1
|
Tousley AR, Deykin I, Koc B, Yeh PWL, Yeh HH. Prenatal ethanol exposure results in cell-type, age, and sex-dependent differences in the neonatal striatum that coincide with early motor deficits. eNeuro 2025; 12:ENEURO.0448-24.2025. [PMID: 40086875 PMCID: PMC11949650 DOI: 10.1523/eneuro.0448-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Delayed motor development is an early clinical sign of Fetal Alcohol Spectrum Disorders (FASD). However, changes at the neural circuit level that underlie early motor differences are underexplored. The striatum, the principal input nucleus of the basal ganglia, plays an important role in motor learning in adult animals, and the maturation of the striatal circuit has been associated with the development of early motor behaviors. Here, we briefly exposed pregnant C57BL/6 dams to ethanol (5% w/w) in a liquid diet on embryonic days (E)13.5-16.5, and assessed the mouse progeny using a series of 9 brief motor behavior tasks on postnatal days (P)2-14. Live brain slices were then obtained from behaviorally-tested mice for whole cell-voltage and current clamp electrophysiology to assess GABAergic/glutamatergic synaptic activity, and passive/active properties in two populations of striatal neurons: GABAergic interneurons and spiny striatal projection neurons. Electrophysiologically-recorded spiny striatal projection neurons were also filled intracellularly with biocytin for post-hoc analysis of dendritic morphology. We found that prenatal ethanol exposure resulted in developmental motor delays that were more severe in male mice and coincided with sex-dependent differences in the maturation of striatal neurons. Our findings indicate that prenatal ethanol exposure results in dynamic morphological and functional changes to the developmental trajectories of striatal neurons commensurate with the development of motor behaviors that differ between male and female mice.Significance Statement Developmental differences in motor behaviors are an early clinical sign of Fetal Alcohol Spectrum Disorders (FASD) but the neural circuit level changes that contribute to these differences have not yet been determined. Here we demonstrate that a brief binge exposure to ethanol alters the motor development of neonatal mice in a sex-dependent manner, and identify concurrent differences in the functional, synaptic and morphological development of striatal GABAergic interneurons and medium spiny striatal projection neurons. These data suggest that altered development of striatal neurons may contribute to differences in early motor development observed in individuals with FASD.
Collapse
Affiliation(s)
- Adelaide R. Tousley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Ilana Deykin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Betul Koc
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Pamela W. L. Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Hermes H. Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
2
|
Sambo D, Kinstler E, Lin Y, Goldman D. Differential effects of prenatal alcohol exposure on brain growth reveals early upregulation of cell cycle and apoptosis and delayed downregulation of metabolism in affected offspring. PLoS One 2024; 19:e0311683. [PMID: 39602444 PMCID: PMC11602053 DOI: 10.1371/journal.pone.0311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) encompasses the deleterious consequences of Prenatal Alcohol Exposure (PAE), including developmental delay, microcephaly, dysmorphologies, and cognitive and behavioral issues. The dose and timing of alcohol exposure, maternal and environmental factors, and genetics all impact FASD outcomes, but differential susceptibility and resiliency to PAE remains poorly understood. In this study, we examined the differential effects of PAE during early mouse development on brain growth and gene expression. Brains were weighed and collected either 24 hours or five days after treatment. We then performed transcriptomics to determine whether offspring differentially affected by PAE, by brain weight, also differ in gene expression, despite having the same genetic background, alcohol exposure, and maternal factors. We found within litter variation in brain weights after PAE, and classified offspring as having normal, middle, and low-weight brains relative to saline-treated controls. The normal-weight brains showed no significant differences in gene expression, suggesting these offspring were both phenotypically and transcriptionally unaffected by PAE. While both middle- and low-weight brains showed changes in gene expression, the middle-weight brains showed the most robust transcriptome differences. Twenty-four hours after PAE, we saw an upregulation of cell cycle and apoptosis in affected offspring, whereas at roughly a week later, we saw a downregulation of metabolic processes. Overall, these findings highlight variability in response to PAE and demonstrate the molecular processes involved in offspring phenotypically affected by alcohol.
Collapse
Affiliation(s)
- Danielle Sambo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ethan Kinstler
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
3
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
4
|
Camilli MP, Simko OM, Bevelander B, Thebeau JM, Masood F, da Silva MCB, Raza MF, Markova S, Obshta O, Jose MS, Biganski S, Kozii IV, Zabrodski MW, Moshynskyy I, Simko E, Wood SC. Fetal Alcohol Spectrum Disorder: The Honey Bee as a Social Animal Model. Life (Basel) 2024; 14:434. [PMID: 38672706 PMCID: PMC11051024 DOI: 10.3390/life14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animal models have been essential for advancing research of fetal alcohol spectrum disorder (FASD) in humans, but few animal species effectively replicate the behavioural and clinical signs of FASD. The honey bee (Apis mellifera) is a previously unexplored research model for FASD that offers the distinct benefit of highly social behaviour. In this study, we chronically exposed honey bee larvae to incremental concentrations of 0, 3, 6, and 10% ethanol in the larval diet using an in vitro rearing protocol and measured developmental time and survival to adult eclosion, as well as body weight and motor activity of newly emerged adult bees. Larvae reared on 6 and 10% dietary ethanol demonstrated significant, dose-responsive delays to pupation and decreased survival and adult body weight. All ethanol-reared adults showed significantly decreased motor activity. These results suggest that honey bees may be a suitable social animal model for future FASD research.
Collapse
Affiliation(s)
- Marcelo P. Camilli
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Olena M. Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Breanne Bevelander
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Jenna M. Thebeau
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Fatima Masood
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Marina C. Bezerra da Silva
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Muhammad Fahim Raza
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sofiia Markova
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Oleksii Obshta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Midhun S. Jose
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sarah Biganski
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Ivanna V. Kozii
- Prairie Diagnostic Services Inc., Saskatoon, SK S7N 5B4, Canada
| | | | - Igor Moshynskyy
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Elemir Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sarah C. Wood
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| |
Collapse
|
5
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
7
|
Perez RF, Conner KE, Erickson MA, Nabatanzi M, Huffman KJ. Alcohol and lactation: Developmental deficits in a mouse model. Front Neurosci 2023; 17:1147274. [PMID: 36992847 PMCID: PMC10040541 DOI: 10.3389/fnins.2023.1147274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol consumption while breastfeeding. This is partly due to a paucity of research on lactational ethanol exposure (LEE) effects in children; although, it has been shown that infants exposed to ethanol via breast milk frequently present with reduced body mass, low verbal IQ scores, and altered sleeping patterns. As approximately 36% of breastfeeding mothers in the US consume alcohol, continued research in this area is critical. Our study employed a novel murine LEE model, where offspring were exposed to ethanol via nursing from postnatal day (P) 6 through P20, a period correlated with infancy in humans. Compared to controls, LEE mice had reduced body weights and neocortical lengths at P20 and P30. Brain weights were also reduced in both ages in males, and at P20 for females, however, female brain weights recovered to control levels by P30. We investigated neocortical features and found that frontal cortex thickness was reduced in LEE males compared to controls. Analyses of dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed a trend of reduced densities in LEE mice. Results of behavioral tests suggest that LEE mice engage in higher risk-taking behavior, show abnormal stress regulation, and exhibit increased hyperactivity. In summary, our data describe potential adverse brain and behavioral developmental outcomes due to LEE. Thus, women should be advised to refrain from consuming alcohol during breastfeeding until additional research can better guide recommendations of safe maternal practices in early infancy.
Collapse
Affiliation(s)
- Roberto F. Perez
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kathleen E. Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Michael A. Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mirembe Nabatanzi
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J. Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Kelly J. Huffman,
| |
Collapse
|
8
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
9
|
Bottom RT, Kozanian OO, Rohac DJ, Erickson MA, Huffman KJ. Transgenerational Effects of Prenatal Ethanol Exposure in Prepubescent Mice. Front Cell Dev Biol 2022; 10:812429. [PMID: 35386207 PMCID: PMC8978834 DOI: 10.3389/fcell.2022.812429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortical development at birth and behavior in peri-pubescent mice. How these adverse behavioral outcomes are manifested within the brain at the time of behavioral disruption remains unknown. Methods: A transgenerational mouse model of FASD was used to generate up to a third filial generation of offspring to study. Using a multi-modal battery of behavioral assays, we assessed motor coordination/function, sensorimotor processing, risk-taking behavior, and depressive-like behavior in postnatal day (P) 20 pre-pubescent mice. Additionally, sensory neocortical area connectivity using dye tracing, neocortical gene expression using in situ RNA hybridization, and spine density of spiny stellate cells in the somatosensory cortex using Golgi-Cox staining were examined in mice at P20. Results: We found that PrEE induces behavioral abnormalities including abnormal sensorimotor processing, increased risk-taking behavior, and increased depressive-like behaviors that extend to the F3 generation in 20-day old mice. Assessment of both somatosensory and visual cortical connectivity, as well as cortical RZRβ expression in pre-pubescent mice yielded no significant differences among any experimental generations. In contrast, only directly-exposed F1 mice displayed altered cortical expression of Id2 and decreased spine density among layer IV spiny stellate cells in somatosensory cortex at this pre-pubescent, post weaning age. Conclusion: Our results suggest that robust, clinically-relevant behavioral abnormalities are passed transgenerationally to the offspring of mice directly exposed to prenatal ethanol. Additionally, in contrast to our previous findings in the newborn PrEE mouse, a lack of transgenerational findings within the brain at this later age illuminates the critical need for future studies to attempt to discover the link between neurological function and the described behavioral changes. Overall, our study suggests that multi-generational effects of PrEE may have a substantial impact on human behavior as well as health and well-being and that these effects likely extend beyond early childhood.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Michael A Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States.,Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Gillis RF, Palmour RM. mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder. J Neurodev Disord 2022; 14:21. [PMID: 35305552 PMCID: PMC8934503 DOI: 10.1186/s11689-022-09427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. Methods Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. Results and discussion Statistical analysis identified a preferential downregulation of expression when interrogating the factor ‘alcohol’ with a balanced effect of upregulation vs. downregulation for the independent variable ‘age’. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. Conclusion Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09427-z.
Collapse
|
11
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
12
|
Shili I, Hamdi Y, Marouani A, Ben Lasfar Z, Ghrairi T, Lefranc B, Leprince J, Vaudry D, Olfa MK. Long-term protective effect of PACAP in a fetal alcohol syndrome (FAS) model. Peptides 2021; 146:170630. [PMID: 34481915 DOI: 10.1016/j.peptides.2021.170630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Prenatal ethanol exposure provokes teratogenic effects, due to oxidative stress and massive neuronal apoptosis in the developing brain that result in lifelong behavioral abnormalities. PACAP exerts anti-oxidative and neuroprotective activities on neuronal cells, and prevents ethanol neurotoxicity. The present study focused on the ability of PACAP to protect the brain of 30-day-old mice (P30) from prenatal alcohol exposure induced oxidative damage and toxicity. Pregnant mice were divided randomly into 4 groups, i.e. control group, ethanol group (1.5 g/kg ip daily injection), PACAP group (5 μg intrauterine daily injection) and an ethanol plus PACAP group. Offspring prenatally exposed to ethanol had decreased body weight and reduced cell survival. Moreover, production of ROS was sharply enhanced in the brain of prenatal ethanol-exposed animals, associated with an elevation in the activity of the antioxidant enzymes, and an increase of oxidative damages as shown by the accumulation of the lipid oxidation marker malondialdehyde and of protein carbonyl compounds. Intrauterine administration of PACAP during the gestational period restored the endogenous antioxidant system, prevented ROS overproduction and promoted the survival of dissociated cells from animals prenatally exposed to ethanol. Behavioral tests revealed that P30 animals exposed to ethanol during the prenatal period exhibited reduced motor activity, altered exploratory interest and increased anxiety. However, PACAP treatment significantly attenuated these behavioral impairments. This study demonstrates that PACAP exerts a potent neuroprotective effect against alcohol toxicity during brain development, and indicates that PACAP and/or PACAP analogs might be a useful tool for treatment of alcohol intoxication during pregnancy.
Collapse
Affiliation(s)
- Ilhem Shili
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092 Tunis, Tunisia; Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, 76000 Rouen, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092 Tunis, Tunisia
| | - Ammar Marouani
- Institut Pasteur Tunisia, Laboratory of Venins and Toxines, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Zakaria Ben Lasfar
- Institut Pasteur Tunisia, Laboratory of Venins and Toxines, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Taoufik Ghrairi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092 Tunis, Tunisia
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, 76000 Rouen, France; Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, 76000 Rouen, France; Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, 76000 Rouen, France; Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Masmoudi-Kouki Olfa
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092 Tunis, Tunisia.
| |
Collapse
|
13
|
Morris J, Bealer EJ, Souza IDS, Repmann L, Bonelli H, Stanzione JF, Staehle MM. Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea Mediterranea. Toxicol Sci 2021; 185:220-231. [PMID: 34791476 DOI: 10.1093/toxsci/kfab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing number of commercially-used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A (BPA)). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F (BPF), and bisguaiacol (BG) on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-hour delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the two. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the central nervous system in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
Collapse
Affiliation(s)
- J Morris
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - E J Bealer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - I D S Souza
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - L Repmann
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - H Bonelli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - J F Stanzione
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - M M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| |
Collapse
|
14
|
Bake S, Pinson MR, Pandey S, Chambers JP, Mota R, Fairchild AE, Miranda RC, Sohrabji F. Prenatal alcohol-induced sex differences in immune, metabolic and neurobehavioral outcomes in adult rats. Brain Behav Immun 2021; 98:86-100. [PMID: 34390803 PMCID: PMC8591773 DOI: 10.1016/j.bbi.2021.08.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in neurobehavioral anomalies, that may be exacerbated by co-occurring metabolic and immune system deficits. To test the hypothesis that the peripheral inflammation in adult PAE offspring is linked to poor glucose metabolism and neurocognitive deficits, pregnant Sprague-Dawley rats were exposed to ethanol vapor or ambient air during the latter half of gestation. We assessed, in adult offspring of both sexes, performance on a battery of neurocognitive behaviors, glucose tolerance, circulating and splenic immune cells by flow-cytometry, and circulating and tissue (liver, mesenteric adipose, and spleen) cytokines by multiplexed assays. PAE reduced both the ratio of spleen to body weight and splenic regulatory T-cell (Treg) numbers. PAE males, but not females exhibited an increase in circulating monocytes. Overall, PAE males exhibited a suppression of cytokine levels, while PAE females exhibited elevated cytokines in mesenteric adipose tissue (IL-6 and IL1α) and liver (IFN-γ, IL-1β, IL-13, IL-18, IL-12p70, and MCP-1), along with increased glucose intolerance. Behavioral analysis also showed sex-dependent PAE effects. PAE-males exhibited increased anxiety-like behavior while PAE-females showed decreased social interaction. PAE offspring of both sexes exhibited impaired recognition of novel objects. Multilinear regression modeling to predict the association between peripheral immune status, glucose intolerance and behavioral outcomes, showed that in PAE offspring, higher levels of adipose leptin and liver TNF- α predicted higher circulating glucose levels. Lower liver IL-1 α and higher plasma fractalkine predicted more time spent in the center of an open-field with sex being an additional predictor. Higher circulating and splenic Tregs predicted better social interaction in the PAE-offspring. Collectively, our data show that peripheral immune status is a persistent, sex-dependent predictor of glucose intolerance and neurobehavioral function in adult PAE offspring.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Marisa R Pinson
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Sivani Pandey
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joanna P Chambers
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Roxanna Mota
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Ashlyn E Fairchild
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| |
Collapse
|
15
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
16
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
17
|
Bianco CD, Hübner IC, Bennemann B, de Carvalho CR, Brocardo PS. Effects of postnatal ethanol exposure and maternal separation on mood, cognition and hippocampal arborization in adolescent rats. Behav Brain Res 2021; 411:113372. [PMID: 34022294 DOI: 10.1016/j.bbr.2021.113372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Ethanol exposure and early life stress during brain development are associated with an increased risk of developing psychiatric disorders. We used a third-trimester equivalent model of fetal alcohol spectrum disorders combined with a maternal separation (MS) protocol to evaluate whether these stressors cause sexually dimorphic behavioral and hippocampal dendritic arborization responses in adolescent rats. Wistar rat pups were divided into four experimental groups: 1) Control; 2) MS (MS, for 3 h/day from postnatal (PND) 2 to PND14); 3) EtOH (EtOH, 5 g/kg/day, i.p., PND2, 4, 6, 8, and 10); 4) EtOH + MS. All animals were divided into two cohorts and subjected to a battery of behavioral tests when they reached adolescence (PND37-44). Animals from cohort 1 were submitted to: 1) the open field test; 2) self-cleaning behavior (PND38); and 3) the motivation test (PND39-41). Animals from cohort 2 were submitted to: 1) the novel object recognition (PND37-39); 2) social investigation test (PND40); and 3) Morris water maze test (PND41-44). At PND45, the animals were euthanized, and the brains were collected for subsequent dendritic analysis. Postnatal ethanol exposure (PEE) caused anxiety-like behavior in females and reduced motivation, and increased hippocampal dendritic arborization in both sexes. MS reduced body weight, increased locomotor activity in females, and increased motivation, and hippocampal dendritic arborization in both sexes. We found that males from the EtOH + MS groups are more socially engaged than females, who were more interested in sweets than males. Altogether, these data suggest that early life adverse conditions may alter behavior in a sex-dependent manner in adolescent rats.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ian Carlos Hübner
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bianca Bennemann
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Cristiane Ribeiro de Carvalho
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
18
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
19
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
20
|
Ball G, Seidlitz J, Beare R, Seal M. Cortical remodelling in childhood is associated with genes enriched for neurodevelopmental disorders. Neuroimage 2020; 215:116803. [DOI: 10.1016/j.neuroimage.2020.116803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
|
21
|
Madarnas C, Villalba NM, Soriano D, Brusco A. Anxious Behavior of Adult CD1 Mice Perinatally Exposed to Low Concentrations of Ethanol Correlates With Morphological Changes in Cingulate Cortex and Amygdala. Front Behav Neurosci 2020; 14:92. [PMID: 32636737 PMCID: PMC7319189 DOI: 10.3389/fnbeh.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Perinatal ethanol (EtOH) exposure is associated with high incidence of behavioral disorders such as depression and anxiety. The cerebral areas related with these consequences involve the corticolimbic system, in particular the prefrontal cortex, hippocampus, amygdala, and cingulate cortex, although the latter has not been thoroughly studied yet. Different animal models of prenatal or perinatal EtOH exposure have reported morphofunctional alterations in the central nervous system, which could explain behavioral disorders along life; these results focus on youth and adolescents and are still controversial. In the light of these inconclusive results, the aim of this work was to analyze adult behavior in CD1 mice perinatally exposed to low concentrations of EtOH (PEE) during gestation and lactation, and describe the morphology of the cingulate cortex and amygdala with a view to establishing structure/function/behavior correlations. Primiparous CD1 female mice were exposed to EtOH 6% v/v for 20 days prior to mating and continued drinking EtOH 6% v/v during pregnancy and lactation. After weaning, male pups were fed food and water ad libitum until 77 days of age, when behavioral and morphological studies were performed. Mouse behavior was analyzed through light–dark box and open field tests. Parameters related to anxious behavior and locomotor activity revealed anxiogenic behavior in PEE mice. After behavioral studies, mice were perfused and neurons, axons, serotonin transporter, 5HT, CB1 receptor (CB1R) and 5HT1A receptor (5HT1AR) were studied by immunofluorescence and immunohistochemistry in brain sections containing cingulate cortex and amygdala. Cingulate cortex and amygdala cytoarchitecture were preserved in adult PEE mice, although a smaller number of neurons was detected in the amygdala. Cingulate cortex axons demonstrated disorganized radial distribution and reduced area. Serotonergic and endocannabinoid systems, both involved in anxious behavior, showed differential expression. Serotonergic afferents were lower in both brain areas of PEE animals, while 5HT1AR expression was lower in the cingulate cortex and higher in the amygdala. The expression of CB1R was lower only in the amygdala. In sum, EtOH exposure during early brain development induces morphological changes in structures of the limbic system and its neuromodulation, which persist into adulthood and may be responsible for anxious behavior.
Collapse
Affiliation(s)
- Catalina Madarnas
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nerina Mariel Villalba
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Delia Soriano
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Bottom RT, Abbott CW, Huffman KJ. Rescue of ethanol-induced FASD-like phenotypes via prenatal co-administration of choline. Neuropharmacology 2020; 168:107990. [PMID: 32044264 DOI: 10.1016/j.neuropharm.2020.107990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Maternal consumption of alcohol during pregnancy can generate a multitude of deficits in the offspring. Fetal Alcohol Spectrum Disorders, or FASD, describe a palette of potentially life-long phenotypes that result from exposure to ethanol during human gestation. There is no cure for FASD and cognitive-behavioral therapies typically have low success rates, especially in severe cases. The neocortex, responsible for complex cognitive and behavioral function, is altered by prenatal ethanol exposure (PrEE). Supplementation with choline, an essential nutrient, during the prenatal ethanol insult has been associated with a reduction of negative outcomes associated with PrEE. However, choline's ability to prevent deficits within the developing neocortex, as well as the underlying mechanisms, remain unclear. Here, we exposed pregnant mice to 25% ethanol in addition to a 642 mg/L choline chloride supplement throughout gestation to determine the impact of choline supplementation on neocortical and behavioral development in ethanol-exposed offspring. We found that concurrent choline supplementation prevented gross developmental abnormalities associated with PrEE including reduced body weight, brain weight, and cortical length as well as partially ameliorated PrEE-induced abnormalities in intraneocortical circuitry. Additionally, choline supplementation prevented altered expression of RZRβ and Id2, two genes implicated in postmitotic patterning of neocortex, and global DNA hypomethylation within developing neocortex. Lastly, choline supplementation prevented sensorimotor behavioral dysfunction and partially ameliorated increased anxiety-like behavior observed in PrEE mice, as assessed by the Suok and Ledge tests. Our results suggest that choline supplementation may represent a potent preventative measure for the adverse outcomes associated with PrEE.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Charles W Abbott
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA; Dept. of Psychology, University of California, Riverside; 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
23
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
24
|
Bottom RT, Krubitzer LA, Huffman KJ. Early postnatal gene expression in the developing neocortex of prairie voles (Microtus ochrogaster) is related to parental rearing style. J Comp Neurol 2020; 528:3008-3022. [PMID: 31930725 DOI: 10.1002/cne.24856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/10/2022]
Abstract
The earliest and most prevalent sensory experience includes tactile, thermal, and olfactory stimulation delivered to the young via contact with the mother, and in some mammals, the father. Prairie voles (Microtus ochrogaster), like humans, are biparental and serve as a model for understanding the impact of parent/offspring interactions on the developing brain. Prairie voles also exhibit natural variation in the level of tactile stimulation delivered by the parents to the offspring, and this has been well documented and quantified. Previous studies revealed that adult prairie vole offspring who received either high (HC) or low (LC) tactile contact from their parents have differences in the size of cortical fields and the connections of somatosensory cortex. In the current investigation, we examined gene expression, intraneocortical connectivity, and cortical thickness in newborn voles to appreciate when differences in HC and LC offspring begin to emerge. We observed differences in developmentally regulated genes, as well as variation in prelimbic and anterior cingulate cortical thickness at postnatal Day 1 (P1) in HC and LC voles. Results from this study suggest that parenting styles, such as those involving high or low physical contact, impact the developing neocortex via very early sensory experience as well as differences in epigenetic modifications that may emerge in HC and LC voles.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
25
|
Conner KE, Bottom RT, Huffman KJ. The Impact of Paternal Alcohol Consumption on Offspring Brain and Behavioral Development. Alcohol Clin Exp Res 2019; 44:125-140. [PMID: 31746471 DOI: 10.1111/acer.14245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) describe the wide array of long-lasting developmental abnormalities in offspring due to prenatal alcohol (ethanol [EtOH]) exposure via maternal gestational drinking. Although the teratogenic consequences of prenatal EtOH exposure, are apparent, the effects of preconception paternal EtOH exposure (PatEE) are still unclear. Previous research suggests that PatEE can induce molecular changes and abnormal behavior in the offspring. However, it is not known whether PatEE impacts the development of the neocortex and behavior in offspring as demonstrated in maternal consumption models of FASD (J Neurosci, 33, 2013, 18893). METHODS In this study, we utilized a novel mouse model of PatEE where male mice self-administered 25% EtOH for an extended period prior to conception, generating indirect exposure to the offspring through the paternal germline. Following mating, we examined the effects of PatEE on offspring neocortical development at postnatal day (P) 0 and evaluated several aspects of behavior at both P20 and P30 using a battery of behavioral assays. RESULTS PatEE resulted in significant impact on neocortical development, including abnormal patterns of gene expression within the neocortex at P0 and subtle alterations in patterns of intraneocortical connections. Additionally, PatEE mice exhibited a sex-specific increase in activity and sensorimotor integration deficits at P20, and decreased balance, coordination, and short-term motor learning at P30. This suggests that PatEE may generate long-lasting, sex-specific effects on offspring behavior. CONCLUSIONS These results demonstrate that the developmental impact of preconception PatEE is more harmful than previously thought and provide additional insights into the biological mechanisms that may underlie atypical behavior observed in children of alcoholic fathers.
Collapse
Affiliation(s)
- Kathleen E Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
26
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
28
|
Chang JL, Bashir M, Santiago C, Farrow K, Fung C, Brown AS, Dettman RW, Dizon MLV. Intrauterine Growth Restriction and Hyperoxia as a Cause of White Matter Injury. Dev Neurosci 2018; 40:344-357. [PMID: 30428455 DOI: 10.1159/000494273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is estimated to occur in 5% of pregnancies, with placental insufficiency being the most common cause in developed countries. While it is known that white matter injury occurs in premature infants, the extent of IUGR on white matter injury is less defined in term infants. We used a novel murine model that utilizes a thromboxane A2 (TXA2) analog (U46619), a potent vasoconstrictor, to induce maternal hypertension and mimic human placental insufficiency-induced IUGR to study the white matter. We also investigated the role of hyperoxia as an additional risk factor for white matter injury, as IUGR infants are at increased risk of respiratory comorbidities leading to increased oxygen exposure. We found that TXA2 analog-induced IUGR results in white matter injury as demonstrated by altered myelin structure and changes in the oligodendroglial cell/oligodendrocyte population. In addition, our study demonstrates that hyperoxia exposure independently results in white matter perturbation. To our knowledge, this is the first study to report single and combined effects of IUGR with hyperoxia impacting the white matter and motor function. These results draw attention to the need for close monitoring of motor development in IUGR babies following hospital discharge as well as highlighting the importance of limiting, as clinically feasible, the degree of oxygen overexposure to potentially improve motor outcomes in this population of infants.
Collapse
Affiliation(s)
- Jill L Chang
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,
| | - Mirrah Bashir
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Kathryn Farrow
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley S Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert W Dettman
- Stanley Manne Children's Research Institute, Chicago, Illinois, USA
| | - Maria L V Dizon
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Jablonski SA, Robinson-Drummer PA, Schreiber WB, Asok A, Rosen JB, Stanton ME. Impairment of the context preexposure facilitation effect in juvenile rats by neonatal alcohol exposure is associated with decreased Egr-1 mRNA expression in the prefrontal cortex. Behav Neurosci 2018; 132:497-511. [PMID: 30346189 DOI: 10.1037/bne0000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which learning about the context (preexposure) and associating the context with a shock (training) occur on separate occasions. The CPFE is sensitive to a range of neonatal alcohol doses (Murawski & Stanton, 2011). The current study examined the impact of neonatal alcohol on Egr-1 mRNA expression in the infralimbic (IL) and prelimbic (PL) subregions of the mPFC, the CA1 of dorsal hippocampus (dHPC), and the lateral nucleus of the amygdala (LA), following the preexposure and training phases of the CPFE. Rat pups were exposed to a 5.25 g/kg/day single binge-like dose of alcohol (Group EtOH) or were sham intubated (SI; Group SI) over postnatal days (PD) 7-9. In behaviorally tested rats, alcohol administration disrupted freezing. Following context preexposure, Egr-1 mRNA was elevated in both EtOH and SI groups compared with baseline control animals in all regions analyzed. Following both preexposure and training, Group EtOH displayed a significant decrease in mPFC Egr-1 mRNA expression compared with Group SI. However, this decrease was greatest after training. Training day decreases in Egr-1 expression were not found in LA or CA1 in Group EtOH compared with Group SI. A second experiment confirmed that the EtOH-induced training-day deficits in mPFC Egr-1 mRNA expression were specific to groups which learned contextual fear (vs. nonassociative controls). Thus, memory processes that engage the mPFC during the context-shock association may be most susceptible to the teratogenic effects of neonatal alcohol. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Arun Asok
- Department of Psychological and Brain Sciences
| | | | | |
Collapse
|
30
|
Krubitzer LA, Prescott TJ. The Combinatorial Creature: Cortical Phenotypes within and across Lifetimes. Trends Neurosci 2018; 41:744-762. [PMID: 30274608 DOI: 10.1016/j.tins.2018.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
The neocortex is one of the most distinctive structures of the mammalian brain, yet also one of the most varied in terms of both size and organization. Multiple processes have contributed to this variability, including evolutionary mechanisms (i.e., alterations in gene sequence) that alter the size, organization, and connections of neocortex, and activity dependent mechanisms that can also modify these same features. Thus, changes to the neocortex can occur over different time-scales, including within a single generation. This combination of genetic and activity dependent mechanisms that create a given cortical phenotype allows the mammalian neocortex to rapidly and flexibly adjust to different body and environmental contexts, and in humans permits culture to impact brain construction.
Collapse
Affiliation(s)
- Leah A Krubitzer
- Center for Neuroscience and Department of Psychology, University of California, Davis, Davis, CA 95616, USA.
| | - Tony J Prescott
- Sheffield Robotics and Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Kozanian OO, Rohac DJ, Bavadian N, Corches A, Korzus E, Huffman KJ. Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala. Front Behav Neurosci 2018; 12:200. [PMID: 30233337 PMCID: PMC6131196 DOI: 10.3389/fnbeh.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70–P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Niusha Bavadian
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Alex Corches
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States.,Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
32
|
Abbott CW, Rohac DJ, Bottom RT, Patadia S, Huffman KJ. Prenatal Ethanol Exposure and Neocortical Development: A Transgenerational Model of FASD. Cereb Cortex 2018; 28:2908-2921. [PMID: 29106518 PMCID: PMC6041800 DOI: 10.1093/cercor/bhx168] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/11/2017] [Indexed: 12/18/2022] Open
Abstract
Fetal Alcohol Spectrum Disorders, or FASD, represent a range of adverse developmental conditions caused by prenatal ethanol exposure (PrEE) from maternal consumption of alcohol. PrEE induces neurobiological damage in the developing brain leading to cognitive-perceptual and behavioral deficits in the offspring. Alcohol-mediated alterations to epigenetic function may underlie PrEE-related brain dysfunction, with these changes potentially carried across generations to unexposed offspring. To determine the transgenerational impact of PrEE on neocortical development, we generated a mouse model of FASD and identified numerous stable phenotypes transmitted via the male germline to the unexposed third generation. These include alterations in ectopic intraneocortical connectivity, upregulation of neocortical Rzrβ and Id2 expression accompanied by both promoter hypomethylation of these genes and decreased global DNA methylation levels. DNMT expression was also suppressed in newborn PrEE cortex, providing further insight into how ethanol perturbs DNA methylation leading to altered regulation of gene transcription. These PrEE-induced, transgenerational phenotypes may be responsible for cognitive, sensorimotor, and behavioral deficits seen in humans with FASD. Thus, understanding the possible epigenetic mechanisms by which these phenotypes are generated may reveal novel targets for therapeutic intervention of FASD and lead to advances in human health.
Collapse
Affiliation(s)
- Charles W Abbott
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - David J Rohac
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Riley T Bottom
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Sahil Patadia
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Kelly J Huffman
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| |
Collapse
|
33
|
Cantacorps L, González-Pardo H, Arias JL, Valverde O, Conejo NM. Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29526773 DOI: 10.1016/j.pnpbp.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time. However, little is known about the long-term effects of maternal alcohol binge drinking on brain function and behaviour. To address this issue, we used pregnant C57BL/6 female mice with time-limited access to a 20% v/v alcohol solution as a procedure to model alcohol binge drinking during gestation and lactational periods. Male offspring were behaviourally tested during adolescence (30 days) and adulthood (60 days), and baseline neural metabolic capacity of brain regions sensitive to alcohol effects were also evaluated in adult animals from both groups. Our results show that prenatal and postnatal alcohol exposure caused age-dependent changes in spontaneous locomotor activity, increased anxiety-like behaviour and attenuated alcohol-induced conditioned place preference in adults. Also, significant changes in neural metabolic capacity using cytochrome c oxidase (CCO) quantitative histochemistry were found in the hippocampal dentate gyrus, the mammillary bodies, the ventral tegmental area, the lateral habenula and the central lobules of the cerebellum in adult mice with prenatal and postnatal alcohol exposure. In addition, the analysis of interregional CCO activity correlations in alcohol-exposed adult mice showed disrupted functional brain connectivity involving the limbic, brainstem, and cerebellar regions. Finally, increased neurogenesis was found in the dentate gyrus of the hippocampus of alcohol-exposed offspring, suggesting neuroadaptive effects due to early alcohol exposure. Our results demonstrate that maternal binge-like alcohol drinking causes long-lasting effects on motor and emotional-related behaviours associated with impaired neuronal metabolic capacity and altered functional brain connectivity.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
34
|
Petrelli B, Weinberg J, Hicks GG. Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol 2018; 96:131-147. [PMID: 29370535 PMCID: PMC5991836 DOI: 10.1139/bcb-2017-0280] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The potential impact of prenatal alcohol exposure (PAE) varies considerably among exposed individuals, with some displaying serious alcohol-related effects and many others showing few or no overt signs of fetal alcohol spectrum disorder (FASD). In animal models, variables such as nutrition, genetic background, health, other drugs, and stress, as well as dosage, duration, and gestational timing of exposure to alcohol can all be controlled in a way that is not possible in a clinical situation. In this review we examine mouse models of PAE and focus on those with demonstrated craniofacial malformations, abnormal brain development, or behavioral phenotypes that may be considered FASD-like outcomes. Analysis of these data should provide a valuable tool for researchers wishing to choose the PAE model best suited to their research questions or to investigate established PAE models for FASD comorbidities. It should also allow recognition of patterns linking gestational timing, dosage, and duration of PAE, such as recognizing that binge alcohol exposure(s) during early gestation can lead to severe FASD outcomes. Identified patterns could be particularly insightful and lead to a better understanding of the molecular mechanisms underlying FASD.
Collapse
Affiliation(s)
- Berardino Petrelli
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, UBC Institute of Mental Health, Vancouver, British Columbia, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
35
|
Ruisch IH, Dietrich A, Glennon JC, Buitelaar JK, Hoekstra PJ. Maternal substance use during pregnancy and offspring conduct problems: A meta-analysis. Neurosci Biobehav Rev 2018; 84:325-336. [DOI: 10.1016/j.neubiorev.2017.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/20/2017] [Indexed: 01/22/2023]
|
36
|
Cantacorps L, Alfonso-Loeches S, Moscoso-Castro M, Cuitavi J, Gracia-Rubio I, López-Arnau R, Escubedo E, Guerri C, Valverde O. Maternal alcohol binge drinking induces persistent neuroinflammation associated with myelin damage and behavioural dysfunctions in offspring mice. Neuropharmacology 2017; 123:368-384. [DOI: 10.1016/j.neuropharm.2017.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023]
|
37
|
Öztürk NC, Resendiz M, Öztürk H, Zhou FC. DNA Methylation program in normal and alcohol-induced thinning cortex. Alcohol 2017; 60:135-147. [PMID: 28433420 DOI: 10.1016/j.alcohol.2017.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis.
Collapse
|
38
|
Abbott CW, Kozanian OO, Kanaan J, Wendel KM, Huffman KJ. The Impact of Prenatal Ethanol Exposure on Neuroanatomical and Behavioral Development in Mice. Alcohol Clin Exp Res 2016; 40:122-33. [PMID: 26727530 DOI: 10.1111/acer.12936] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/10/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND In utero alcohol, or ethanol (EtOH), exposure produces developmental abnormalities in the brain of the fetus, which can result in lifelong behavioral abnormalities. Fetal alcohol spectrum disorders (FASD) is a term used to describe a range of adverse developmental conditions caused by EtOH exposure during gestation. Children diagnosed with FASD potentially exhibit a host of phenotypes including growth retardation, facial dysmorphology, central nervous system anomalies, abnormal behavior, and cognitive deficits. Previous research suggests that abnormal gene expression and circuitry in the neocortex may underlie reported disabilities of learning, memory, and behavior resulting from early exposure to alcohol (J Neurosci, 33, 2013, 18893). METHODS Here, we utilize a mouse model of FASD to examine effects of prenatal EtOH exposure (PrEE), on brain anatomy in newborn (postnatal day [P]0), weanling (P20), and early adult (P50) mice. We correlate abnormal cortical and subcortical anatomy with atypical behavior in adult P50 PrEE mice. In this model, experimental dams self-administered a 25% EtOH solution throughout gestation (gestational days 0 to 19, day of birth), generating the exposure to the offspring. RESULTS Results from these experiments reveal long-term alterations to cortical anatomy, including atypical developmental cortical thinning, and abnormal subcortical development as a result of in utero EtOH exposure. Furthermore, offspring exposed to EtOH during the prenatal period performed poorly on behavioral tasks measuring sensorimotor integration and anxiety. CONCLUSIONS Insight from this study will help provide new information on developmental trajectories of PrEE and the biological etiologies of abnormal behavior in people diagnosed with FASD.
Collapse
Affiliation(s)
- Charles W Abbott
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, California
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Joseph Kanaan
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Kara M Wendel
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Kelly J Huffman
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
39
|
Fish EW, Holloway HT, Rumple A, Baker LK, Wieczorek LA, Moy SS, Paniagua B, Parnell SE. Acute alcohol exposure during neurulation: Behavioral and brain structural consequences in adolescent C57BL/6J mice. Behav Brain Res 2016; 311:70-80. [PMID: 27185739 DOI: 10.1016/j.bbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure (PAE) can induce physical malformations and behavioral abnormalities that depend in part on thedevelopmental timing of alcohol exposure. The current studies employed a mouse FASD model to characterize the long-term behavioral and brain structural consequences of a binge-like alcohol exposure during neurulation; a first-trimester stage when women are typically unaware that they are pregnant. Time-mated C57BL/6J female mice were administered two alcohol doses (2.8g/kg, four hours apart) or vehicle starting at gestational day 8.0. Male and female adolescent offspring (postnatal day 28-45) were then examined for motor activity (open field and elevated plus maze), coordination (rotarod), spatial learning and memory (Morris water maze), sensory motor gating (acoustic startle and prepulse inhibition), sociability (three-chambered social test), and nociceptive responses (hot plate). Regional brain volumes and shapes were determined using magnetic resonance imaging. In males, PAE increased activity on the elevated plus maze and reduced social novelty preference, while in females PAE increased exploratory behavior in the open field and transiently impaired rotarod performance. In both males and females, PAE modestly impaired Morris water maze performance and decreased the latency to respond on the hot plate. There were no brain volume differences; however, significant shape differences were found in the cerebellum, hypothalamus, striatum, and corpus callosum. These results demonstrate that alcohol exposure during neurulation can have functional consequences into adolescence, even in the absence of significant brain regional volumetric changes. However, PAE-induced regional shape changes provide evidence for persistent brain alterations and suggest alternative clinical diagnostic markers.
Collapse
Affiliation(s)
- E W Fish
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - H T Holloway
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L K Baker
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L A Wieczorek
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S S Moy
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - B Paniagua
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S E Parnell
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
40
|
Welch JH, Mayfield JJ, Leibowitz AL, Baculis BC, Valenzuela CF. Third trimester-equivalent ethanol exposure causes micro-hemorrhages in the rat brain. Neuroscience 2016; 324:107-18. [PMID: 26964687 DOI: 10.1016/j.neuroscience.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Exposure to ethanol during fetal development produces long-lasting neurobehavioral deficits caused by functional alterations in neuronal circuits across multiple brain regions. Therapeutic interventions currently used to treat these deficits are only partially efficacious, which is a consequence of limited understanding of the mechanism of action of ethanol. Here, we describe a novel effect of ethanol in the developing brain. Specifically, we show that exposure of rats to ethanol in vapor chambers during the equivalent to the third trimester of human pregnancy causes brain micro-hemorrhages. This effect was observed both at low and high doses of ethanol vapor exposure, and was not specific to this exposure paradigm as it was also observed when ethanol was administered via intra-esophageal gavage. The vast majority of the micro-hemorrhages were located in the cerebral cortex but were also observed in the hypothalamus, midbrain, olfactory tubercle, and striatum. The auditory, cingulate, insular, motor, orbital, retrosplenial, somatosensory, and visual cortices were primarily affected. Immunohistochemical experiments showed that the micro-hemorrhages caused neuronal loss, as well as reactive astrogliosis and microglial activation. Analysis with the Catwalk test revealed subtle deficits in motor function during adolescence/young adulthood. In conclusion, our study provides additional evidence linking developmental ethanol exposure with alterations in the fetal cerebral vasculature. Given that this effect was observed at moderate levels of ethanol exposure, our findings lend additional support to the recommendation that women abstain from consuming alcoholic beverages during pregnancy.
Collapse
Affiliation(s)
- J H Welch
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J J Mayfield
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A L Leibowitz
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - B C Baculis
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - C F Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
41
|
Weinberg J. Commentary: Linking Cortical and Subcortical Developmental Trajectories to Behavioral Deficits in a Mouse Model of Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2016; 40:448-50. [PMID: 26849677 DOI: 10.1111/acer.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia
| |
Collapse
|
42
|
Chi P, Aras R, Martin K, Favero C. Using Swiss Webster mice to model Fetal Alcohol Spectrum Disorders (FASD): An analysis of multilevel time-to-event data through mixed-effects Cox proportional hazards models. Behav Brain Res 2016; 305:1-7. [PMID: 26765502 DOI: 10.1016/j.bbr.2015.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/01/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) collectively describes the constellation of effects resulting from human alcohol consumption during pregnancy. Even with public awareness, the incidence of FASD is estimated to be upwards of 5% in the general population and is becoming a global health problem. The physical, cognitive, and behavioral impairments of FASD are recapitulated in animal models. Recently rodent models utilizing voluntary drinking paradigms have been developed that accurately reflect moderate consumption, which makes up the majority of FASD cases. The range in severity of FASD characteristics reflects the frequency, dose, developmental timing, and individual susceptibility to alcohol exposure. As most rodent models of FASD use C57BL/6 mice, there is a need to expand the stocks of mice studied in order to more fully understand the complex neurobiology of this disorder. To that end, we allowed pregnant Swiss Webster mice to voluntarily drink ethanol via the drinking in the dark (DID) paradigm throughout their gestation period. Ethanol exposure did not alter gestational outcomes as determined by no significant differences in maternal weight gain, maternal liquid consumption, litter size, or pup weight at birth or weaning. Despite seemingly normal gestation, ethanol-exposed offspring exhibit significantly altered timing to achieve developmental milestones (surface righting, cliff aversion, and open field traversal), as analyzed through mixed-effects Cox proportional hazards models. These results confirm Swiss Webster mice as a viable option to study the incidence and causes of ethanol-induced neurobehavioral alterations during development. Future studies in our laboratory will investigate the brain regions and molecules responsible for these behavioral changes.
Collapse
Affiliation(s)
- Peter Chi
- Ursinus College, Computer Science Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Radha Aras
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Katie Martin
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Carlita Favero
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| |
Collapse
|
43
|
Effects of binge ethanol exposure during first-trimester equivalent on corticothalamic neurons in Swiss Webster outbred mice. Neuroreport 2015; 26:1083-8. [DOI: 10.1097/wnr.0000000000000473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
45
|
Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics 2015; 7:1259-74. [DOI: 10.2217/epi.15.60] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. Materials & methods: In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. Results: The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. Conclusion: The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Joachim Kapalanga
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
| | - Christina A Castellani
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
- Program in Neuroscience, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
46
|
Abbott CW, Kozanian OO, Huffman KJ. The effects of lifelong blindness on murine neuroanatomy and gene expression. Front Aging Neurosci 2015; 7:144. [PMID: 26257648 PMCID: PMC4513570 DOI: 10.3389/fnagi.2015.00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain’s organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood.
Collapse
Affiliation(s)
- Charles W Abbott
- Interdisciplinary Neuroscience Graduate Program, University of California, Riverside Riverside, CA, USA
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside Riverside, CA, USA
| | - Kelly J Huffman
- Interdisciplinary Neuroscience Graduate Program, University of California, Riverside Riverside, CA, USA ; Department of Psychology, University of California, Riverside Riverside, CA, USA
| |
Collapse
|
47
|
Skorput AGJ, Yeh HH. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex. Alcohol Clin Exp Res 2015; 39:853-62. [PMID: 25845402 DOI: 10.1111/acer.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal exposure to ethanol exerts teratogenic effects on the developing brain. Here, we tested the hypothesis that exposure to ethanol in utero alters the disposition of Cajal-Retzius cells that play a key role in orchestrating proliferation, migration, and laminar integration of cortical neurons in the embryonic cortex. METHODS Pregnant Ebf2-EGFP mice, harboring EGFP-fluorescent Cajal-Retzius cells, were subjected to a 2% w/w ethanol consumption regimen starting at neural tube closure and lasting throughout gestation. Genesis of Cajal-Retzius cells was assessed by means of 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at embryonic day 12.5, their counts and distribution were determined between postnatal day (P)0 and P4, patch clamp electrophysiology was performed between P2 and P3 to analyze GABA-mediated synaptic activity, and open-field behavioral testing was conducted in P45-P50 adolescents. RESULTS In Ebf2-EGFP embryos exposed to ethanol in utero, we found increased BrdU labeling and expanded distribution of Cajal-Retzius cells in the cortical hem, pointing to increased genesis and proliferation. Postnatally, we found an increase in Cajal-Retzius cell number in cortical layer I. In addition, they displayed altered patterning of spontaneous GABA-mediated synaptic barrages and enhanced GABA-mediated synaptic activity, suggesting enhanced GABAergic tone. CONCLUSIONS These findings, together, underscore that Cajal-Retzius cells contribute to the ethanol-induced aberration of cortical development and abnormal GABAergic neurotransmission at the impactful time when intracortical circuits form.
Collapse
Affiliation(s)
- Alexander G J Skorput
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
48
|
Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJM. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2015; 39:445-54. [PMID: 25703036 DOI: 10.1111/acer.12639] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol and are the leading cause of mental retardation in the United States. There is currently no effective treatment that targets the causes of these disorders. Thus, novel therapies are critically needed to limit the neurodevelopmental and neurodegenerative pathologies associated with FASD. METHODS A neonatal mouse FASD model was used to examine the role of the neuroimmune system in ethanol (EtOH)-induced neuropathology. Neonatal C57BL/6 mice were treated with EtOH, with or without pioglitazone, on postnatal days 4 through 9, and tissue was harvested 1 day post treatment. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits anti-inflammatory activity and is neuroprotective. We compared the effects of EtOH with or without pioglitazone on cytokine and chemokine expression and microglial morphology in the hippocampus, cerebellum, and cerebral cortex. RESULTS In EtOH-treated animals compared with controls, cytokines interleukin-1β and tumor necrosis factor-α mRNA levels were increased significantly in the hippocampus, cerebellum, and cerebral cortex. Chemokine CCL2 mRNA was increased significantly in the hippocampus and cerebellum. Pioglitazone effectively blocked the EtOH-induced increase in the cytokines and chemokine in all tissues to the level expressed in handled-only and vehicle-treated control animals. EtOH also produced a change in microglial morphology in all brain regions that was indicative of microglial activation, and pioglitazone blocked this EtOH-induced morphological change. CONCLUSIONS These studies indicate that EtOH activates microglia to a pro-inflammatory stage and also increases the expression of neuroinflammatory cytokines and chemokines in diverse regions of the developing brain. Further, the anti-inflammatory and neuroprotective PPAR-γ agonist pioglitazone blocked these effects. It is proposed that microglial activation and inflammatory molecules expressed as a result of EtOH treatment during brain development contribute to the sequelae associated with FASD. Thus, pioglitazone and anti-inflammatory pharmaceuticals more broadly have potential as novel therapeutics for FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
49
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015. [PMID: 26878025 DOI: 10.1038/nbt.3121.chip-nexus] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
50
|
Gautam P, Nuñez SC, Narr KL, Mattson SN, May PA, Adnams CM, Riley EP, Jones KL, Kan EC, Sowell ER. Developmental Trajectories for Visuo-Spatial Attention are Altered by Prenatal Alcohol Exposure: A Longitudinal FMRI Study. Cereb Cortex 2014; 25:4761-71. [PMID: 25092900 DOI: 10.1093/cercor/bhu162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) reveals brain activation abnormalities during visuo-spatial attention and working memory among those with fetal alcohol spectrum disorders (FASD) in cross-sectional reports, but little is known about how activation changes over time during development within FASD or typically developing children. We studied 30 controls and 31 individuals with FASD over 2 years (7-14 years at first participation) with a total of 122 scans, as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Despite comparable performance, there were significant group differences in visuo-spatial activation over time bilaterally in frontal, parietal, and temporal regions. Controls showed an increase in signal intensity in these multiple regions whereas FASD participants showed a decrease in brain activation. Effects were also found in 2 small independent samples from the USA, corroborating the findings from the larger group. Results suggest that the long-lasting effect of prenatal alcohol may impact the maturation of visuo-spatial attention and differentiate those with FASD from controls. Based on this first longitudinal fMRI study in FASD children, our novel findings suggest a possible neural mechanism for attention deficits common among individuals with FASD.
Collapse
Affiliation(s)
- P Gautam
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - S C Nuñez
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - K L Narr
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - S N Mattson
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - P A May
- Department of Nutrition, Gillings School of Global Public Health, Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - C M Adnams
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - E P Riley
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - K L Jones
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - E C Kan
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - E R Sowell
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|