
29
|
Evaluation of seizure foci and genes in the Lgi1(L385R/+) mutant rat. Neurosci Res 2014; 80:69-75. [PMID: 24406746 DOI: 10.1016/j.neures.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/26/2013] [Accepted: 12/25/2013] [Indexed: 01/13/2023]
Abstract
Mutations in the leucine-rich, glioma inactivated 1 (LGI1) gene have been identified in patients with autosomal dominant lateral temporal lobe epilepsy (ADLTE). We previously reported that Lgi1 mutant rats, carrying a missense mutation (L385R) generated by gene-driven N-ethyl-N-nitrosourea (ENU) mutagenesis, showed generalized tonic-clonic seizures (GTCS) in response to acoustic stimuli. In the present study, we assessed clinically relevant features of Lgi1 heterozygous mutant rats (Lgi1(L385R/+)) as an animal model of ADLTE. First, to explore the focus of the audiogenic seizures, we performed electroencephalography (EEG) and brain Fos immunohistochemistry in Lgi1(L385R/+) and wild type rats. EEG showed unique seizure patterns (e.g., bilateral rhythmic spikes) in Lgi1(L385R/+) rats with GTCS. An elevated level of Fos expression indicated greater neural excitability to acoustic stimuli in Lgi1(L385R/+) rats, especially in the temporal lobe, thalamus and subthalamic nucleus. Finally, microarray analysis revealed a number of differentially expressed genes that may be involved in epilepsy. These results suggest that Lgi1(L385R/+) rats are useful as an animal model of human ADLTE.
Collapse
|
30
|
Inhalation of 10% carbon dioxide rapidly terminates Scn1a mutation-related hyperthermia-induced seizures. Epilepsy Res 2013; 105:220-4. [DOI: 10.1016/j.eplepsyres.2013.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/28/2012] [Accepted: 01/04/2013] [Indexed: 11/23/2022]
|
31
|
Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, Imaizumi Y, Zhang B, Nabeshima K, Mori MX, Katsurabayashi S, Shirasaka Y, Okano H, Hirose S. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain 2013; 6:19. [PMID: 23639079 PMCID: PMC3655893 DOI: 10.1186/1756-6606-6-19] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/03/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dravet syndrome is a devastating infantile-onset epilepsy syndrome with cognitive deficits and autistic traits caused by genetic alterations in SCN1A gene encoding the α-subunit of the voltage-gated sodium channel Na(v)1.1. Disease modeling using patient-derived induced pluripotent stem cells (iPSCs) can be a powerful tool to reproduce this syndrome's human pathology. However, no such effort has been reported to date. We here report a cellular model for DS that utilizes patient-derived iPSCs. RESULTS We generated iPSCs from a Dravet syndrome patient with a c.4933C>T substitution in SCN1A, which is predicted to result in truncation in the fourth homologous domain of the protein (p.R1645*). Neurons derived from these iPSCs were primarily GABAergic (>50%), although glutamatergic neurons were observed as a minor population (<1%). Current-clamp analyses revealed significant impairment in action potential generation when strong depolarizing currents were injected. CONCLUSIONS Our results indicate a functional decline in Dravet neurons, especially in the GABAergic subtype, which supports previous findings in murine disease models, where loss-of-function in GABAergic inhibition appears to be a main driver in epileptogenesis. Our data indicate that patient-derived iPSCs may serve as a new and powerful research platform for genetic disorders, including the epilepsies.
Collapse
Affiliation(s)
- Norimichi Higurashi
- Department of Pediatrics, School of Medicine, Fukuoka University, 45-1, 7-chome, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guo F, Xu X, Cai J, Hu H, Sun W, He G, Shao D, Wang L, Chen T, Shaw C, Zhu T, Hao L. The up-regulation of voltage-gated sodium channels subtypes coincides with an increased sodium current in hippocampal neuronal culture model. Neurochem Int 2013; 62:287-95. [DOI: 10.1016/j.neuint.2013.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 01/06/2013] [Indexed: 01/24/2023]
|
33
|
High-frequency EEG oscillations in hyperthermia-induced seizures of Scn1a mutant rats. Epilepsy Res 2012; 103:161-6. [PMID: 22920678 DOI: 10.1016/j.eplepsyres.2012.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
Abstract
We examined high-frequency oscillations (HFOs) in the ictal cortical EEGs of hyperthermia-induced seizures in a rat model of febrile seizures with an SCN1A mutation as a means of investigating the pathophysiological mechanisms underlying the generation of febrile seizures. We used 13 male homozygous Scn1a-N1417H mutant rats (F344/NSlc-Scn1a(Kyo811)) and 10 wild-type control rats. Generalized tonic-clonic seizures were induced in all mutant rats, and HFOs with frequencies ranging from 200 to 400 Hz were found to precede spikes during the clonic phases of these seizures in the ictal EEGs. The proportion of all spikes in each seizure that were associated with HFOs increased with age. In time-frequency spectra of the EEG data, the HFOs had a mean peak frequency of 301.1 ± 65.4 Hz (range: 156.3-468.8Hz) and a mean peak power of 24.6 ± 3.8 dB (range: 11.4-33.4 dB); the peak power increased with age. Regarding the wild-type rats, a brief seizure without unmistakable HFOs was exceptionally induced in only one rat. The generation mechanism of febrile seizures is still an unanswered question. The detection of HFOs from the ictal EEGs of hyperthermia-induced seizures may provide a cue to answering this open question, although in this research we were unable to provide sufficient evidence to prove that the generation of HFOs depended on the mutation.
Collapse
|
34
|
Abstract
The axon initial segment (AIS), with its dense clusters of voltage-gated ion channels decorating the axonal membrane, regulates action potential initiation and modulation. The AIS also functions as a barrier to maintain axodendritic polarity, and its precise axonal location contributes to the fine-tuning of neuronal excitability. Therefore, it is not surprising that mutations in AIS-related genes, disruption of the molecular organization of the AIS and altered AIS ion channel expression, function, location and/or density are emerging as key players in neurological disorders. Here, we consider the role of the AIS in nervous system disease and injury.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, BCM295, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Bender AC, Morse RP, Scott RC, Holmes GL, Lenck-Santini PP. SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav 2012; 23:177-86. [PMID: 22341965 PMCID: PMC3307886 DOI: 10.1016/j.yebeh.2011.11.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/26/2011] [Accepted: 11/27/2011] [Indexed: 12/22/2022]
Abstract
Dravet syndrome (DS) is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment. Animal studies have revealed new insights into the mechanisms by which mutations in this gene, encoding the type I voltage-gated sodium channel (Na(v)1.1), may lead to seizure activity and cognitive dysfunction. In this review, we further consider the function of fast-spiking GABAergic neurons, one cell type particularly affected by these mutations, in the context of the temporal coordination of neural activity subserving cognitive functions. We hypothesize that disruptions in GABAergic firing may directly contribute to the poor cognitive outcomes in children with DS, and discuss the therapeutic implications of this possibility.
Collapse
Affiliation(s)
- Alex C Bender
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, NH 03756, USA.
| | | | | | | | | |
Collapse
|
36
|
Hypercholesterolemia and atherosclerosis in low density lipoprotein receptor mutant rats. Biochem Biophys Res Commun 2012; 418:553-8. [PMID: 22293196 DOI: 10.1016/j.bbrc.2012.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.
Collapse
|
37
|
Ishida S, Sakamoto Y, Nishio T, Baulac S, Kuwamura M, Ohno Y, Takizawa A, Kaneko S, Serikawa T, Mashimo T. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res 2011; 1435:154-66. [PMID: 22206926 DOI: 10.1016/j.brainres.2011.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022]
Abstract
Mutations in the KCNA1 gene, which encodes for the α subunit of the voltage-gated potassium channel Kv1.1, cause episodic ataxia type 1 (EA1). EA1 is a dominant human neurological disorder characterized by variable phenotypes of brief episodes of ataxia, myokymia, neuromyotonia, and associated epilepsy. Animal models for EA1 include Kcna1-deficient mice, which recessively display severe seizures and die prematurely, and V408A-knock-in mice, which dominantly exhibit stress-induced loss of motor coordination. In the present study, we have identified an N-ethyl-N-nitrosourea-mutagenized rat, named autosomal dominant myokymia and seizures (ADMS), with a missense mutation (S309T) in the voltage-sensor domain, S4, of the Kcna1 gene. ADMS rats dominantly exhibited myokymia, neuromyotonia and generalized tonic-clonic seizures. They also showed cold stress-induced tremor, neuromyotonia, and motor incoordination. Expression studies of homomeric and heteromeric Kv1.1 channels in HEK cells and Xenopus oocytes, showed that, although S309T channels are transferred to the cell membrane surface, they remained non-functional in terms of their biophysical properties, suggesting a dominant-negative effect of the S309T mutation on potassium channel function. ADMS rats provide a new model, distinct from previously reported mouse models, for studying the diverse functions of Kv1.1 in vivo, as well as for understanding the pathology of EA1.
Collapse
Affiliation(s)
- Saeko Ishida
- Institute of Laboratory animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dwinell MR, Lazar J, Geurts AM. The emerging role for rat models in gene discovery. Mamm Genome 2011; 22:466-75. [PMID: 21732192 DOI: 10.1007/s00335-011-9346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/04/2011] [Indexed: 12/17/2022]
Abstract
Rat models have been used for many decades to study physiological and pathophysiological mechanisms. Prior to the release of the rat genome and new technologies for targeting gene manipulation, the rat had been the underdog in the genomics era, despite the abundance of physiological data compared to the mouse. The overarching goal of biomedical research is to improve health and advance medical science. Translating human disease gene discovery and validation in the rat, through the use of emerging technologies and integrated tools and databases, is providing power to understand the genetics, environmental influences, and biology of disease. In this review we briefly outline the rat models, bioinformatics tools, and technologies that are changing the landscape of translational research. The strategies used to translate disease traits to genes to function, and, ultimately, to improve human health is discussed. Finally, our perspective on how rat models will continue to positively impact biomedical research is provided.
Collapse
Affiliation(s)
- Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | |
Collapse
|
39
|
Hayashi K, Ueshima S, Ouchida M, Mashimo T, Nishiki T, Sendo T, Serikawa T, Matsui H, Ohmori I. Therapy for hyperthermia-induced seizures in Scn1a mutant rats. Epilepsia 2011; 52:1010-7. [PMID: 21480876 DOI: 10.1111/j.1528-1167.2011.03046.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Mutations in the SCN1A gene, which encodes the α1 subunit of voltage-gated sodium channels, cause generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). N1417H-Scn1a mutant rats are considered to be an animal model of human FS+ or GEFS+. To assess the pharmacologic validity of this model, we compared the efficacies of eight different antiepileptic drugs (AEDs) for the treatment of hyperthermia-induced seizures using N1417H-Scn1a mutant rats. METHODS AEDs used in this study included valproate, carbamazepine (CBZ), phenobarbital, gabapentin, acetazolamide, diazepam (DZP), topiramate, and potassium bromide (KBr). The effects of these AEDs were evaluated using the hot water model, which is a model of experimental FS. Five-week-old rats were pretreated with each AED and immersed in water at 45°C to induce hyperthermia-induced seizures. The seizure manifestations and video-electroencephalographic recordings were evaluated. Furthermore, the effects of each AED on motor coordination and balance were assessed using the balance-beam test. KEY FINDINGS KBr significantly reduced seizure durations, and its anticonvulsant effects were comparable to those of DZP. On the other hand, CBZ decreased the seizure threshold. In addition, DZP and not KBr showed significant impairment in motor coordination and balance. SIGNIFICANCE DZP and KBr showed potent inhibitory effects against hyperthermia-induced seizures in the Scn1a mutant rats, whereas CBZ exhibited adverse effects. These responses to hyperthermia-induced seizures were similar to those in patients with GEFS+ and SMEI. N1417H-Scn1a mutant rats may, therefore, be useful for testing the efficacy of new AEDs against FS in GEFS+ and SMEI patients.
Collapse
Affiliation(s)
- Keiichiro Hayashi
- Department of Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McClelland S, Dubé CM, Yang J, Baram TZ. Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities. Neurosci Lett 2011; 497:155-62. [PMID: 21356275 DOI: 10.1016/j.neulet.2011.02.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
Abstract
Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE.
Collapse
Affiliation(s)
- Shawn McClelland
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.
Collapse
Affiliation(s)
- Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
43
|
Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T. Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 2010; 41:261-9. [PMID: 20875856 DOI: 10.1016/j.nbd.2010.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/15/2010] [Accepted: 09/19/2010] [Indexed: 11/29/2022] Open
Abstract
Mutations of the voltage-gated sodium (Na(v)) channel subunit SCN1A have been implicated in the pathogenesis of human febrile seizures including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). Hyperthermia-induced seizure-susceptible (Hiss) rats are the novel rat model carrying a missense mutation (N1417H) of Scn1a, which is located in the third pore-forming region of the Na(v)1.1 channel. Here, we conducted behavioral and neurochemical studies to clarify the functional relevance of the Scn1a mutation in vivo and the mechanism underlying the vulnerability to hyperthermic seizures. Hiss rats showed markedly high susceptibility to hyperthermic seizures (mainly generalized clonic seizures) which were synchronously associated with paroxysmal epileptiform discharges. Immunohistochemical analysis of brain Fos expression revealed that hyperthermic seizures induced a widespread elevation of Fos-immunoreactivity in the cerebral cortices including the motor area, piriform, and insular cortex. In the subcortical regions, hyperthermic seizures enhanced Fos expression region--specifically in the limbic and paralimbic regions (e.g., hippocampus, amygdala, and perirhinal-entorhinal cortex) without affecting other brain regions (e.g., basal ganglia, diencephalon, and lower brainstem), suggesting a primary involvement of limbic system in the induction of hyperthermic seizures. In addition, Hiss rats showed a significantly lower threshold than the control animals in inducing epileptiform discharges in response to local stimulation of the hippocampus (hippocampal afterdischarges). Furthermore, hyperthermic seizures in Hiss rats were significantly alleviated by the antiepileptic drugs, diazepam and sodium valproate, while phenytoin or ethosuximide were ineffective. The present findings support the notion that Hiss rats are useful as a novel rat model of febrile seizures and suggest that hyperexcitability of limbic neurons associated with Scn1a missense mutation plays a crucial role in the pathogenesis of febrile seizures.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mantegazza M, Rusconi R, Scalmani P, Avanzini G, Franceschetti S. Epileptogenic ion channel mutations: from bedside to bench and, hopefully, back again. Epilepsy Res 2010; 92:1-29. [PMID: 20828990 DOI: 10.1016/j.eplepsyres.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 07/30/2010] [Accepted: 08/08/2010] [Indexed: 01/21/2023]
Abstract
Mutations of genes coding for ion channels cause several genetically determined human epileptic syndromes. The identification of a gene variant linked to a particular disease gives important information, but it is usually necessary to perform functional studies in order to completely disclose the pathogenic mechanisms. The functional consequences of epileptogenic mutations have been studied both in vitro and in vivo with several experimental systems, studies that have provided significant knowledge on the pathogenic mechanisms that leads to inherited human epilepsies, and possibly also on the pathogenic mechanisms of non-genetic human epilepsies due to "acquired channelopathies". However, several open issues remain and difficulties in the interpretation of the experimental data have arisen that limit translational applications. We will highlight the value and the limits of different approaches to the study of epileptogenic channelopathies, focussing on the importance of the experimental systems in the assessment of the functional effects of the mutations and on the possible applications of the obtained results to the clinical practice.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097 and University of Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
45
|
Ohno Y, Sofue N, Ishihara S, Mashimo T, Sasa M, Serikawa T. Scn1a missense mutation impairs GABAA receptor-mediated synaptic transmission in the rat hippocampus. Biochem Biophys Res Commun 2010; 400:117-22. [PMID: 20707984 DOI: 10.1016/j.bbrc.2010.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 02/07/2023]
Abstract
Mutations of the Na(v)1.1 channel subunit SCN1A have been implicated in the pathogenesis of human febrile seizures (FS). We have recently developed hyperthermia-induced seizure-susceptible (Hiss) rat, a novel rat model of FS, which carries a missense mutation (N1417H) in Scn1a[1]. Here, we conducted electrophysiological studies to clarify the influences of the Scn1a mutation on the hippocampal synaptic transmission, specifically focusing on the GABAergic system. Hippocampal slices were prepared from Hiss or F344 (control) rats and maintained in artificial cerebrospinal fluid saturated with 95% O(2) and 5% CO(2)in vitro. Single neuron activity was recorded from CA1 pyramidal neurons and their responses to the test (unconditioned) or paired pulse (PP) stimulation of the Schaffer collateral/commissural fibers were evaluated. Hiss rats were first tested for pentylenetetrazole-induced seizures and confirmed to show high seizure susceptibility to the blockade of GAGA(A) receptors. The Scn1a mutation in Hiss rats did not directly affect spike generation (i.e., number of evoked spikes and firing threshold) of the CA1 pyramidal neurons elicited by the Schaffer collateral/commissural stimulation. However, GABA(A) receptor-mediated inhibition of pyramidal neurons by the PP stimulation was significantly disrupted in Hiss rats, yielding a significant increase in the number of PP-induced firings at PP intervals of 32-256ms. The present study shows that the Scn1a missense mutation preferentially impairs GABA(A) receptor-mediated synaptic transmission without directly altering the excitability of the pyramidal neurons in the hippocampus, which may be linked to the pathogenesis of FS.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Yang JJ, Yang Z, Zhang T. Action potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine. Toxicol Lett 2010; 198:171-6. [PMID: 20599599 DOI: 10.1016/j.toxlet.2010.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 11/30/2022]
Abstract
Since the melamine-contamination event happened in September 2008, there have been lots of studies about melamine toxicity, but very limited studies focused on central nervous system (CNS). In the present study, we investigated the effects of melamine (5x10(-4), 5x10(-5) and 5x10(-6)g/ml) on voltage-gated sodium channels (VGSCs) in hippocampal CA1 neurons using whole-cell patch-clamp recordings technique. The results showed that only 5x10(-4)g/ml melamine reduced the amplitude of voltage-gated sodium current (I(Na)). At the concentrations of 5x10(-5) and 5x10(-4)g/ml, melamine produced a hyperpolarizing shift in the steady-state activation curve of I(Na) and also enhanced the steady-state inactivate processing of I(Na). Action potential properties and the pattern of repetitive firing were examined using current-clamp recording, which indicated that peak amplitude and overshoot of the evoked single action potential were decreased. The half-width and the firing rate of repetitive firing were increased in a concentration-dependent manner. The data suggest that melamine alters the action potential of hippocampal CA1 neurons by impairing the functional properties of VGSCs, which may be the underlie mechanisms of neurotoxicity induced by melamine.
Collapse
Affiliation(s)
- Jia-Jia Yang
- College of Life Science, Nankai University, 94 Weijin Rd, Nankai District, Tianjin 300071, PR China
| | | | | |
Collapse
|
47
|
Ohno Y, Sofue N, Imaoku T, Morishita E, Kumafuji K, Sasa M, Serikawa T. Serotonergic Modulation of Absence-Like Seizures in Groggy Rats: a Novel Rat Model of Absence Epilepsy. J Pharmacol Sci 2010; 114:99-105. [DOI: 10.1254/jphs.10156fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|