1
|
McElroy DL, Sabir H, Glass AE, Greba Q, Howland JG. The anterior retrosplenial cortex is required for short-term object in place recognition memory retrieval: Role of ionotropic glutamate receptors in male and female Long-Evans rats. Eur J Neurosci 2024; 59:2260-2275. [PMID: 38411499 DOI: 10.1111/ejn.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.
Collapse
Affiliation(s)
- Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hassaan Sabir
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
3
|
Eldridge MAG, Hines BE, Murray EA. The visual prefrontal cortex of anthropoids: interaction with temporal cortex in decision making and its role in the making of "visual animals". Curr Opin Behav Sci 2021; 41:22-29. [PMID: 33796638 PMCID: PMC8009333 DOI: 10.1016/j.cobeha.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ventral prefrontal cortex (PFC) of primates-a region strongly implicated in decision making-receives highly processed visual sensory inputs from the inferior temporal cortex (ITC) and perirhinal cortex (PRC) and can therefore be considered visual PFC. Usually, the functions of temporal cortex and visual PFC have been discussed in separate literatures. By considering them together, we aim to clarify the ways in which fronto-temporal networks guide decision making. After discussing the ways in which visual PFC interacts with temporal cortex to promote decision making, we offer specific predictions about the selective roles of the ITC- and PRC-based fronto-temporal networks. Finally, we suggest that an increased reliance on visual PFC in anthropoid primates led to our emergence as 'visual' animals.
Collapse
Affiliation(s)
- Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Brendan E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Onishi K, Kikuchi SS, Abe T, Tokuhara T, Shimogori T. Molecular cell identities in the mediodorsal thalamus of infant mice and marmoset. J Comp Neurol 2021; 530:963-977. [PMID: 34184265 PMCID: PMC8714865 DOI: 10.1002/cne.25203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022]
Abstract
The mediodorsal thalamus (MD) is a higher-order nucleus located within the central thalamus in many mammalian species. Emerging evidence from MD lesions and tracer injections suggests that the MD is reciprocally connected to the prefrontal cortex (PFC) and plays an essential role in specific cognitive processes and tasks. MD subdivisions (medial, central, and lateral) are poorly segregated at the molecular level in rodents, leading to a lack of MD subdivision-specific Cre driver mice. Moreover, this lack of molecular identifiers hinders MD subdivision- and cell-type-specific circuit formation and function analysis. Therefore, using publicly available databases, we explored molecules separately expressed in MD subdivisions. In addition to MD subdivision markers, we identified several genes expressed in a subdivision-specific combination and classified them. Furthermore, after developing medial MD (MDm) or central MD (MDc) region-specific Cre mouse lines, we identified diverse region- and layer-specific PFC projection patterns. Comparison between classified MD marker genes in mice and common marmosets, a nonhuman primate model, revealed diverging gene expression patterns. These results highlight the species-specific organization of cell types and their projections in the MD thalamus.
Collapse
Affiliation(s)
- Kohei Onishi
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Tomoko Tokuhara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| |
Collapse
|
5
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
6
|
Pelekanos V, Premereur E, Mitchell DJ, Chakraborty S, Mason S, Lee ACH, Mitchell AS. Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. J Neurosci 2020; 40:7887-7901. [PMID: 32900835 PMCID: PMC7548693 DOI: 10.1523/jneurosci.0364-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Subhojit Chakraborty
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
7
|
Barker GR, Wong LF, Uney JB, Warburton EC. CREB transcription in the medial prefrontal cortex regulates the formation of long-term associative recognition memory. ACTA ACUST UNITED AC 2020; 27:45-51. [PMID: 31949036 PMCID: PMC6970425 DOI: 10.1101/lm.050021.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023]
Abstract
The medial prefrontal cortex (mPFC) is known to be critical for specific forms of long-term recognition memory, however the cellular mechanisms in the mPFC that underpin memory maintenance have not been well characterized. This study examined the importance of phosphorylation of cAMP responsive element binding protein (CREB) in the mPFC for different forms of long-term recognition memory in the rat. Adenoviral transduction of the mPFC with a dominant-negative inhibitor of CREB impaired object-in-place memory following a 6 or 24 h retention delay, but no impairment was observed following delays of 5 min or 3 h. Long-term object temporal order memory and spatial temporal order memory was also impaired. In contrast, there were no impairments in novel object recognition or object location memory. These results establish, for the first time, the importance of CREB phosphorylation within the mPFC for memory of associative and temporal information crucial to recognition.
Collapse
Affiliation(s)
- Gareth Robert Barker
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Liang Fong Wong
- School of Translational Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - James B Uney
- School of Translational Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Elizabeth C Warburton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
8
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Altered modulation of beta band oscillations during memory encoding is predictive of lower subsequent recognition performance in post-traumatic stress disorder. Neuroimage Clin 2019; 25:102154. [PMID: 31951934 PMCID: PMC6965746 DOI: 10.1016/j.nicl.2019.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022]
Abstract
We studied the relationship between electrophysiological markers of memory encoding, subsequent recognition performance, and severity of PTSD symptoms in service members with combat exposure (n = 40, age: 41.2 ± 7.2 years) and various levels of PTSD symptom severity assessed using the PTSD Check List for DSM V version (PCL-5). Brain activity was recorded using magnetoencephalography during a serial presentation of 86 images of outdoor scenes that were studied by participants for an upcoming recognition test. In a second session, the original images were shown intermixed with an equal number of novel images while participants performed the recognition task. Participants recognized 76.0% ± 12.1% of the original images and correctly categorized as novel 89.9% ± 7.0% of the novel images. A negative correlation was present between PCL-5 scores and discrimination performance (Spearman rs = -0.38, p = 0.016). PCL-5 scores were also negatively correlated with the recognition accuracy for original images (rs = -0.37, p = 0.02). Increases in theta and gamma power and decreases in alpha and beta power were observed over distributed brain networks during memory encoding. Higher PCL-5 scores were associated with less suppression of beta band power in bilateral ventral and medial temporal regions and in the left orbitofrontal cortex. These regions also showed positive correlations between the magnitude of suppression of beta power during encoding and subsequent recognition accuracy. These findings indicate that the lower recognition performance in participants with greater PTSD symptom severity may be due in part to ineffective encoding reflected in altered modulation of beta band oscillatory activity.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; Behavioral Biology Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, United States.
| |
Collapse
|
9
|
Chakraborty S, Ouhaz Z, Mason S, Mitchell AS. Macaque parvocellular mediodorsal thalamus: dissociable contributions to learning and adaptive decision-making. Eur J Neurosci 2018; 49:1041-1054. [PMID: 30022540 PMCID: PMC6519510 DOI: 10.1111/ejn.14078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Distributed brain networks govern adaptive decision‐making, new learning and rapid updating of information. However, the functional contribution of the rhesus macaque monkey parvocellular nucleus of the mediodorsal thalamus (MDpc) in these key higher cognitive processes remains unknown. This study investigated the impact of MDpc damage in cognition. Preoperatively, animals were trained on an object‐in‐place scene discrimination task that assesses rapid learning of novel information within each session. Bilateral neurotoxic (NMDA and ibotenic acid) MDpc lesions did not impair new learning unless the monkey had also sustained damage to the magnocellular division of the MD (MDmc). Contralateral unilateral MDpc and MDmc damage also impaired new learning, while selective unilateral MDmc damage produced new learning deficits that eventually resolved with repeated testing. In contrast, during food reward (satiety) devaluation, monkeys with either bilateral MDpc damage or combined MDpc and MDmc damage showed attenuated food reward preferences compared to unoperated control monkeys; the selective unilateral MDmc damage left performance intact. Our preliminary results demonstrate selective dissociable roles for the two adjacent nuclei of the primate MD, namely, MDpc, as part of a frontal cortical network, and the MDmc, as part of a frontal‐temporal cortical network, in learning, memory and the cognitive control of behavioural choices after changes in reward value. Moreover, the functional cognitive deficits produced after differing MD damage show that the different subdivisions of the MD thalamus support distributed neural networks to rapidly and fluidly incorporate task‐relevant information, in order to optimise the animals’ ability to receive rewards.
Collapse
Affiliation(s)
- Subhojit Chakraborty
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Zakaria Ouhaz
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
10
|
Baxter MG, Santistevan AC, Bliss-Moreau E, Morrison JH. Timing of cyclic estradiol treatment differentially affects cognition in aged female rhesus monkeys. Behav Neurosci 2018; 132:213-223. [PMID: 29952604 PMCID: PMC6062474 DOI: 10.1037/bne0000259] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some evidence suggests that there may be a limited "window of opportunity" for beneficial effects of hormone therapy after menopause in women. We tested whether the timing of cyclic estradiol (E2) treatment impacted its effect on cognitive function in aged, surgically menopausal (ovariectomized) rhesus monkeys. Monkeys were assigned to one of four treatment conditions after ovariectomy: either vehicle or E2 treatment for the duration of the protocol, vehicle for the first 2 years of the protocol followed by E2 for the remainder (delayed treatment), or E2 for the first 11 months of the protocol followed by vehicle for the remainder (withdrawn treatment). Delayed treatment addressed the hypothesis that E2 treatment initiated more than 2 years postovariectomy would have a reduced effect on cognitive function. Withdrawn treatment mirrored current clinical advice to women to use hormone therapy in the initial postmenopausal period then discontinue it. Two periods of cognitive testing assessed treatment effects on cognition over time. E2 treatment predominantly affected a prefrontal cortex-dependent test of spatiotemporal working memory (delayed response). Monkeys with delayed E2 treatment modestly improved in delayed response performance over time, whereas vehicle-treated monkeys declined. Monkeys with withdrawn E2 treatment maintained their performance across assessments, as did monkeys treated with E2 across the entire protocol. These findings suggest that a "window of opportunity" for hormone treatment after cessation of ovarian function, if present in nonhuman primates, lasts longer than 2 years. They also support the notion that beneficial effects of hormone therapy may persist after discontinuation of treatment. (PsycINFO Database Record
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Anthony C Santistevan
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| | - John H Morrison
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| |
Collapse
|
11
|
Bell AH, Bultitude JH. Methods matter: A primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia 2018; 115:211-219. [PMID: 28943365 PMCID: PMC6018620 DOI: 10.1016/j.neuropsychologia.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/05/2022]
Abstract
The study of patients with brain lesions has contributed greatly to our understanding of the biological bases of human cognition, but this approach also has several unavoidable limitations. Research that uses animal models complements and extends human neuropsychology by addressing many of these limitations. In this review, we provide an overview of permanent and reversible animal lesion techniques for researchers of human neuropsychology, with the aim of highlighting how these methods provide a valuable adjunct to behavioural, neuroimaging, physiological, and clinical investigations in humans. Research in animals has provided important lessons about how the limitations of one or more techniques, or differences in their mechanism of action, has impacted upon the understanding of brain organisation and function. These cautionary tales highlight the importance of striving for a thorough understanding of how any intereference technique works (whether in animal or human), and for how to best use animal research to clarify the precise mechanisms underlying temporary lesion methods in humans.
Collapse
Affiliation(s)
- Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Janet H Bultitude
- Department of Psychology, University of Bath, Bath, UK; Centre for Pain Research, University of Bath, Bath, UK; The Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Chakraborty S, Kolling N, Walton ME, Mitchell AS. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments. eLife 2016; 5. [PMID: 27136677 PMCID: PMC4887209 DOI: 10.7554/elife.13588] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/01/2016] [Indexed: 11/13/2022] Open
Abstract
Adaptive decision-making uses information gained when exploring alternative options to decide whether to update the current choice strategy. Magnocellular mediodorsal thalamus (MDmc) supports adaptive decision-making, but its causal contribution is not well understood. Monkeys with excitotoxic MDmc damage were tested on probabilistic three-choice decision-making tasks. They could learn and track the changing values in object-reward associations, but they were severely impaired at updating choices after reversals in reward contingencies or when there were multiple options associated with reward. These deficits were not caused by perseveration or insensitivity to negative feedback though. Instead, monkeys with MDmc lesions exhibited an inability to use reward to promote choice repetition after switching to an alternative option due to a diminished influence of recent past choices and the last outcome to guide future behavior. Together, these data suggest MDmc allows for the rapid discovery and persistence with rewarding options, particularly in uncertain or changing environments. DOI:http://dx.doi.org/10.7554/eLife.13588.001 A small structure deep inside the brain, called the mediodorsal thalamus, is a critical part of a brain network that is important for learning new information and making decisions. However, the exact role of this brain area is still not understood, and there is little evidence showing that this area is actually needed to make the best choices. To explore the role of this area further, Chakraborty et al. trained macaque monkeys to choose between three colorful objects displayed on a touchscreen that was controlled by a computer. Some of their choices resulted in the monkeys getting a tasty food pellet as a reward. However the probability of receiving a reward changed during testing, and in some cases, reversed, meaning that the highest rewarded object was no longer rewarded when chosen and vice versa. While at first the monkeys did not know which choice was the right one, they quickly learned and changed their choices during the test according to which option resulted in them receiving the most reward. Next, the mediodorsal thalamus in each monkey was damaged and the tests were repeated. Previous research had suggested that such damage might result in animals repeatedly choosing the same option, even though it is clearly the wrong choice. However, Chakraborty et al. showed that it is not as simple as that. Instead monkeys with damage to the mediodorsal thalamus could make different choices but they struggled to use information from their most recent choices to best guide their future behavior. Specifically, the pattern of the monkeys’ choices suggests that the mediodorsal thalamus helps to quickly link recent choices that resulted in a reward in order to allow an individual to choose the best option as their next choice. Further studies are now needed to understand the messages that are relayed between the mediodorsal thalamus and interconnected areas during this rapid linking of recent choices, rewards and upcoming decisions. This will help reveal how these brain areas support normal thought processes and how these processes might be altered in mental health disorders involving learning information and making decisions. DOI:http://dx.doi.org/10.7554/eLife.13588.002
Collapse
Affiliation(s)
| | - Nils Kolling
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Mark E Walton
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
13
|
Browning PGF, Chakraborty S, Mitchell AS. Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques. Cereb Cortex 2015; 25:4519-34. [PMID: 25979086 PMCID: PMC4816796 DOI: 10.1093/cercor/bhv093] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is proposed that mediodorsal thalamus contributes to cognition via interactions with prefrontal cortex. However, there is relatively little evidence detailing the interactions between mediodorsal thalamus and prefrontal cortex linked to cognition in primates. This study investigated these interactions during learning, memory, and decision-making tasks in rhesus monkeys using a disconnection lesion approach. Preoperatively, monkeys learned object-in-place scene discriminations embedded within colorful visual backgrounds. Unilateral neurotoxic lesions to magnocellular mediodorsal thalamus (MDmc) impaired the ability to learn new object-in-place scene discriminations. In contrast, unilateral ablations to ventrolateral and orbital prefrontal cortex (PFv+o) left learning intact. A second unilateral MDmc or PFv+o lesion in the contralateral hemisphere to the first operation, causing functional MDmc–PFv+o disconnection across hemispheres, further impaired learning object-in-place scene discriminations, although object discrimination learning remained intact. Adaptive decision-making after reward satiety devaluation was also reduced. These data highlight the functional importance of interactions between MDmc and PFv+o during learning object-in-place scene discriminations and adaptive decision-making but not object discrimination learning. Moreover, learning deficits observed after unilateral removal of MDmc but not PFv+o provide direct behavioral evidence of the MDmc role influencing more widespread regions of the frontal lobes in cognition.
Collapse
Affiliation(s)
- Philip G F Browning
- Glickenhaus Laboratory of Neuropsychology and Friedman Brain Institute, Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Subhojit Chakraborty
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| |
Collapse
|
14
|
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 2015; 54:76-88. [PMID: 25757689 DOI: 10.1016/j.neubiorev.2015.03.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/21/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Recent evidence from monkey models of cognition shows that the magnocellular subdivision of the mediodorsal thalamus (MDmc) is more critical for learning new information than for retention of previously acquired information. Further, consistent evidence in animal models shows the mediodorsal thalamus (MD) contributes to adaptive decision-making. It is assumed that prefrontal cortex (PFC) and medial temporal lobes govern these cognitive processes so this evidence suggests that MD contributes a role in these cognitive processes too. Anatomically, the MD has extensive excitatory cortico-thalamo-cortical connections, especially with the PFC. MD also receives modulatory inputs from forebrain, midbrain and brainstem regions. It is suggested that the MD is a higher order thalamic relay of the PFC due to the dual cortico-thalamic inputs from layer V ('driver' inputs capable of transmitting a message) and layer VI ('modulator' inputs) of the PFC. Thus, the MD thalamic relay may support the transfer of information across the PFC via this indirect thalamic route. This review summarizes the current knowledge about the anatomy of MD as a higher order thalamic relay. It also reviews behavioral and electrophysiological studies in animals to consider how MD might support the transfer of information across the cortex during learning and decision-making. Current evidence suggests the MD is particularly important during rapid trial-by-trial associative learning and decision-making paradigms that involve multiple cognitive processes. Further studies need to consider the influence of the MD higher order relay to advance our knowledge about how the cortex processes higher order cognition.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
15
|
Abstract
Brodmann's area 10 is one of the largest cytoarchitecturally defined regions in the human cerebral cortex, occupying the most anterior part of the prefrontal cortex [frontopolar cortex (FPC)], and is believed to sit atop a prefrontal hierarchy. The crucial contributions that the FPC makes to cognition are unknown. Rodents do not possess such [corrected] a FPC, but primates do, and we report here the behavioral effects of circumscribed FPC lesions in nonhuman primates. FPC lesions selectively impaired rapid one-trial learning about unfamiliar objects and unfamiliar objects-in-scenes, and also impaired rapid learning about novel abstract rules. Object recognition memory, shifting between established abstract behavioral rules, and the simultaneous application of two distinct rules were unaffected by the FPC lesion. The distinctive pattern of impaired and spared performance across these seven behavioral tasks reveals that the FPC mediates exploration and rapid learning about the relative value of novel behavioral options, and shows that the crucial contributions made by the FPC to cognition differ markedly from the contributions of other primate prefrontal regions.
Collapse
|
16
|
Testing long-term memory in animal models of schizophrenia: Suggestions from CNTRICS. Neurosci Biobehav Rev 2013; 37:2141-8. [DOI: 10.1016/j.neubiorev.2013.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/30/2013] [Accepted: 06/10/2013] [Indexed: 12/27/2022]
|
17
|
Baxter MG. Mediodorsal thalamus and cognition in non-human primates. Front Syst Neurosci 2013; 7:38. [PMID: 23964206 PMCID: PMC3734369 DOI: 10.3389/fnsys.2013.00038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits.
Collapse
Affiliation(s)
- Mark G Baxter
- Glickenhaus Laboratory of Neuropsychology, Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
18
|
Lee I, Lee CH. Contextual behavior and neural circuits. Front Neural Circuits 2013; 7:84. [PMID: 23675321 PMCID: PMC3650478 DOI: 10.3389/fncir.2013.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/14/2013] [Indexed: 11/13/2022] Open
Abstract
Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item–response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item–response selection takes place whereby the animal either chooses an item or inhibits such a response depending on item–context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for contextual behavior.
Collapse
Affiliation(s)
- Inah Lee
- Behavioral Neurophysiology Laboratory, Department of Brain and Cognitive Sciences, Seoul National University Seoul, South Korea
| | | |
Collapse
|
19
|
A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap. Neurobiol Aging 2013; 34:1891-901. [PMID: 23434040 DOI: 10.1016/j.neurobiolaging.2013.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease.
Collapse
|
20
|
Abstract
Orbitofrontal cortex (OFC) function is often characterized in terms of stimulus-reward mapping; however, more recent evidence suggests that the OFC may play a role in selecting and representing extended actions. First, previously encoded reward associations in the OFC could be used to inform responding in novel but similar situations. Second, when evaluated in tasks requiring the animal to perform extended actions, response selective activity can be recorded in the OFC. Finally, the interaction between the OFC and hippocampus illustrates OFC's role in response selection. The OFC may facilitate reward-guided memory retrieval by selecting the memories most relevant to achieve a goal. This model for OFC function places it within the hierarchy of increasingly complex action representations that support decision making.
Collapse
Affiliation(s)
- James J Young
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
21
|
Walton ME, Behrens TEJ, Noonan MP, Rushworth MFS. Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. Ann N Y Acad Sci 2012; 1239:14-24. [PMID: 22145871 DOI: 10.1111/j.1749-6632.2011.06257.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The orbitofrontal cortex (OFC) has long been implicated in aspects of learning and adaptive decision making in changeable environments, but its precise role has remained elusive. One potential reason is that anatomical and functional distinctions within the OFC have often been overlooked. Here, we review findings centered largely on recent lesion studies in macaque monkeys from our laboratories that have investigated the causal role of the lateral and medial parts of the OFC (LOFC and MOFC) in choice behavior in uncertain, multioption environments. MOFC appears necessary for focusing attention on only the relevant decision variables to achieve a goal. By contrast, LOFC is required to allow rapid learning in changeable environments by enabling the credit for a particular outcome to be assigned to a specific choice.
Collapse
Affiliation(s)
- Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Matsuyama N, Uwano T, Hori E, Ono T, Nishijo H. Reward Contingency Modulates Neuronal Activity in Rat Septal Nuclei during Elemental and Configural Association Tasks. Front Behav Neurosci 2011; 5:26. [PMID: 21633493 PMCID: PMC3100519 DOI: 10.3389/fnbeh.2011.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that septal nuclei are important in the control of behavior during various reward and non-reward situations. In the present study, neuronal activity was recorded from rat septal nuclei during discrimination of conditioned sensory stimuli (CSs) of the medial forebrain bundle associated with or without a reward (sucrose solution or intracranial self-stimulation, ICSS). Rats were trained to lick a spout protruding close to the mouth just after a CS to obtain a reward stimulus. The CSs included both elemental and configural stimuli. In the configural condition, the reward contingency of the stimuli presented together was opposite to that of each elemental stimulus presented alone, although the same sensory stimuli were involved. Of the 72 responsive septal neurons, 18 responded selectively to the CSs predicting reward (CS(+)-related), four to the CSs predicting non-reward (CS(0)-related), nine to some CSs predicting reward or non-reward, and 15 non-differentially to all CSs. The remaining 26 neurons responded mainly during the ingestion/ICSS phase. A multivariate analysis of the septal neuronal responses to elemental and configural stimuli indicated that septal neurons encoded the CSs based on reward contingency, regardless of the stimulus physical properties and were categorized into three groups; CSs predicting the sucrose solution, CSs predicting a non-reward, and CSs predicting ICSS. The results suggest that septal nuclei are deeply involved in discriminating the reward contingency of environmental stimuli to manifest appropriate behaviors in response to changing stimuli.
Collapse
Affiliation(s)
- Nozomu Matsuyama
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
- Department of Neurosurgery, Faculty of Medicine, Kagoshima UniversityKagoshima, Japan
| | - Teruko Uwano
- Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Taketoshi Ono
- Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| |
Collapse
|
23
|
Rygula R, Walker SC, Clarke HF, Robbins TW, Roberts AC. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. J Neurosci 2010; 30:14552-9. [PMID: 20980613 PMCID: PMC3044865 DOI: 10.1523/jneurosci.2631-10.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 09/03/2010] [Accepted: 09/13/2010] [Indexed: 11/21/2022] Open
Abstract
The discrimination reversal paradigm is commonly used to measure a subject's ability to adapt their behavior according to changes in stimulus-reward contingencies. Human functional neuroimaging studies have demonstrated activations in the lateral orbitofrontal cortex (OFC) and the inferior frontal gyrus (IFG) in subjects performing this task. Excitotoxic lesions of analogous regions in marmosets have revealed, however, that although the OFC is indeed critical for reversal learning, ventrolateral prefrontal cortex (VLPFC) (analogous to IFG) is not, contributing instead to higher order processing, such as that required in attentional set-shifting and strategy transfer. One major difference between the marmoset and human studies has been the level of training subjects received in reversal learning, being far greater in the latter. Since exposure to repeated contingency changes, as occurs in serial reversal learning, is likely to trigger the development of higher order, rule-based strategies, we hypothesized a critical role of the marmoset VLPFC in performance of a serial reversal learning paradigm. After extensive training in reversal learning, marmosets received an excitotoxic lesion of the VLPFC, OFC, or a sham control procedure. In agreement with our prediction, postsurgery, VLPFC lesioned animals were impaired in performing a series of discrimination reversals, but only when novel visual stimuli were introduced. In contrast, OFC lesioned animals were impaired regardless of whether the visual stimuli were the same or different from those used during presurgery training. Together, these data demonstrate the heterogeneous but interrelated involvement of primate OFC and VLPFC in the performance of serial reversal learning.
Collapse
Affiliation(s)
- Rafal Rygula
- Department of Experimental Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Wilson CRE, Gaffan D, Browning PGF, Baxter MG. Functional localization within the prefrontal cortex: missing the forest for the trees? Trends Neurosci 2010; 33:533-40. [PMID: 20864190 PMCID: PMC2997428 DOI: 10.1016/j.tins.2010.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/06/2010] [Accepted: 08/07/2010] [Indexed: 11/25/2022]
Abstract
Anatomical and functional studies of the prefrontal cortex (PFC) have identified multiple PFC subregions. We argue that the PFC is involved in cognitive functions exceeding the sum of specific functions attributed to its subregions. These can be revealed either by lesions of the whole PFC, or more specifically by selective disconnection of the PFC from certain types of information (for example, visual) allowing the investigation of PFC function in toto. Recent studies in macaque monkeys using the latter approach lead to a second conclusion: that the PFC, as a whole, could be fundamentally specialized for representing events that are extended in time. The representation of temporally complex events might underlie PFC involvement in general intelligence, decision-making, and executive function.
Collapse
Affiliation(s)
- Charles R E Wilson
- Stem Cell and Brain Research Institute, Institut National de la Santé et de la Recherche Médicale Unité 846, 18 avenue du Doyen Lépine, 69675 Cedex, Lyon, France
| | | | | | | |
Collapse
|
25
|
Eacott MJ, Easton A. Episodic memory in animals: Remembering which occasion. Neuropsychologia 2010; 48:2273-80. [DOI: 10.1016/j.neuropsychologia.2009.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/22/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
26
|
Easton A, Eacott MJ. Recollection of episodic memory within the medial temporal lobe: behavioural dissociations from other types of memory. Behav Brain Res 2009; 215:310-7. [PMID: 19850082 DOI: 10.1016/j.bbr.2009.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures.
Collapse
Affiliation(s)
- Alexander Easton
- Department of Psychology, Durham University, Science Site, Durham, UK.
| | | |
Collapse
|
27
|
Browning PGF, Gaffan D, Croxson PL, Baxter MG. Severe scene learning impairment, but intact recognition memory, after cholinergic depletion of inferotemporal cortex followed by fornix transection. Cereb Cortex 2009; 20:282-93. [PMID: 19447862 PMCID: PMC2803729 DOI: 10.1093/cercor/bhp097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To examine the generality of cholinergic involvement in visual memory in primates, we trained macaque monkeys either on an object-in-place scene learning task or in delayed nonmatching-to-sample (DNMS). Each monkey received either selective cholinergic depletion of inferotemporal cortex (including the entorhinal cortex and perirhinal cortex) with injections of the immunotoxin ME20.4-saporin or saline injections as a control and was postoperatively retested. Cholinergic depletion of inferotemporal cortex was without effect on either task. Each monkey then received fornix transection because previous studies have shown that multiple disconnections of temporal cortex can produce synergistic impairments in memory. Fornix transection mildly impaired scene learning in monkeys that had received saline injections but severely impaired scene learning in monkeys that had received cholinergic lesions of inferotemporal cortex. This synergistic effect was not seen in monkeys performing DNMS. These findings confirm a synergistic interaction in a macaque monkey model of episodic memory between connections carried by the fornix and cholinergic input to the inferotemporal cortex. They support the notion that the mnemonic functions tapped by scene learning and DNMS have dissociable neural substrates. Finally, cholinergic depletion of inferotemporal cortex, in this study, appears insufficient to impair memory functions dependent on an intact inferotemporal cortex.
Collapse
Affiliation(s)
- Philip G F Browning
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK.
| | | | | | | |
Collapse
|
28
|
Baxter MG, Gaffan D, Kyriazis DA, Mitchell AS. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys. Eur J Neurosci 2009; 29:2049-59. [PMID: 19453635 PMCID: PMC2688497 DOI: 10.1111/j.1460-9568.2009.06740.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 02/17/2009] [Accepted: 03/05/2009] [Indexed: 11/30/2022]
Abstract
The ability to apply behavioral strategies to obtain rewards efficiently and make choices based on changes in the value of rewards is fundamental to the adaptive control of behavior. The extent to which different regions of the prefrontal cortex are required for specific kinds of decisions is not well understood. We tested rhesus monkeys with bilateral ablations of the ventrolateral prefrontal cortex on tasks that required the use of behavioral strategies to optimize the rate with which rewards were accumulated, or to modify choice behavior in response to changes in the value of particular rewards. Monkeys with ventrolateral prefrontal lesions were impaired in performing the strategy-based task, but not on value-based decision-making. In contrast, orbital prefrontal ablations produced the opposite impairments in the same tasks. These findings support the conclusion that independent neural systems within the prefrontal cortex are necessary for control of choice behavior based on strategies or on stimulus value.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | |
Collapse
|
29
|
Soei E, Koch B, Schwarz M, Daum I. Involvement of the human thalamus in relational and non-relational memory. Eur J Neurosci 2008; 28:2533-41. [DOI: 10.1111/j.1460-9568.2008.06536.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Baxter MG, Gaffan D, Kyriazis DA, Mitchell AS. Dorsolateral prefrontal lesions do not impair tests of scene learning and decision-making that require frontal-temporal interaction. Eur J Neurosci 2008; 28:491-9. [PMID: 18702721 PMCID: PMC2522287 DOI: 10.1111/j.1460-9568.2008.06353.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/30/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
Theories of dorsolateral prefrontal cortex (DLPFC) involvement in cognitive function variously emphasize its involvement in rule implementation, cognitive control, or working and/or spatial memory. These theories predict broad effects of DLPFC lesions on tests of visual learning and memory. We evaluated the effects of DLPFC lesions (including both banks of the principal sulcus) in rhesus monkeys on tests of scene learning and strategy implementation that are severely impaired following crossed unilateral lesions of frontal cortex and inferotemporal cortex. Dorsolateral lesions had no effect on learning of new scene problems postoperatively, or on the implementation of preoperatively acquired strategies. They were also without effect on the ability to adjust choice behaviour in response to a change in reinforcer value, a capacity that requires interaction between the amygdala and frontal lobe. These intact abilities following DLPFC damage support specialization of function within the prefrontal cortex, and suggest that many aspects of memory and strategic and goal-directed behaviour can survive ablation of this structure.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK
| | | | | | | |
Collapse
|
31
|
Baxter MG, Browning PGF, Mitchell AS. Perseverative interference with object-in-place scene learning in rhesus monkeys with bilateral ablation of ventrolateral prefrontal cortex. Learn Mem 2008; 15:126-32. [PMID: 18299439 DOI: 10.1101/lm.804508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with bilateral ablations of ventrolateral prefrontal cortex in object-in-place scene learning. These monkeys were mildly impaired in scene learning relative to their own preoperative performance, similar in severity to that of monkeys with bilateral ablation of orbital prefrontal cortex. An analysis of response types showed that the monkeys with lesions were specifically impaired in responding to negative feedback during learning: The post-operative increase in errors was limited to trials in which the first response to each new problem, made on the basis of trial and error, was incorrect. This perseverative pattern of deficit was not observed in the same analysis of response types in monkeys with bilateral ablations of the orbital prefrontal cortex, who were equally impaired on trials with correct and incorrect first responses. This may represent a specific signature of ventrolateral prefrontal involvement in episodic learning and memory.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, United Kingdom
| | | | | |
Collapse
|
32
|
The magnocellular mediodorsal thalamus is necessary for memory acquisition, but not retrieval. J Neurosci 2008; 28:258-63. [PMID: 18171943 DOI: 10.1523/jneurosci.4922-07.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Damage to the magnocellular mediodorsal thalamic nucleus (MDmc) in the human brain is associated with both retrograde and anterograde amnesia. In the present study we made selective neurotoxic MDmc lesions in rhesus monkeys and compared the effects of these lesions on memory acquisition and retrieval. Monkeys learned 300 unique scene discriminations preoperatively and retention was assessed in a one-trial preoperative retrieval test. Bilateral neurotoxic lesions of the MDmc, produced by 10 x 1 microl injections of a mixture of ibotenate and NMDA did not affect performance in the postoperative one-trial retrieval test. In contrast, new postoperative learning of a further 100 novel scene discriminations was substantially impaired. Thus, MDmc is required for new learning of scene discriminations but not for their retention and retrieval. This finding is the first evidence that MDmc plays a specific role in memory acquisition.
Collapse
|
33
|
Dissociable performance on scene learning and strategy implementation after lesions to magnocellular mediodorsal thalamic nucleus. J Neurosci 2007; 27:11888-95. [PMID: 17978029 DOI: 10.1523/jneurosci.1835-07.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monkeys with aspiration lesions of the magnocellular division of the mediodorsal thalamus (MDmc) are impaired in object-in-place scene learning, object recognition, and stimulus-reward association. These data have been interpreted to mean that projections from MDmc to prefrontal cortex are required to sustain normal prefrontal function in a variety of task settings. In the present study, we investigated the extent to which bilateral neurotoxic lesions of the MDmc impair a preoperatively learnt strategy implementation task that is impaired by a crossed lesion technique that disconnects the frontal cortex in one hemisphere from the contralateral inferotemporal cortex. Postoperative memory impairments were also examined using the object-in-place scene memory task. Monkeys learnt both strategy implementation and scene memory tasks separately to a stable level preoperatively. Bilateral neurotoxic lesions of the MDmc, produced by 10 x 1 microl injections of a mixture of ibotenate and NMDA did not affect performance in the strategy implementation task. However, new learning of object-in-place scene memory was substantially impaired. These results provide new evidence about the role of the magnocellular mediodorsal thalamic nucleus in memory processing, indicating that interconnections with the prefrontal cortex are essential during new learning, but are not required when implementing a preoperatively acquired strategy task. Thus, not all functions of the prefrontal cortex require MDmc input. Instead, the involvement of MDmc in prefrontal function may be limited to situations in which new learning must occur.
Collapse
|