1
|
Hagena H, Manahan-Vaughan D. Interplay of hippocampal long-term potentiation and long-term depression in enabling memory representations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230229. [PMID: 38853558 PMCID: PMC11343234 DOI: 10.1098/rstb.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Hansen N, Rentzsch K, Hirschel S, Wiltfang J, Schott BH, Malchow B, Bartels C. Persisting Verbal Memory Encoding and Recall Deficiency after mGluR5 Autoantibody-Mediated Encephalitis. Brain Sci 2023; 13:1537. [PMID: 38002497 PMCID: PMC10669453 DOI: 10.3390/brainsci13111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Metabotropic glutamate receptors type 5 (mGluR5) play a central role in persistent forms of synaptic plasticity and memory formation. Antibodies to mGluR5 have been reported to be clinically associated with memory impairment. Here, we report on a patient with persistent amnestic cognitive impairment in a single cognitive domain after resolution of mGluR5-associated encephalitis. METHODS We report on the clinical data of a patient in our Department of Psychiatry and Psychotherapy who underwent several diagnostic investigations including a detailed neuropsychological examination, magnetic resonance imaging, and cerebrospinal fluid analysis involving the determination of neural autoantibodies. RESULTS A 54-year-old woman presented to our memory clinic with pleocytosis 4 months after remission of probable anti-mGluR5-mediated encephalitis, revealing initial pleocytosis and serum proof of anti-mGluR5 autoantibodies (1:32). A neuropsychological examination revealed mild cognitive impairment in verbal memory encoding and recall. The patient received immunotherapy with corticosteroids, and a subsequent cerebrospinal fluid analysis 1.5 months after the onset of encephalitis confirmed no further signs of inflammation. CONCLUSIONS Our results suggest that although immunotherapy resulted in the remission of anti-mGluR5 encephalitis, a verbal memory encoding and recall dysfunction persisted. It remains unclear whether the reason for the persistent verbal memory impairment is attributable to insufficiently long immunotherapy or initially ineffective immunotherapy. Because mGluR5 plays an essential role in persistent synaptic plasticity in the hippocampus, it is tempting to speculate that the mGluR5 antibody-antigen complex could lead to persistent cognitive dysfunction, still present after the acute CNS inflammation stage of encephalitis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Clinical Immunological Laboratory Prof. Stöcker, 23627 Groß Grönau, Germany
| | - Kristin Rentzsch
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| |
Collapse
|
3
|
Garad M, Edelmann E, Leßmann V. Long-term depression at hippocampal mossy fiber-CA3 synapses involves BDNF but is not mediated by p75NTR signaling. Sci Rep 2021; 11:8535. [PMID: 33879805 PMCID: PMC8058084 DOI: 10.1038/s41598-021-87769-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.
Collapse
Affiliation(s)
- Machhindra Garad
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Elke Edelmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
4
|
Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D. Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Anal Chem 2021; 93:4033-4041. [PMID: 33596063 DOI: 10.1021/acs.analchem.0c05038] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dominic Eggemann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| |
Collapse
|
5
|
|
6
|
Pittolo S, Lee H, Lladó A, Tosi S, Bosch M, Bardia L, Gómez-Santacana X, Llebaria A, Soriano E, Colombelli J, Poskanzer KE, Perea G, Gorostiza P. Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology. Proc Natl Acad Sci U S A 2019; 116:13680-13689. [PMID: 31196955 PMCID: PMC6613107 DOI: 10.1073/pnas.1900430116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.
Collapse
Affiliation(s)
- Silvia Pittolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Hyojung Lee
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Lladó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Xavier Gómez-Santacana
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Network Center of Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco (UCSF), CA 94158
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158
| | - Gertrudis Perea
- Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002 Madrid, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Network Center of Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50015 Zaragoza, Spain
| |
Collapse
|
7
|
Neyman S, Braunewell KH, O'Connell KE, Dev KK, Manahan-Vaughan D. Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation. Front Synaptic Neurosci 2019; 11:13. [PMID: 31057390 PMCID: PMC6482240 DOI: 10.3389/fnsyn.2019.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
The group I metabotropic glutamate (mGlu) receptor subtypes, mGlu1 and mGlu5, strongly regulate hippocampal synaptic plasticity. Both harbor PSD-95/discs-large/ZO-1 (PDZ) motifs at their extreme carboxyl terminals, which allow interaction with the PDZ domain of Tamalin, regulate the cell surface expression of group I mGlu receptors, and may modulate their coupling to signaling proteins. We investigated the functional role of this interaction in hippocampal long-term depression (LTD). Acute intracerebral treatment of adult rats with a cell-permeable PDZ-blocking peptide (pep-mGluR-STL), designed to competitively inhibit the interaction between Tamalin and group 1 mGlu receptors, prevented expression of LTD in the hippocampal CA1 region without affecting long-term potentiation (LTP) or basal synaptic transmission. Pep-mGluR-STL prevented facilitation by the group I mGlu receptor agonist, (S)-3,5-Dihydroxyphenylglycine (DHPG), and the mGlu5 agonist, (R,S)-2-chloro-5-Hydroxyphenylglycine (CHPG), of short-term depression (STD) into LTD, suggesting that Tamalin preferentially acts by mediating signaling through mGlu5. These data support that Tamalin is essential for the persistent expression of LTD and that it subserves the effective signaling of group 1 mGlu receptors.
Collapse
Affiliation(s)
- Sergey Neyman
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Karl-Heinz Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Kara E O'Connell
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
8
|
Hansen N. Long-Term Memory Dysfunction in Limbic Encephalitis. Front Neurol 2019; 10:330. [PMID: 31080433 PMCID: PMC6497754 DOI: 10.3389/fneur.2019.00330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Niels Hansen
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
| |
Collapse
|
9
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Ballesteros JJ, Buschler A, Köhr G, Manahan-Vaughan D. Afferent Input Selects NMDA Receptor Subtype to Determine the Persistency of Hippocampal LTP in Freely Behaving Mice. Front Synaptic Neurosci 2016; 8:33. [PMID: 27818632 PMCID: PMC5073893 DOI: 10.3389/fnsyn.2016.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
The glutamatergic N-methyl-D-aspartate receptor (NMDAR) is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2) mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP) in vivo. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistence in freely behaving mice. We applied differing high-frequency stimulation (HFS) patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT) mice, that endured for <1 h (early (E)-LTP), (LTP, 2–4 h) or >24 h (late (L)-LTP). In GluN2A-knockout (KO) mice, E-LTP (HFS, 50 pulses) was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 × 50 pulses) and L-LTP (HFS, 4 × 50 pulses) were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E-LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B and leads to robust and persistent LTP. These unique signal-response properties of GluN2A and GluN2B enable qualitative differentiation of information encoding in hippocampal synapses.
Collapse
Affiliation(s)
- Jesús J Ballesteros
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | - Arne Buschler
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | - Georg Köhr
- Max Planck Institute for Medical Research Heidelberg, Germany
| | | |
Collapse
|
13
|
Metabotropic glutamate receptor, mGlu5, regulates hippocampal synaptic plasticity and is required for tetanisation-triggered changes in theta and gamma oscillations. Neuropharmacology 2016; 115:20-29. [PMID: 27395786 DOI: 10.1016/j.neuropharm.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
Abstract
Hippocampal synaptic plasticity and learning are regulated by metabotropic glutamate receptors (mGlu) and particularly by mGlu5. In the hippocampus, synaptic plasticity is tightly linked to neuronal network oscillations in theta (5-10 Hz) and gamma (∼30-100 Hz) frequency ranges, and specific changes in theta and gamma spectral power can predict for the success of patterned afferent stimulation in inducing robust long-term potentiation (LTP). In this study, we hypothesized that activation of mGlu5 mediates tetanisation-driven changes in network oscillations and thereby determines the longevity of LTP. To explore this, we applied high-frequency stimulation (HFS) to the perforant path input to the dentate gyrus (DG), in the presence of the negative allosteric modulator, 2-methyl-6-(phenylethynyl)pyridine (MPEP), or the positive allosteric modulator (S)-(4-fluorophenyl)-[3-(3-(3-(4-fluorophenyl)-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl)]methanone (ADX47273). In freely behaving rats, administration of MPEP resulted in a significant impairment, whereas treatment with ADX47273 led to a significant enhancement, of LTP (>24 h) compared to vehicle-treated controls. Allosteric potentiation of mGlu5 also resulted in a significantly greater increase of the spectral power of theta and gamma oscillations within the period of 300 s after HFS, as compared to MPEP-treated animals or controls. Our findings show that the regulation of hippocampal LTP by mGlu5 is associated with modulation of network oscillatory activity in the period shortly after LTP induction. Taken together, these data demonstrate that changes in the spectral contents of local field activity that occur in response to patterned afferent stimulation require activation of mGlu5 and may be instrumental for the successful expression of persistent LTP. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
14
|
Buschler A, Manahan-Vaughan D. Metabotropic glutamate receptor, mGlu5, mediates enhancements of hippocampal long-term potentiation after environmental enrichment in young and old mice. Neuropharmacology 2016; 115:42-50. [PMID: 27267685 DOI: 10.1016/j.neuropharm.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptor, mGlu5, is of particular relevance for hippocampal function. It is critically required for the expression of long-term potentiation (LTP) and long-term depression (LTD), regulates neuronal oscillations, maintains the stability of place fields and is required for hippocampus-dependent memory. MGlu5-dysfunctions are associated with profound cognitive deficits in humans, and mGlu5 has been targeted as a putative cognitive enhancer. Cognitive enhancement, by means of environmental enrichment (EE) in rodents, results in improved hippocampal synaptic plasticity and memory. Here, we explored whether mGlu5 contributes to these enhancements. MGlu5-antagonism dose-dependently impaired the early phase of LTP (>4 h) in the CA1 region of young(3-4 month old) mice. Late-LTP (>24 h) was also impaired. LTP (>24 h) elicited in old (10-14 month old) mice displayed reduced sensitivity to mGlu5 antagonism. Short-term potentiation (STP, < 2 h) that was elicited by weaker afferent stimulation was unaffected by mGlu5-antagonism in both age-groups. EE significantly amplified STP (<2 h) in old and young animals, but did not increase the duration of synaptic potentiation, or promote induction of LTP. The improvement in STP was prevented by mGlu5-antagonism, in both young and old animals. These results indicate that modifications of the synapse that underlie improvements of LTP by EE require the contribution of mGlu5. Strikingly, although LTP in old mice does not critically depend on mGlu5, improvements in synaptic potentiation resulting from EE are mGlu5-dependent in old mice. Regarded in light of the known role for mGlu5 in hippocampal function and pathophysiology, these data suggest that mGlu5 regulation of synaptic information storage is pivotal to optimal hippocampal function. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Arne Buschler
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Bochum, Germany
| | - Denise Manahan-Vaughan
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Bochum, Germany.
| |
Collapse
|
15
|
Zhang B, Chen R, Jiang H, Zhou Q, Qiu F, Han D, Li R, Tang W, Zhong A, Zhang J, Yu X. Palladium-catalyzed highly regioselective 2-alkynylation of 2,x-dihalopyridines. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
17
|
Moschovos C, Papatheodoropoulos C. The L-type voltage-dependent calcium channel long-term potentiation is higher in the dorsal compared with the ventral associational/commissural CA3 hippocampal synapses. Neurosci Res 2015; 106:62-5. [PMID: 26541214 DOI: 10.1016/j.neures.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/24/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
The diversification between dorsal (DH) and ventral (VH) hippocampus includes the different ability to support NMDA receptor-dependent long-term synaptic potentiation (LTP). In this study, we assessed the ability of associational/commissural connections in the CA3 hippocampal field to show NMDA receptor-independent LTP. We found that high-frequency stimulation under blockade of NMDA receptors induced greater LTP in DH (40.7±8.5%) than in VH (17.1±4.6%). The blocker of L-type voltage-dependent calcium channels (VDCC) nifedipine prevented the induction of LTP. We hypothesize that the different ability for VDCC-LTP between DH and VH might have important implications in the memory-related information processing performed by the circuits of the two hippocampal segments.
Collapse
Affiliation(s)
- Christos Moschovos
- Laboratory of Physiology, Medical School, University of Patras, 26504 Rion, Greece
| | | |
Collapse
|