1
|
Sayeesh PM, Iguchi M, Inomata K, Ikeya T, Ito Y. Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase. Int J Mol Sci 2024; 25:6386. [PMID: 38928093 PMCID: PMC11203457 DOI: 10.3390/ijms25126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.
Collapse
Affiliation(s)
| | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| |
Collapse
|
2
|
Vourkou E, Rouiz Ortega ED, Mahajan S, Mudher A, Skoulakis EMC. Human Tau Aggregates Are Permissive to Protein Synthesis-Dependent Memory in Drosophila Tauopathy Models. J Neurosci 2023; 43:2988-3006. [PMID: 36868851 PMCID: PMC10124960 DOI: 10.1523/jneurosci.1374-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/22/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.
Collapse
Affiliation(s)
- Ergina Vourkou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | - Eva D Rouiz Ortega
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Sumeet Mahajan
- School of Chemistry, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Amrit Mudher
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| |
Collapse
|
3
|
Kozlov EN, Tokmatcheva EV, Khrustaleva AM, Grebenshchikov ES, Deev RV, Gilmutdinov RA, Lebedeva LA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. Long-Term Memory Formation in Drosophila Depends on the 3'UTR of CPEB Gene orb2. Cells 2023; 12:cells12020318. [PMID: 36672258 PMCID: PMC9856895 DOI: 10.3390/cells12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
| | - Anastasia M. Khrustaleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Eugene S. Grebenshchikov
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lyubov A. Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Bourouliti A, Skoulakis EMC. Anesthesia Resistant Memories in Drosophila, a Working Perspective. Int J Mol Sci 2022; 23:ijms23158527. [PMID: 35955662 PMCID: PMC9369046 DOI: 10.3390/ijms23158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Memories are lasting representations over time of associations between stimuli or events. In general, the relatively slow consolidation of memories requires protein synthesis with a known exception being the so-called Anesthesia Resistant Memory (ARM) in Drosophila. This protein synthesis-independent memory type survives amnestic shocks after a short, sensitive window post training, and can also emerge after repeated cycles of training in a negatively reinforced olfactory conditioning task, without rest between cycles (massed conditioning—MC). We discussed operational and molecular mechanisms that mediate ARM and differentiate it from protein synthesis-dependent long-term memory (LTM) in Drosophila. Based on the notion that ARM is unlikely to specifically characterize Drosophila, we examined protein synthesis and MC-elicited memories in other species and based on intraspecies shared molecular components and proposed potential relationships of ARM with established memory types in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Anna Bourouliti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Correspondence:
| |
Collapse
|
5
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Cheng KC, Chen YH, Wu CL, Lee WP, Cheung CHA, Chiang HC. Rac1 and Akt Exhibit Distinct Roles in Mediating Aβ-Induced Memory Damage and Learning Impairment. Mol Neurobiol 2021; 58:5224-5238. [PMID: 34273104 DOI: 10.1007/s12035-021-02471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
Accumulated beta-amyloid (Aβ) in the brain is the hallmark of Alzheimer's disease (AD). Despite Aβ accumulation is known to trigger cellular dysfunctions and learning and memory damage, the detailed molecular mechanism remains elusive. Recent studies have shown that the onset of memory impairment and learning damage in the AD animal is different, suggesting that the underlying mechanism of the development of memory impairment and learning damage may not be the same. In the current study, with the use of Aβ42 transgenic flies as models, we found that Aβ induces memory damage and learning impairment via differential molecular signaling pathways. In early stage, Aβ activates both Ras and PI3K to regulate Rac1 activity, which affects mostly on memory performance. In later stage, PI3K-Akt is strongly activated by Aβ, which leads to learning damage. Moreover, reduced Akt, but not Rac1, activity promotes cell viability in the Aβ42 transgenic flies, indicating that Akt and Rac1 exhibit differential roles in Aβ regulating toxicity. Taken together, different molecular and cellular mechanisms are involved in Aβ-induced learning damage and memory decline; thus, caution should be taken during the development of therapeutic intervention in the future.
Collapse
Affiliation(s)
- Kuan-Chung Cheng
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Ying-Hao Chen
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Georganta EM, Moressis A, Skoulakis EMC. Associative Learning Requires Neurofibromin to Modulate GABAergic Inputs to Drosophila Mushroom Bodies. J Neurosci 2021; 41:5274-5286. [PMID: 33972401 PMCID: PMC8211548 DOI: 10.1523/jneurosci.1605-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Cognitive dysfunction is among the hallmark symptoms of Neurofibromatosis 1, and accordingly, loss of the Drosophila melanogaster ortholog of Neurofibromin 1 (dNf1) precipitates associative learning deficits. However, the affected circuitry in the adult CNS remained unclear and the compromised mechanisms debatable. Although the main evolutionarily conserved function attributed to Nf1 is to inactivate Ras, decreased cAMP signaling on its loss has been thought to underlie impaired learning. Using mixed sex populations, we determine that dNf1 loss results in excess GABAergic signaling to the central for associative learning mushroom body (MB) neurons, apparently suppressing learning. dNf1 is necessary and sufficient for learning within these non-MB neurons, as a dAlk and Ras1-dependent, but PKA-independent modulator of GABAergic neurotransmission. Surprisingly, we also uncovered and discuss a postsynaptic Ras1-dependent, but dNf1-independnet signaling within the MBs that apparently responds to presynaptic GABA levels and contributes to the learning deficit of the mutants.
Collapse
Affiliation(s)
- Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| | - Anastasios Moressis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| |
Collapse
|
8
|
Vita DJ, Meier CJ, Broadie K. Neuronal fragile X mental retardation protein activates glial insulin receptor mediated PDF-Tri neuron developmental clearance. Nat Commun 2021; 12:1160. [PMID: 33608547 PMCID: PMC7896095 DOI: 10.1038/s41467-021-21429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Glia engulf and phagocytose neurons during neural circuit developmental remodeling. Disrupting this pruning process contributes to Fragile X syndrome (FXS), a leading cause of intellectual disability and autism spectrum disorder in mammals. Utilizing a Drosophila FXS model central brain circuit, we identify two glial classes responsible for Draper-dependent elimination of developmentally transient PDF-Tri neurons. We find that neuronal Fragile X Mental Retardation Protein (FMRP) drives insulin receptor activation in glia, promotes glial Draper engulfment receptor expression, and negatively regulates membrane-molding ESCRT-III Shrub function during PDF-Tri neuron clearance during neurodevelopment in Drosophila. In this context, we demonstrate genetic interactions between FMRP and insulin receptor signaling, FMRP and Draper, and FMRP and Shrub in PDF-Tri neuron elimination. We show that FMRP is required within neurons, not glia, for glial engulfment, indicating FMRP-dependent neuron-to-glia signaling mediates neuronal clearance. We conclude neuronal FMRP drives glial insulin receptor activation to facilitate Draper- and Shrub-dependent neuronal clearance during neurodevelopment in Drosophila.
Collapse
Affiliation(s)
- Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cole J Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Kennedy Center for Research on Human Development, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Sheng Z, Du W. NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways. PLoS Genet 2020; 16:e1008863. [PMID: 32559195 PMCID: PMC7329143 DOI: 10.1371/journal.pgen.1008863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Inactivation of the Rb tumor suppressor causes context-dependent increases in cell proliferation or cell death. In a genetic screen for factors that promoted Rb mutant cell death in Drosophila, we identified Psid, a regulatory subunit of N-terminal acetyltransferase B (NatB). We showed that NatB subunits were required for elevated EGFR/MAPK signaling and Rb mutant cell survival. We showed that NatB regulates the posttranscriptional levels of the highly conserved pathway components Grb2/Drk, MAPK, and PP2AC but not that of the less conserved Sprouty. Interestingly, NatB increased the levels of positive pathway components Grb2/Drk and MAPK while decreased the levels of negative pathway component PP2AC, which were mediated by the distinct N-end rule branch E3 ubiquitin ligases Ubr4 and Cnot4, respectively. These results suggest a novel mechanism by which NatB and N-end rule pathways modulate EGFR/MAPK signaling by inversely regulating the levels of multiple conserved positive and negative pathway components. As inactivation of Psid blocked EGFR signaling-dependent tumor growth, this study raises the possibility that NatB is potentially a novel therapeutic target for cancers dependent on deregulated EGFR/Ras signaling.
Collapse
Affiliation(s)
- Zhentao Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Szekely O, Olsen GL, Novakovic M, Rosenzweig R, Frydman L. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J Am Chem Soc 2020; 142:9267-9284. [PMID: 32338002 PMCID: PMC7304870 DOI: 10.1021/jacs.0c00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Hyperpolarized water
can be a valuable aid in protein NMR, leading
to amide group 1H polarizations that are orders of magnitude
larger than their thermal counterparts. Suitable procedures can exploit
this to deliver 2D 1H–15N correlations
with good resolution and enhanced sensitivity. These enhancements
depend on the exchange rates between the amides and the water, thereby
yielding diagnostic information about solvent accessibility. This
study applied this “HyperW” method to four proteins
exhibiting a gamut of exchange behaviors: PhoA(350–471), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease
inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms
under slow interconversion; and drkN SH3, a protein domain whose folded
and unfolded forms interchange rapidly and with temperature-dependent
population ratios. For PhoA4(350–471) HyperW sensitivity
enhancements were ≥300×, as expected for an unfolded protein
sequence. Though fully folded, barstar also exhibited substantial
enhancements; these, however, were not uniform and, according to CLEANEX
experiments, reflected the solvent-exposed residues. R17 showed the
expected superposition of ≥100-fold enhancements for its unfolded
form, coexisting with more modest enhancements for their folded counterparts.
Unexpected, however, was the behavior of drkN SH3, for which HyperW
enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were
repeatedly and reproducibly observed. A number of explanations—including
three-site exchange magnetization transfers between water and the
unfolded and folded states; cross-correlated relaxation processes
from hyperpolarized “structural” waters and labile side-chain
protons; and the possibility that faster solvent exchange rates characterize
certain folded sites over their unfolded counterparts—are considered
to account for them.
Collapse
|
11
|
Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in Drosophila. J Neurosci 2020; 40:2935-2942. [PMID: 32102921 DOI: 10.1523/jneurosci.1572-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, dopamine signaling to the mushroom body intrinsic neurons, Kenyon cells (KCs), is critical to stabilize olfactory memory. Little is known about the downstream intracellular molecular signaling underlying memory stabilization. Here we address this question in the context of sugar-rewarded olfactory long-term memory (LTM). We show that associative training increases the phosphorylation of MAPK in KCs, via Dop1R2 signaling. Consistently, the attenuation of Dop1R2, Raf, or MAPK expression in KCs selectively impairs LTM, but not short-term memory. Moreover, we show that the LTM deficit caused by the knockdown of Dop1R2 can be rescued by expressing active Raf in KCs. Thus, the Dop1R2/Raf/MAPK pathway is a pivotal downstream effector of dopamine signaling for stabilizing appetitive olfactory memory.SIGNIFICANCE STATEMENT Dopaminergic input to the Kenyon cells (KCs) is pivotal to stabilize memory in Drosophila This process is mediated by dopamine receptors like Dop1R2. Nevertheless, little is known for its underlying molecular mechanism. Here we show that the Raf/MAPK pathway is specifically engaged in appetitive long-term memory in KCs. With combined biochemical and behavioral experiments, we reveal that activation of the Raf/MAPK pathway is regulated through Dop1R2, shedding light on how dopamine modulates intracellular signaling for memory stabilization.
Collapse
|
12
|
Woo YJ, Kanellopoulos AK, Hemati P, Kirschen J, Nebel RA, Wang T, Bagni C, Abrahams BS. Domain-Specific Cognitive Impairments in Humans and Flies With Reduced CYFIP1 Dosage. Biol Psychiatry 2019; 86:306-314. [PMID: 31202490 PMCID: PMC6679746 DOI: 10.1016/j.biopsych.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Deletions encompassing a four-gene region on chromosome 15 (BP1-BP2 at 15q11.2), seen at a population frequency of 1 in 500, are associated with increased risk for schizophrenia, epilepsy, and other common neurodevelopmental disorders. However, little is known in terms of how these common deletions impact cognition. METHODS We used a Web-based tool to characterize cognitive function in a novel cohort of adult carriers and their noncarrier family members. Results from 31 carrier and 38 noncarrier parents from 40 families were compared with control data from 6530 individuals who self-registered on the Lumosity platform and opted in to participate in research. We then examined aspects of sensory and cognitive function in flies harboring a mutation in Cyfip, the homologue of one of the genes within the deletion. For the fly studies, 10 or more groups of 50 individuals per genotype were included. RESULTS Our human studies revealed profound deficits in grammatical reasoning, arithmetic reasoning, and working memory in BP1-BP2 deletion carriers. No such deficits were observed in noncarrier spouses. Our fly studies revealed deficits in associative and nonassociative learning despite intact sensory perception. CONCLUSIONS Our results provide new insights into outcomes associated with BP1-BP2 deletions and call for a discussion on how to appropriately communicate these findings to unaffected carriers. Findings also highlight the utility of an online tool in characterizing cognitive function in a geographically distributed population.
Collapse
Affiliation(s)
- Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Parisa Hemati
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Human Genetics Program, Sarah Lawrence College, Yonkers, New York
| | - Jill Kirschen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca A Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
13
|
Hamid R, Hajirnis N, Kushwaha S, Saleem S, Kumar V, Mishra RK. Drosophila Choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev Biol 2019; 446:80-93. [DOI: 10.1016/j.ydbio.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
|
14
|
Ayikobua ET, Semuyaba I, Eze DE, Kalange M, Nansunga M, Okpanachi AO, Safiriyu AA. Combined Donepezil and Ethanolic Extract of Propolis Improved Memory Better Than Donepezil and Propolis Monotherapy in Wild Type Drosophila melanogaster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3717328. [PMID: 30158994 PMCID: PMC6109536 DOI: 10.1155/2018/3717328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Donepezil is the most common drug used in the treatment of disorders associated with memory loss, especially that in Alzheimer's disease. Healthy individuals however have continued to use it as a memory enhancer. This study was aimed at evaluating the combined therapy of donepezil and propolis on cognition in Drosophila melanogaster. Method. Drosophila melanogaster flies were divided into five groups and fed with the different treatment doses of ethanolic extract of propolis and donepezil as follows: normal food, propolis 250 mg/mL, propolis 50 mg/mL, donepezil 0.001M, and donepezil 0.001M/propolis 50 mg/mL added to their food. The flies were fed from larval stage for 30 days. The memory and learning tests were conducted after every 10 days to assess improvement with time. RESULTS The results obtained showed that the combination of propolis with donepezil caused a remarkable improvement in both the short- and long-term memory. In addition, there was a dose dependent improvement with the administration of propolis. CONCLUSION Propolis extract obtained from different parts of Uganda expressed cognitive improvement when coadministered with donepezil in wild type Drosophila melanogaster.
Collapse
Affiliation(s)
- Emmanuel Tiyo Ayikobua
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Ibrahim Semuyaba
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Daniel Ejike Eze
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Muhamudu Kalange
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Mariam Nansunga
- Department of Physiology, Faculty of Biomedical Sciences, St. Augustine International University, P.O. Box 88, Kampala, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Abass Alao Safiriyu
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| |
Collapse
|
15
|
Zhang X, Li Q, Wang L, Liu ZJ, Zhong Y. Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting. Neuron 2018; 98:142-155.e4. [DOI: 10.1016/j.neuron.2018.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
|
16
|
Suenami S, Iino S, Kubo T. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee ( Apis mellifera L.). Biol Open 2018; 7:bio.028191. [PMID: 29330349 PMCID: PMC5829494 DOI: 10.1242/bio.028191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC) in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect. Summary: Intracellular signaling involved in early memory formation in insects is not fully understood. Here, we pharmacologically elucidated the role of phospholipase C in learning and memory in the honeybee.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Drk-mediated signaling to Rho kinase is required for anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A 2017; 114:10984-10989. [PMID: 28973902 DOI: 10.1073/pnas.1704835114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Anesthesia-resistant memory (ARM) was described decades ago, but the mechanisms that underlie this protein synthesis-independent form of consolidated memory in Drosophila remain poorly understood. Whether the several signaling molecules, receptors, and synaptic proteins currently implicated in ARM operate in one or more pathways and how they function in the process remain unclear. We present evidence that Drk, the Drosophila ortholog of the adaptor protein Grb2, is essential for ARM within adult mushroom body neurons. Significantly, Drk signals engage the Rho kinase Drok, implicating dynamic cytoskeletal changes in ARM, and this is supported by reduced F-actin in the mutants and after pharmacological inhibition of Drok. Interestingly, Drk-Drok signaling appears independent of the function of Radish (Rsh), a protein long implicated in ARM, suggesting that the process involves at least two distinct molecular pathways. Based on these results, we propose that signaling pathways involved in structural plasticity likely underlie this form of translation-independent memory.
Collapse
|
18
|
Iliadi KG, Iliadi N, Boulianne GL. Drosophila
mutants lacking octopamine exhibit impairment in aversive olfactory associative learning. Eur J Neurosci 2017; 46:2080-2087. [DOI: 10.1111/ejn.13654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Konstantin G. Iliadi
- Program in Developmental and Stem Cell Biology Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay Street Room 15‐9‐708/477 Toronto ON M5G 1L7 Canada
| | - Natalia Iliadi
- Program in Developmental and Stem Cell Biology Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay Street Room 15‐9‐708/477 Toronto ON M5G 1L7 Canada
| | - Gabrielle L. Boulianne
- Program in Developmental and Stem Cell Biology Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay Street Room 15‐9‐708/477 Toronto ON M5G 1L7 Canada
- Department of Molecular Genetics University of Toronto Toronto ON Canada
| |
Collapse
|
19
|
Richlitzki A, Latour P, Schwärzel M. Null EPAC mutants reveal a sequential order of versatile cAMP effects during Drosophila aversive odor learning. ACTA ACUST UNITED AC 2017; 24:210-215. [PMID: 28416632 PMCID: PMC5397686 DOI: 10.1101/lm.043646.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
Abstract
Here, we define a role of the cAMP intermediate EPAC in Drosophila aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the rutabaga adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom body Kenyon cells (KCs) as a necessary and sufficient site of EPAC action. We provide mechanistic insights by analyzing acquisition dynamics and using the "performance increment" as a means to access the trial-based sequential organization of odor learning. Thereby we show that versatile cAMP-dependent mechanisms are engaged within a sequential order that correlate to individual trials of the training session.
Collapse
Affiliation(s)
- Antje Richlitzki
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| | - Philipp Latour
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| | - Martin Schwärzel
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| |
Collapse
|
20
|
Mansilla A, Chaves-Sanjuan A, Campillo NE, Semelidou O, Martínez-González L, Infantes L, González-Rubio JM, Gil C, Conde S, Skoulakis EMC, Ferrús A, Martínez A, Sánchez-Barrena MJ. Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proc Natl Acad Sci U S A 2017; 114:E999-E1008. [PMID: 28119500 PMCID: PMC5307446 DOI: 10.1073/pnas.1611089114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein complex formed by the Ca2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.
Collapse
Affiliation(s)
- Alicia Mansilla
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Spanish National Research Council, 28002 Madrid, Spain
| | - Antonio Chaves-Sanjuan
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - Ourania Semelidou
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | | | - Lourdes Infantes
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Juana María González-Rubio
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - Santiago Conde
- Instituto de Química Médica, Spanish National Research Council, 28006 Madrid, Spain
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | - Alberto Ferrús
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Spanish National Research Council, 28002 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - María José Sánchez-Barrena
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain;
| |
Collapse
|
21
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
22
|
Octopamine-mediated circuit mechanism underlying controlled appetite for palatable food in Drosophila. Proc Natl Acad Sci U S A 2013; 110:15431-6. [PMID: 24003139 DOI: 10.1073/pnas.1308816110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The easy accessibility of energy-rich palatable food makes it difficult to resist food temptation. Drosophila larvae are surrounded by sugar-rich food most of their lives, raising the question of how these animals modulate food-seeking behaviors in tune with physiological needs. Here we describe a circuit mechanism defined by neurons expressing tdc2-Gal4 (a tyrosine decarboxylase 2 promoter-directed driver) that selectively drives a distinct foraging strategy in food-deprived larvae. Stimulation of this otherwise functionally latent circuit in tdc2-Gal4 neurons was sufficient to induce exuberant feeding of liquid food in fed animals, whereas targeted lesions in a small subset of tdc2-Gal4 neurons in the subesophageal ganglion blocked hunger-driven increases in the feeding response. Furthermore, regulation of feeding rate enhancement by tdc2-Gal4 neurons requires a novel signaling mechanism involving the VEGF2-like receptor, octopamine, and its receptor. Our findings provide fresh insight for the neurobiology and evolution of appetitive motivation.
Collapse
|
23
|
Drosophila Memory Research through Four Eras. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J Neurosci 2012; 32:13111-24. [PMID: 22993428 DOI: 10.1523/jneurosci.1347-12.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.
Collapse
|
25
|
Messih MA, Chitale M, Bajic VB, Kihara D, Gao X. Protein domain recurrence and order can enhance prediction of protein functions. Bioinformatics 2012; 28:i444-i450. [PMID: 22962465 PMCID: PMC3436825 DOI: 10.1093/bioinformatics/bts398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been developed to infer the protein functions based on either the sequences or domains of proteins. The existing methods, however, ignore the recurrence and the order of the protein domains in this function inference. RESULTS We developed two new methods to infer protein functions based on protein domain recurrence and domain order. Our first method, DRDO, calculates the posterior probability of the Gene Ontology terms based on domain recurrence and domain order information, whereas our second method, DRDO-NB, relies on the naïve Bayes methodology using the same domain architecture information. Our large-scale benchmark comparisons show strong improvements in the accuracy of the protein function inference achieved by our new methods, demonstrating that domain recurrence and order can provide important information for inference of protein functions. AVAILABILITY The new models are provided as open source programs at http://sfb.kaust.edu.sa/Pages/Software.aspx. CONTACT dkihara@cs.purdue.edu, xin.gao@kaust.edu.sa SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Online.
Collapse
Affiliation(s)
- Mario Abdel Messih
- Mathematical and Computer Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | | | | | | | | |
Collapse
|
26
|
Massed training-induced intermediate-term operant memory in aplysia requires protein synthesis and multiple persistent kinase cascades. J Neurosci 2012; 32:4581-91. [PMID: 22457504 DOI: 10.1523/jneurosci.6264-11.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Aplysia feeding system with its high degree of plasticity and well characterized neuronal circuitry is well suited for investigations of memory formation. We used an operant paradigm, learning that food is inedible (LFI), to investigate the signaling pathways underlying intermediate-term memory (ITM) in Aplysia. During a single massed training session, the animal associates a specific seaweed with the failure to swallow, generating short-term (30 min) and long-term (24 h) memory. We investigated whether the same training protocol induced the formation of ITM. We found that massed LFI training resulted in temporally distinct protein synthesis-dependent memory evident 4-6 h after training. Through in vivo experiments, we determined that the formation of ITM required protein kinase A, protein kinase C, and MAPK. Moreover, the maintenance of ITM required PKA, PKM Apl III, and MAPK because inhibition of any of these kinases after training or before testing blocked the expression of memory. In contrast, additional experiments determined that the maintenance of long-term memory appeared independent of PKM Apl III. Using Western blotting, we found that sustained MAPK phosphorylation was dependent upon protein synthesis, but not PKA or PKC activity. Thus, massed training-induced intermediate-term operant memory requires protein synthesis as well as persistent or sustained kinase signaling for PKA, PKC, and MAPK. While short-, intermediate-, and long-term memory are induced by the same training protocol, considerable differences exist in both the combination and timing of signaling cascades that induce the formation and maintenance of these temporally distinct memories.
Collapse
|
27
|
Gouzi JY, Moressis A, Walker JA, Apostolopoulou AA, Palmer RH, Bernards A, Skoulakis EMC. The receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. PLoS Genet 2011; 7:e1002281. [PMID: 21949657 PMCID: PMC3174217 DOI: 10.1371/journal.pgen.1002281] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1. Neurofibromatosis-1 (NF1) syndrome is a common (1/3,000 births) genetic disorder affecting multiple organ systems, including the nervous system. Its clinical features include short stature, learning disabilities, and several types of benign and malignant tumors. NF1 is caused by mutations that inactivate the NF1 gene, a crucial negative regulator of Ras signaling. Although unregulated Ras signaling is a hallmark of NF1, the specific Ras signaling pathways responsible for disease development remain largely unknown. The Drosophila and human Nf1 genes are highly conserved; and, as in patients, mutant flies are smaller than usual and present deficient learning. Here, we identified the Drosophila Receptor Tyrosine Kinase dAlk as a negative regulator of organismal growth and olfactory learning. We show that excessive dAlk activation results in growth and learning defects similar to those of Nf1 mutants. Genetic suppression studies and pharmacological inhibition indicate dAlk as a critical upstream activator of Nf1-regulated neuronal Ras/ERK signals that contribute to size determination and learning. Importantly, our results strongly suggest that Alk represents a novel, highly specific, and promising therapeutic target in human NF1.
Collapse
Affiliation(s)
- Jean Y. Gouzi
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
| | - Anastasios Moressis
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
- Department of Basic Sciences, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - James A. Walker
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anthi A. Apostolopoulou
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
| | - Ruth H. Palmer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - André Bernards
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Efthimios M. C. Skoulakis
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
- * E-mail:
| |
Collapse
|
28
|
Franco MI, Turin L, Mershin A, Skoulakis EMC. Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proc Natl Acad Sci U S A 2011; 108:3797-802. [PMID: 21321219 PMCID: PMC3048096 DOI: 10.1073/pnas.1012293108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common explanation of molecular recognition by the olfactory system posits that receptors recognize the structure or shape of the odorant molecule. We performed a rigorous test of shape recognition by replacing hydrogen with deuterium in odorants and asking whether Drosophila melanogaster can distinguish these identically shaped isotopes. We report that flies not only differentiate between isotopic odorants, but can be conditioned to selectively avoid the common or the deuterated isotope. Furthermore, flies trained to discriminate against the normal or deuterated isotopes of a compound, selectively avoid the corresponding isotope of a different odorant. Finally, flies trained to avoid a deuterated compound exhibit selective aversion to an unrelated molecule with a vibrational mode in the energy range of the carbon-deuterium stretch. These findings are inconsistent with a shape-only model for smell, and instead support the existence of a molecular vibration-sensing component to olfactory reception.
Collapse
Affiliation(s)
- Maria Isabel Franco
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre “Alexander Fleming,” Vari 16672, Greece; and
| | - Luca Turin
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre “Alexander Fleming,” Vari 16672, Greece; and
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andreas Mershin
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Efthimios M. C. Skoulakis
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre “Alexander Fleming,” Vari 16672, Greece; and
| |
Collapse
|
29
|
Michel M, Green CL, Eskin A, Lyons LC. PKG-mediated MAPK signaling is necessary for long-term operant memory in Aplysia. Learn Mem 2011; 18:108-17. [PMID: 21245212 DOI: 10.1101/lm.2063611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in Aplysia. We investigated the role of MAPK signaling in LFI memory in vivo. Inhibition of MAPK activation in animals prior to training blocked STM and LTM. Discontinuing MAPK signaling immediately after training inhibited LTM with no impact on STM. Therefore, MAPK signaling appears necessary early in memory formation for STM and LTM, with prolonged MAPK activity required for LTM. We found that LFI training significantly increased phospho-MAPK levels in the buccal ganglia. Increased MAPK activation was apparent immediately after training with greater than basal levels persisting for 2 h. We examined the mechanisms underlying training-induced MAPK activation and found that PKG activity was necessary for the prolonged phase of MAPK activation, but not for the early MAPK phase required for STM. Furthermore, we found that neither the immediate nor the prolonged phase of MAPK activation was dependent upon nitric oxide (NO) signaling, although expression of memory was dependent on NO as previously reported. These studies emphasize the role of MAPK and PKG in negatively reinforced operant memory and demonstrate a role for PKG-dependent MAPK signaling in invertebrate associative memory.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
30
|
Kahsai L, Zars T. Learning and memory in Drosophila: behavior, genetics, and neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:139-67. [PMID: 21906539 DOI: 10.1016/b978-0-12-387003-2.00006-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The rich behavioral repertoire that Drosophila use to navigate in their natural environment suggests that flies can use memories to inform decisions. Development of paradigms to examine memories that restrict behavioral choice was essential in furthering our understanding of the genetics and neural systems of memory formation in the fly. Olfactory, visual, and place memory paradigms have proven influential in determining principles for the mechanisms of memory formation. Several parts of the nervous system have been shown to be important for different types of memories, including the mushroom bodies and the central complex. Thus far, about 40 genes have been linked to normal olfactory short-term memory. A subset of these genes have also been tested for a role in visual and place memory. Some genes have a common function in memory formation, specificity of action comes from where in the nervous system these genes act. Alternatively, some genes have a more restricted role in different types of memories.
Collapse
Affiliation(s)
- Lily Kahsai
- University of Missouri, Division of Biological Sciences, 114 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
31
|
Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction. Biochem Soc Trans 2010; 38:981-7. [PMID: 20658989 DOI: 10.1042/bst0380981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The heterogeneous pathology of tauopathies and the differential susceptibility of different neuronal types to WT (wild-type) and mutant tau suggest that phosphorylation at particular sites rather than hyperphosphorylation mediates toxicity or dysfunction in a cell-type-specific manner. Pan-neuronal accumulation of tau in the Drosophila CNS (central nervous system) specifically affected the MBs (mushroom body neurons), consistent with neuronal type-specific effects. The MB aberrations depended, at least in part, on occupation of two novel phosphorylation sites: Ser(238) and Thr(245). The degree of isoform-specific MB aberrations was paralleled by defects in associative learning, as blocking putative Ser(238) and Thr(245) phosphorylation yielded structurally normal, but profoundly dysfunctional, MBs, as animals accumulating the mutant protein exhibited strongly impaired associative learning. Similarly dysfunctional MBs were obtained by temporally restricting tau accumulation to the adult CNS, which also altered the tau phosphorylation pattern. Our data clearly distinguish tau-dependent neuronal degeneration and dysfunction and suggest that temporal differences in occupation of the same phosphorylation sites are likely to mediate these distinct effects of tau.
Collapse
|
32
|
Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 2010; 68:340-61. [PMID: 21040840 PMCID: PMC3008420 DOI: 10.1016/j.neuron.2010.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/04/2023]
Abstract
Small G proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G proteins, particularly the Ras family of G proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
33
|
Freeman A, Bowers M, Mortimer AV, Timmerman C, Roux S, Ramaswami M, Sanyal S. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res 2010; 1326:15-29. [PMID: 20193670 DOI: 10.1016/j.brainres.2010.02.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. All of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila.
Collapse
Affiliation(s)
- Amanda Freeman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30022, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila. J Neurosci 2010; 30:464-77. [PMID: 20071510 DOI: 10.1523/jneurosci.1490-09.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation, or mutations of the microtubule-binding protein Tau. The heterogeneous pathology in humans and model organisms suggests differential susceptibility of neuronal types to wild-type (WT) and mutant Tau. WT and mutant human Tau-encoding transgenes expressed pan-neuronally in the Drosophila CNS yielded specific and differential toxicity in the embryonic neuroblasts that generate the mushroom body (MB) neurons, suggesting cell type-specific effects of Tau in the CNS. Frontotemporal dementia with parkinsonism-17-linked mutant isoforms were significantly less toxic in MB development. Tau hyperphosphorylation was essential for these MB aberrations, and we identified two novel putative phosphorylation sites, Ser(238) and Thr(245), on WT hTau essential for its toxic effects on MB integrity. Significantly, blocking putative Ser(238) and Thr(245) phosphorylation yielded animals with apparently structurally normal but profoundly dysfunctional MBs, because animals accumulating this mutant protein exhibited strongly impaired associative learning. Interestingly, the mutant protein was hyperphosphorylated at epitopes typically associated with toxicity and neurodegeneration, such as AT8, AT100, and the Par-1 targets Ser(262) and Ser(356), suggesting that these sites in the context of adult intact MBs mediate dysfunction and occupation of these sites may precede the toxicity-associated Ser(238) and Thr(245) phosphorylation. The data support the notion that phosphorylation at particular sites rather than hyperphosphorylation per se mediates toxicity or dysfunction in a cell type-specific manner.
Collapse
|