1
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
2
|
Scala M, Khan K, Beneteau C, Fox RG, von Hardenberg S, Khan A, Joubert M, Fievet L, Musquer M, Le Vaillant C, Holsclaw JK, Lim D, Berking AC, Accogli A, Giacomini T, Nobili L, Striano P, Zara F, Torella A, Nigro V, Cogné B, Salick MR, Kaykas A, Eggan K, Capra V, Bézieau S, Davis EE, Wells MF. Biallelic loss-of-function variants in CACHD1 cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities. Genet Med 2024; 26:101057. [PMID: 38158856 PMCID: PMC11910193 DOI: 10.1016/j.gim.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Claire Beneteau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Rachel G Fox
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Ayaz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Madeleine Joubert
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Marie Musquer
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | | | | | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom; Department of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Benjamin Cogné
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Stéphane Bézieau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
3
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Page KM, Gumerov VM, Dahimene S, Zhulin IB, Dolphin AC. The importance of cache domains in α 2δ proteins and the basis for their gabapentinoid selectivity. Channels (Austin) 2023; 17:2167563. [PMID: 36735378 PMCID: PMC9901441 DOI: 10.1080/19336950.2023.2167563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this hybrid review, we have first collected and reviewed available information on the structure and function of the enigmatic cache domains in α2δ proteins. These are organized into two double cache (dCache_1) domains, and they are present in all α2δ proteins. We have also included new data on the key function of these domains with respect to amino acid and gabapentinoid binding to the universal amino acid-binding pocket, which is present in α2δ-1 and α2δ-2. We have now identified the reason why α2δ-3 and α2δ-4 do not bind gabapentinoid drugs or amino acids with bulky side chains. In relation to this, we have determined that the bulky amino acids Tryptophan and Phenylalanine prevent gabapentin from inhibiting cell surface trafficking of α2δ-1. Together, these novel data shed further light on the importance of the cache domains in α2δ proteins.
Collapse
Affiliation(s)
- Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- CONTACT Annette C Dolphin Dolphin Department of Neuroscience, Physiology and Pharmacology, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
5
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
6
|
Sanz M, Mann BT, Ryan PL, Bosque A, Pennington DJ, Hackstein H, Soriano-Sarabia N. Deep characterization of human γδ T cell subsets defines shared and lineage-specific traits. Front Immunol 2023; 14:1148988. [PMID: 37063856 PMCID: PMC10102470 DOI: 10.3389/fimmu.2023.1148988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Under non-pathological conditions, human γδ T cells represent a small fraction of CD3+ T cells in peripheral blood (1-10%). They constitute a unique subset of T lymphocytes that recognize stress ligands or non-peptide antigens through MHC-independent presentation. Major human γδ T cell subsets, Vδ1 and Vδ2, expand in response to microbial infection or malignancy, but possess distinct tissue localization, antigen recognition, and effector responses. We hypothesized that differences at the gene, phenotypic, and functional level would provide evidence that γδ T cell subpopulations belong to distinct lineages. Comparisons between each subset and the identification of the molecular determinants that underpin their differences has been hampered by experimental challenges in obtaining sufficient numbers of purified cells. By utilizing a stringent FACS-based isolation method, we compared highly purified human Vδ1 and Vδ2 cells in terms of phenotype, gene expression profile, and functional responses. We found distinct genetic and phenotypic signatures that define functional differences in γδ T cell populations. Differences in TCR components, repertoire, and responses to calcium-dependent pathways suggest that Vδ1 and Vδ2 T cells are different lineages. These findings will facilitate further investigation into the ligand specificity and unique role of Vδ1 and Vδ2 cells in early immune responses.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Brendan T. Mann
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Paul L. Ryan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Daniel J. Pennington
- Centre for Immunology, Blizzard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
7
|
Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, Mello CJ, Meyer D, Pietilainen O, Piccioni F, Guss EJ, Raghunathan K, Tegtmeyer M, Hawes D, Neumann A, Worringer KA, Ho D, Kommineni S, Chan K, Peterson BK, Raymond JJ, Gold JT, Siekmann MT, Zuccaro E, Nehme R, Kaykas A, Eggan K, McCarroll SA. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell 2023; 30:312-332.e13. [PMID: 36796362 PMCID: PMC10581885 DOI: 10.1016/j.stem.2023.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.
Collapse
Affiliation(s)
- Michael F Wells
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jana M Mitchell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Insitro, South San Francisco, CA 94080, USA
| | | | - Curtis J Mello
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietilainen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Kathleen A Worringer
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel Ho
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Sravya Kommineni
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Karrie Chan
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brant K Peterson
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph J Raymond
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - John T Gold
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Marco T Siekmann
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Ablinger C, Eibl C, Geisler SM, Campiglio M, Stephens GJ, Missler M, Obermair GJ. α 2δ-4 and Cachd1 Proteins Are Regulators of Presynaptic Functions. Int J Mol Sci 2022; 23:9885. [PMID: 36077281 PMCID: PMC9456004 DOI: 10.3390/ijms23179885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α1-α2δ protein-protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clarissa Eibl
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Stefanie M. Geisler
- Department Pharmacology and Toxicology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gary J. Stephens
- Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
9
|
Gumerov VM, Andrianova EP, Matilla MA, Page KM, Monteagudo-Cascales E, Dolphin AC, Krell T, Zhulin IB. Amino acid sensor conserved from bacteria to humans. Proc Natl Acad Sci U S A 2022; 119:e2110415119. [PMID: 35238638 PMCID: PMC8915833 DOI: 10.1073/pnas.2110415119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms. In humans, this motif is found in subunits of calcium channels that are implicated in pain and neurodevelopmental disorders. Our findings suggest that γ-aminobutyric acid-derived drugs bind to the same motif in human proteins that binds natural ligands in bacterial receptors, thus enabling future improvement of important drugs.
Collapse
Affiliation(s)
- Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Ekaterina P. Andrianova
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Karen M. Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Annette C. Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. Divergent Ca 2+/calmodulin feedback regulation of Ca V1 and Ca V2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria. J Biol Chem 2022; 298:101741. [PMID: 35182524 PMCID: PMC8980814 DOI: 10.1016/j.jbc.2022.101741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022] Open
Abstract
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Carolyn L Smith
- NINDS, National Institutes of Health, Bethesda Maryland, 20892 USA
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
11
|
Maksemous N, Blayney CD, Sutherland HG, Smith RA, Lea RA, Tran KN, Ibrahim O, McArthur JR, Haupt LM, Cader MZ, Finol-Urdaneta RK, Adams DJ, Griffiths LR. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front Mol Neurosci 2022; 15:892820. [PMID: 35928792 PMCID: PMC9345121 DOI: 10.3389/fnmol.2022.892820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Familial hemiplegic migraine (FHM) is a severe neurogenetic disorder for which three causal genes, CACNA1A, SCN1A, and ATP1A2, have been implicated. However, more than 80% of referred diagnostic cases of hemiplegic migraine (HM) are negative for exonic mutations in these known FHM genes, suggesting the involvement of other genes. Using whole-exome sequencing data from 187 mutation-negative HM cases, we identified rare variants in the CACNA1I gene encoding the T-type calcium channel Cav3.3. Burden testing of CACNA1I variants showed a statistically significant increase in allelic burden in the HM case group compared to gnomAD (OR = 2.30, P = 0.00005) and the UK Biobank (OR = 2.32, P = 0.0004) databases. Dysfunction in T-type calcium channels, including Cav3.3, has been implicated in a range of neurological conditions, suggesting a potential role in HM. Using patch-clamp electrophysiology, we compared the biophysical properties of five Cav3.3 variants (p.R111G, p.M128L, p.D302G, p.R307H, and p.Q1158H) to wild-type (WT) channels expressed in HEK293T cells. We observed numerous functional alterations across the channels with Cav3.3-Q1158H showing the greatest differences compared to WT channels, including reduced current density, right-shifted voltage dependence of activation and inactivation, and slower current kinetics. Interestingly, we also found significant differences in the conductance properties exhibited by the Cav3.3-R307H and -Q1158H variants compared to WT channels under conditions of acidosis and alkalosis. In light of these data, we suggest that rare variants in CACNA1I may contribute to HM etiology.
Collapse
Affiliation(s)
- Neven Maksemous
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claire D Blayney
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert A Smith
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod A Lea
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kim Ngan Tran
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omar Ibrahim
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Larisa M Haupt
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Metwally E, Zhao G, Zhang YQ. The calcium-dependent protease calpain in neuronal remodeling and neurodegeneration. Trends Neurosci 2021; 44:741-752. [PMID: 34417060 DOI: 10.1016/j.tins.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Guoli Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
13
|
Tian C, Johnson KR, Lett JM, Voss R, Salt AN, Hartsock JJ, Steyger PS, Ohlemiller KK. CACHD1-deficient mice exhibit hearing and balance deficits associated with a disruption of calcium homeostasis in the inner ear. Hear Res 2021; 409:108327. [PMID: 34388681 DOI: 10.1016/j.heares.2021.108327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
CACHD1 recently was shown to be an α2δ-like subunit that can modulate the activity of some types of voltage-gated calcium channels, including the low-voltage activated, T-type CaV3 channels. CACHD1 is widely expressed in the central nervous system but its biological functions and relationship to disease states are unknown. Here, we report that mice with deleterious Cachd1 mutations are hearing impaired and have balance defects, demonstrating that CACHD1 is functionally important in the peripheral auditory and vestibular organs of the inner ear. The vestibular dysfunction of Cachd1 mutant mice, exhibited by leaning and head tilting behaviors, is related to a deficiency of calcium carbonate crystals (otoconia) in the saccule and utricle. The auditory dysfunction, shown by ABR threshold elevations and reduced DPOAEs, is associated with reduced endocochlear potentials and increased endolymph calcium concentrations. Paint-fills of mutant inner ears from prenatal and newborn mice revealed dilation of the membranous labyrinth caused by an enlarged volume of endolymph. These pathologies all can be related to a disturbance of calcium homeostasis in the endolymph of the inner ear, presumably caused by the loss of CACHD1 regulatory effects on voltage-gated calcium channel activity. Cachd1 expression in the cochlea appears stronger in late embryonic stages than in adults, suggesting an early role in establishing endolymph calcium concentrations. Our findings provide new insights into CACHD1 function and suggest the involvement of voltage-gated calcium channels in endolymph homeostasis, essential for normal auditory and vestibular function.
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | | | - Jaclynn M Lett
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis MO, 63110, USA
| | - Robert Voss
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis MO, 63110, USA
| | - Alec N Salt
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis MO, 63110, USA
| | - Jared J Hartsock
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis MO, 63110, USA
| | - Peter S Steyger
- Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis MO, 63110, USA
| |
Collapse
|
14
|
Lu J, Xu S, Huo Y, Sun D, Hu Y, Wang J, Zhang X, Wang P, Li Z, Liang M, Wu Z, Liu P. Sorting nexin 3 induces heart failure via promoting retromer-dependent nuclear trafficking of STAT3. Cell Death Differ 2021; 28:2871-2887. [PMID: 33947971 DOI: 10.1038/s41418-021-00789-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Sorting nexins (SNXs), the retromer-associated cargo binding proteins, have emerged as critical regulators of the trafficking of proteins involved in the pathogenesis of diverse diseases. However, studies of SNXs in the development of cardiovascular diseases, especially cardiac hypertrophy and heart failure, are lacking. Here, we ask whether SNX3, the simplest structured isoform in the SNXs family, may act as a key inducer of myocardial injury. An increased level of SNX3 was observed in failing hearts from human patients and mice. Cardiac-specific Snx3 knockout (Snx3-cKO) mice and Snx3 transgenic (Snx3-cTg) mice were generated to evaluate the role of Snx3 in myocardial hypertrophy, fibrosis, and heart function by morphology, echocardiography, histological staining, and hypertrophic biomarkers. We report that Snx3-cKO in mice significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy at 12 weeks. Conversely, Snx3-cTg mice were more susceptible to ISO-induced cardiac hypertrophy at 12 weeks and showed aggravated cardiac injury even heart failure at 24 weeks. Immunoprecipitation-based mass spectrometry, immunofluorescent staining, co-immunoprecipitation, localized surface plasmon resonance, and proximity ligation assay were performed to examine the direct interaction of SNX3-retromer with signal transducer and activator of transcription 3 (STAT3). We discovered that STAT3 was a new interacting partner of SNX3-retromer, and SNX3-retromer served as an essential platform for assembling gp130/JAK2/STAT3 complexes and subsequent phosphorylation of STAT3 by direct combination at EE. SNX3-retromer and STAT3 complexes were transiently imported into the nucleus after hypertrophic stimuli. The pharmacological inhibition or knockdown of STAT3 reversed SNX3 overexpression-induced myocardial injury. STAT3 overexpression blunts the beneficial function of SNX3 knockdown on hypertrophic cardiomyocytes. We show that SNX3-retromer promoted importin α3-mediated STAT3 nuclear trafficking and ultimately leading to cardiac injury. Taken together, our study reveals that SNX3 plays a key role in cardiac function and implicates SNX3 as a potential therapeutic target for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junjian Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
15
|
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca 2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021; 5:NS20200095. [PMID: 33664982 PMCID: PMC7905535 DOI: 10.1042/ns20200095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal voltage-gated Ca2+ (CaV) channels play a critical role in cellular excitability, synaptic transmission, excitation-transcription coupling and activation of intracellular signaling pathways. CaV channels are multiprotein complexes and their functional expression in the plasma membrane involves finely tuned mechanisms, including forward trafficking from the endoplasmic reticulum (ER) to the plasma membrane, endocytosis and recycling. Whether genetic or acquired, alterations and defects in the trafficking of neuronal CaV channels can have severe physiological consequences. In this review, we address the current evidence concerning the regulatory mechanisms which underlie precise control of neuronal CaV channel trafficking and we discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saloni Koshti
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, Fujioka M, Gi M, Wongpoomchai R, Wanibuchi H. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel) 2021; 13:cancers13061216. [PMID: 33802238 PMCID: PMC8001421 DOI: 10.3390/cancers13061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary The aim of the present study was to discover novel early molecular biomarkers of liver neoplasms which arise in non-alcoholic steatohepatitis (NASH) Stelic Animal Model (STAM) mice. Significant increase of lipid deposits, hepatocyte ballooning, fibrosis, and incidences and multiplicities of hepatocellular adenomas and carcinomas were detected in the livers of 18-week-old STAM mice. From the results of proteome analysis of STAM mice hepatocellular carcinomas, significant elevation of a novel protein, cache domain-containing 1 (CACHD1) was found. Furthermore, we observed CACHD1-positive foci in STAM mice livers, which number, area, and cell proliferation index within the foci were significantly elevated. Results of immunohistochemical and in vitro functional analysis indicated that CACHD1 may become a useful early biomarker and potential molecular target in NASH-associated hepatocarcinogenesis, which is involved in control of cell proliferation, autophagy and apoptosis. Abstract In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 μg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
- Correspondence: ; Tel.: +81-66-645-3737
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Napaporn Khuanphram
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Kumiko Tatsumi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Shotaro Yamano
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| |
Collapse
|
17
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
18
|
Jin YM, Ye Y, Bao WQ, Tong Y, Ni SB, Liu JP, Zhao B. CACNA1B facilitates breast cancer cell growth and migration by regulating cyclin D1 and EMT: the implication of CACNA1B in breast cancer. J Recept Signal Transduct Res 2020; 42:1-8. [PMID: 33100116 DOI: 10.1080/10799893.2020.1837871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study mainly aimed to explore the influences of Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) on the development of breast cancer and the related mechanism. MATERIALS AND METHODS The information of patients with breast cancer from TCGA database was used for analyses of CACNA1B expression and its prognostic value. Loss- and gain- of functions of CACNA1B were conducted in MCF7 and Bcap-37 cells, respectively. CCK-8, colony formation and transwell assays were applied for evaluating the cell viability and motility. Western blot was used for protein expression detection. RESULTS We revealed that highly expressed CACNA1B in breast cancer tissues was related to poor prognosis according to the data gained from TCGA database. The outcomes of functional assays showed that depletion of CACNA1B restrained MCF7 cell growth, invasion and migration and high-expression of CACNA1B fortified the growth, invasion and migration in Bcap-37 cells. Finally, we manifested that silencing CACNA1B obviously raised the protein expression level of E-cadherin and reduced the protein levels of Cyclin D1, N-cadherin and Snail in MCF7 cells, whilst, over-expression of CACNA1B reduced the level of E-cadherin and increased the expression of Cyclin D1, N-cadherin and Snail in Bcap-37 cells. CONCLUSIONS These results identified CACNA1B as a forwarder of the growth, invasion and migration in breast cancer cells.
Collapse
Affiliation(s)
- Yong-Mei Jin
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Ying Ye
- Central Laboratory, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Wen-Qing Bao
- Gallbladder Diseases Center, East Hospital of Tongji University, Shanghai, China
| | - Yang Tong
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Shu-Bin Ni
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Jian-Ping Liu
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Bin Zhao
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| |
Collapse
|
19
|
Different functions of two putative Drosophila α 2δ subunits in the same identified motoneurons. Sci Rep 2020; 10:13670. [PMID: 32792569 PMCID: PMC7426832 DOI: 10.1038/s41598-020-69748-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Voltage gated calcium channels (VGCCs) regulate neuronal excitability and translate activity into calcium dependent signaling. The α1 subunit of high voltage activated (HVA) VGCCs associates with α2δ accessory subunits, which may affect calcium channel biophysical properties, cell surface expression, localization and transport and are thus important players in calcium-dependent signaling. In vertebrates, the functions of the different combinations of the four α2δ and the seven HVA α1 subunits are incompletely understood, in particular with respect to partially redundant or separate functions in neurons. This study capitalizes on the relatively simpler situation in the Drosophila genetic model containing two neuronal putative α2δ subunits, straightjacket and CG4587, and one Cav1 and Cav2 homolog each, both with well-described functions in different compartments of identified motoneurons. Straightjacket is required for normal Cav1 and Cav2 current amplitudes and correct Cav2 channel function in all neuronal compartments. By contrast, CG4587 does not affect Cav1 or Cav2 current amplitudes or presynaptic function, but is required for correct Cav2 channel allocation to the axonal versus the dendritic domain. We suggest that the two different putative α2δ subunits are required in the same neurons to regulate different functions of VGCCs.
Collapse
|
20
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
21
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
22
|
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105:27-42. [PMID: 32616437 DOI: 10.1016/j.semcdb.2020.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/09/2022]
Abstract
The intramembrane protease γ-secretase is a hetero-tetrameric protein complex with presenilin as the catalytic subunit and cleaves its membrane protein substrates within their single transmembrane domains. γ-Secretase is well known for its role in Notch signalling and in Alzheimer's disease, where it catalyzes the formation of the pathogenic amyloid β (Aβ) peptide. However, in the 21 years since its discovery many more substrates and substrate candidates of γ-secretase were identified. Although the physiological relevance of the cleavage of many substrates remains to be studied in more detail, the substrates demonstrate a broad role for γ-secretase in embryonic development, adult tissue homeostasis, signal transduction and protein degradation. Consequently, chronic γ-secretase inhibition may cause significant side effects due to inhibition of cleavage of multiple substrates. This review provides a list of 149 γ-secretase substrates identified to date and highlights by which expeirmental approach substrate cleavage was validated. Additionally, the review lists the cleavage sites where they are known and discusses the functional implications of γ-secretase cleavage with a focus on substrates identified in the recent past, such as CHL1, TREM2 and TNFR1. A comparative analysis demonstrates that γ-secretase substrates mostly have a long extracellular domain and require ectodomain shedding before γ-secretase cleavage, but that γ-secretase is also able to cleave naturally short substrates, such as the B cell maturation antigen. Taken together, the list of substrates provides a resource that may help in the future development of drugs inhibiting or modulating γ-secretase activity in a substrate-specific manner.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
23
|
Garza-López E, Aldana A, Darszon A, Nishigaki T, López-González I. Ca V3.1 channel pore pseudo-symmetry revealed by selectivity filter mutations in its domains I/II. Cell Calcium 2020; 89:102214. [PMID: 32428730 DOI: 10.1016/j.ceca.2020.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.
Collapse
Affiliation(s)
- Edgar Garza-López
- Universidad Nacional Autónoma de México, Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Cuernavaca Morelos, 62210, México
| | - Andrés Aldana
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca Morelos, 62210, México; Universidad Nacional Autónoma de México, Centro de Ciencias de la Complejidad, Ciudad de México, 04510, México
| | - Alberto Darszon
- Universidad Nacional Autónoma de México, Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Cuernavaca Morelos, 62210, México
| | - Takuya Nishigaki
- Universidad Nacional Autónoma de México, Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Cuernavaca Morelos, 62210, México
| | - Ignacio López-González
- Universidad Nacional Autónoma de México, Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Cuernavaca Morelos, 62210, México.
| |
Collapse
|
24
|
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet 2020; 57:1-10. [PMID: 31217264 PMCID: PMC6929700 DOI: 10.1136/jmedgenet-2019-106163] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Rudan Njavro J, Klotz J, Dislich B, Wanngren J, Shmueli MD, Herber J, Kuhn PH, Kumar R, Koeglsperger T, Conrad M, Wurst W, Feederle R, Vlachos A, Michalakis S, Jedlicka P, Müller SA, Lichtenthaler SF. Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB J 2019; 34:2465-2482. [PMID: 31908000 DOI: 10.1096/fj.201902347r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aβ) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.
Collapse
Affiliation(s)
- Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Klotz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Pathology, University of Bern, Switzerland
| | - Johanna Wanngren
- Division of Neurogeriatrics, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Feederle
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany.,Core Facility Monoclonal Antibodies, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany.,Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
26
|
Stephens GJ, Cottrell GS. CACHD1: A new activity-modifying protein for voltage-gated calcium channels. Channels (Austin) 2019; 13:120-123. [PMID: 30983497 PMCID: PMC6527056 DOI: 10.1080/19336950.2019.1600968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
27
|
A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 2019; 160:2798-2810. [DOI: 10.1097/j.pain.0000000000001669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
29
|
Heine M, Heck J, Ciuraszkiewicz A, Bikbaev A. Dynamic compartmentalization of calcium channel signalling in neurons. Neuropharmacology 2019; 169:107556. [PMID: 30851307 DOI: 10.1016/j.neuropharm.2019.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Calcium fluxes through the neuronal membrane are strictly limited in time due to biophysical properties of voltage-gated and ligand-activated ion channels and receptors. Being embedded into the crowded dynamic environment of biological membranes, Ca2+-permeable receptors and channels undergo perpetual spatial rearrangement, which enables their temporary association and formation of transient signalling complexes. Thus, efficient calcium-mediated signal transduction requires mechanisms to support very precise spatiotemporal alignment of the calcium source and Ca2+-binding lipids and proteins in a highly dynamic environment. The mobility of calcium channels and calcium-sensing proteins themselves can be considered as a physiologically meaningful variable that affects calcium-mediated signalling in neurons. In this review, we will focus on voltage-gated calcium channels (VGCCs) and activity-induced relocation of stromal interaction molecules (STIMs) in the endoplasmic reticulum (ER) to show that particularly in time ranges between milliseconds to minutes, dynamic rearrangement of calcium conducting channels and sensor molecules is of physiological relevance. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Martin Heine
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39106, Germany; RG Functional Neurobiology, Institute for Development Biology and Neurobiology, Johannes Gutenberg University Mainz, Germany.
| | - Jennifer Heck
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Anna Ciuraszkiewicz
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39106, Germany
| | - Arthur Bikbaev
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| |
Collapse
|
30
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|