1
|
Yuan X, Dong Z, Zhang B, Li Q, Jiang W. Combining single-cell spatial transcriptomics and molecular simulation to develop in vivo probes targeting the perineural invasion region of adenoid cystic carcinoma. Heliyon 2024; 10:e34628. [PMID: 39157355 PMCID: PMC11327542 DOI: 10.1016/j.heliyon.2024.e34628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background and objectives Perineural invasion (PNI) refers to the invasion, encasement, or penetration of tumor cells around or through nerves. Various malignant tumors, including pancreatic cancer, head and neck tumors, and bile duct cancer, exhibit the characteristic of PNI. Particularly, in head and neck-skull base tumors such as adenoid cystic carcinoma (ACC), PNI is a significant factor leading to incomplete surgical resection and postoperative recurrence. Methods Spatial transcriptomic and single-cell transcriptomic sequencing were conducted on a case of ACC tissue with PNI to identify potential probes targeting PNI. The efficacy of the probes was validated through in vivo and in vitro experiments. Results Spatial transcriptomic and single-cell RNA sequencing revealed phenotypic changes in Schwann cells within the PNI region of ACC. Peptide probes were designed based on the antigen-presenting characteristics of Schwann cells in the PNI region, which are dependent on Major Histocompatibility Complex II (MHC-II) molecules. Successful validation in vitro and in vivo experiments confirmed that these probes can label viable Schwann cells in the PNI region, serving as a tool for dynamic in vivo marking of tumor invasion into nerves. Conclusions Peptide probes targeting Schwann cells' MHC-II molecules have the potential to demonstrate the occurrence of PNI in patients with ACC.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, PR China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, PR China
| | - Zijian Dong
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Benjian Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, PR China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, PR China
| | - Qinxuan Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, PR China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, PR China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, PR China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
2
|
Mishra SK, Tiwari SP. Bioenergetics of Axon Integrity and Its Regulation by Oligodendrocytes and Schwann Cells. Mol Neurobiol 2024; 61:5928-5934. [PMID: 38252382 DOI: 10.1007/s12035-024-03950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Axons are long slender portions of neurons that transmit electrical impulses to maintain proper physiological functioning. Axons in the central nervous system (CNS) and peripheral nervous system (PNS) do not exist in isolation but are found to form a complex association with their surrounding glial cells, oligodendrocytes and Schwann cells. These cells not only myelinate them for faster nerve impulse conduction but are also known to provide metabolic support. Due to their incredible length, continuous growth, and distance from the cell body (where major energy synthesis takes place), axons are in high energetic demand. The stability and integrity of axons have long been associated with axonal energy levels. The current mini-review is thus focused on how axons accomplish their high energetic requirement in a cell-autonomous manner and how the surrounding glial cells help them in maintaining their integrity by fulfilling their energy demands (non-cell autonomous trophic support). The concept that adjacent glial cells (oligodendrocytes and Schwann cells) provide trophic support to axons and assist them in maintaining their integrity comes from the conditional knockout research and the studies in which the metabolic pathways controlling metabolism in these glial cells are modulated and its effect on axonal integrity is evaluated. In the later part of the mini-review, the current knowledge of axon-glial metabolic coupling during various neurodegenerative conditions was discussed, along with the potential lacunae in our current understanding of axon-glial metabolic coupling.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Institute for Myelin and Glia Exploration, University at Buffalo, Buffalo, NY, 14203, USA.
- Faculty of Pharmacy, Kalinga University, Raipur, (C.G.), 492101, India.
| | | |
Collapse
|
3
|
Ko PY, Hsu CC, Chen SY, Li CL, Jou IM, Wu PT. The Pulsed Nd:YAG Laser Therapy Enhanced Nerve Regeneration via Apoptosis Inhibition in a Rat Crushed Sciatic Nerve Model. Neurochem Res 2024; 49:949-958. [PMID: 38157112 DOI: 10.1007/s11064-023-04068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The study was aimed to validate the efficacy of the pulsed Nd:YAG laser on nerve regeneration in a rat sciatic nerve crushed model. 54 Wistar rats were randomly assigned into three groups: shame control, crush control, and laser treated group. For the laser treated group, the pulsed Nd:YAG laser (10 Hz) with 350 mJ per pulse in energy density and 50 J/cm2 in fluence was applied extracorporeally at the lesion site for 12 min to daily deliver 500 J immediately and consecutive 9 days following the crush injury. At week 1, the apoptosis-related activities in the injured nerve were examined (n = 8/each group). The sciatic functional index (SFI) was measured preoperatively and weekly until 4 weeks after the index procedure. The injured nerve and the innervated gastrocnemius muscle histology were assessed at week 4 (n = 10/each group). At week 1, the laser group showed the significant less TUNEL-positive ratio (P < 0.05), and the lower expression of cleaved caspase3/procaspase-3 and beclin-2/beclin-2-associated protein X ratios compared with the crush control. Furthermore, the laser group revealed significantly better SFI since week 1 and throughout the study (P < 0.05, all) compared with the crush control. At week 4, the laser group showed significantly higher axon density, lower myelin g-ratio, and the corresponding higher glycogen expression (P < 0.05, all) in the gastrocnemius muscle compared with those in the crush control. The pulsed Nd:YAG might enhance the injured nerve regeneration via apoptosis inhibition.
Collapse
Affiliation(s)
- Po-Yen Ko
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Road, East District, Tainan, 701, Taiwan
| | - Che-Chia Hsu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Road, East District, Tainan, 701, Taiwan
| | - Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chia-Lung Li
- Department of Orthopedics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- GEG Orthopedic Clinic, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Road, East District, Tainan, 701, Taiwan.
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Ikegami Y, Duenki T, Arakaki I, Sakai R, Osaki T, Ashihara S, Furushima T, Ikeuchi Y. A simple and inexpensive laser dissection of fasciculated axons from motor nerve organoids. Front Bioeng Biotechnol 2024; 12:1259138. [PMID: 38347914 PMCID: PMC10859526 DOI: 10.3389/fbioe.2024.1259138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Motor nerve organoids could be generated by culturing a spheroid of motor neurons differentiated from human induced pluripotent stem (iPS) cells within a polydimethylsiloxane (PDMS) chip which guides direction and fasciculation of axons extended from the spheroid. To isolate axon bundles from motor nerve organoids, we developed a rapid laser dissection method based on localized photothermal combustion. By illuminating a blue laser on a black mark on the culture device using a dry-erase marker, we induced highly localized heating near the axon bundles. Moving the laser enabled spatial control over the local heating and severing of axon bundles. This laser dissection requires a black mark, as other colors did not produce the same localized heating effect. A CO2 laser destroyed the tissue and the device and could not be used. With this simple, economical laser dissection technique, we could rapidly collect abundant pure axon samples from motor nerve organoids for biochemical analysis. Extracted axonal proteins and RNA were indistinguishable from manual dissection. This method facilitates efficient axon isolation for further analyses.
Collapse
Affiliation(s)
- Yasuhiro Ikegami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Integrated Micro Mechatronic Systems, National Center for Scientific Research-Institute of Industrial Science (LIMMS/CNRS-IIS), The University of Tokyo, Tokyo, Japan
| | - Ikuma Arakaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Sakai
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ashihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Integrated Micro Mechatronic Systems, National Center for Scientific Research-Institute of Industrial Science (LIMMS/CNRS-IIS), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Wang JN, He S, Yang WX, Lu Y, Li K, Zhang YM, Wang YK. Type III NRG-1 plays a regulatory role in the regeneration process of nerves from the beginning of transplantation. J Orthop Surg Res 2023; 18:707. [PMID: 37730632 PMCID: PMC10512478 DOI: 10.1186/s13018-023-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The present study investigated the effect of type III Neuregulin-1 (NRG-1) on changes in the myelin sheath and the recovery of nerve function during the regeneration process following autologous nerve transplantation. Seventy-two Sprague-Dawley rats were divided into a Blank, Model and (antisense oligonucleotide, ASON) group. The Model and ASON groups of SD rats were subjected to autologous nerve transplantation, and the Blank group only had the sciatic nerve exposed. The Model and ASON groups were given local injections of 2 ml PBS buffer solution and 2 ml ASON of Type III NRG-1, respectively, the NRG-1 type III was inhibited by ASON. Changes in the sciatic nerve functional index (SFI) and conduction velocities were observed at different 6 time points. Regeneration of the myelin sheath was observed using transmission electron microscopy. Type III NRG-1 protein was detected using Western blotting and immunohistochemistry, and NRG-1 mRNA was detected using PCR. The SFI of the ASON group was lower than the Model group after transplantation. The conduction velocities of the ASON group on the 14th and 21st days after autologous nerve transplantation were lower than the Model group (P < 0.01). The protein and mRNA expression of type III NRG-1 in the ASON group was lower than the Model group at all 6 time points. The area of medullated nerve fibres was significantly different between the ASON group and the Model group on the 3rd day (P < 0.05), as was the number of medullated nerve fibres per unit area (P < 0.01). The diameter of axons was obviously different between the two groups (P < 0.01). Type III NRG-1 played an important regulatory role in the regeneration process of the nerve from the beginning of transplantation to the 28th day.
Collapse
Affiliation(s)
- Jun-Ning Wang
- Department of Respiratory, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, People's Republic of China
| | - Sai He
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Wei-Xia Yang
- Department of Pathology, Genertec Universal Xihang Hospital (Xi'an) Co., Ltd., Xi'an, 710021, People's Republic of China
| | - Yao Lu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, People's Republic of China
| | - Kun Li
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, People's Republic of China
| | - Yu-Min Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, People's Republic of China
| | - Ya-Kang Wang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
6
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Chen Z, Fang Y, Jiang W. Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers (Basel) 2023; 15:1360. [PMID: 36900158 PMCID: PMC10000249 DOI: 10.3390/cancers15051360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Perineural invasion (PNI) as the fourth way for solid tumors metastasis and invasion has attracted a lot of attention, recent research reported a new point that PNI starts to include axon growth and possible nerve "invasion" to tumors as the component. More and more tumor-nerve crosstalk has been explored to explain the internal mechanism for tumor microenvironment (TME) of some types of tumors tends to observe nerve infiltration. As is well known, the interaction of tumor cells, peripheral blood vessels, extracellular matrix, other non-malignant cells, and signal molecules in TME plays a key role in the occurrence, development, and metastasis of cancer, as to the occurrence and development of PNI. We aim to summarize the current theories on the molecular mediators and pathogenesis of PNI, add the latest scientific research progress, and explore the use of single-cell spatial transcriptomics in this invasion way. A better understanding of PNI may help to understand tumor metastasis and recurrence and will be beneficial for improving staging strategies, new treatment methods, and even paradigm shifts in our treatment of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Fang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
9
|
Zhang Z, Zhang M, Zhang Z, Sun Y, Wang J, Chang C, Zhu X, Li M, Liu Y. ADSCs Combined with Melatonin Promote Peripheral Nerve Regeneration through Autophagy. Int J Endocrinol 2022; 2022:5861553. [PMID: 35910940 PMCID: PMC9329031 DOI: 10.1155/2022/5861553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the early stage of nerve injury, damaged tissue is cleared by autophagy. ADSCs can promote nerve axon regeneration. However, the microenvironment of the injury was changed, and ADSCs are easily apoptotic after transplantation. Mel plays a role in the apoptosis, proliferation, and differentiation of ADSCs. Therefore, we investigated whether Mel combined with ADSCs promoted peripheral nerve regeneration by enhancing early autophagy of injured nerves. MATERIALS AND METHODS SD rats were randomly split into the control group, model group, Mel group, ADSCs group, ADSCs + Mel group, and 3-MA group. On day 7, autophagy was observed and gait was detected on days 7, 14, 21, and 28. On the 28th day, the sciatic nerve of rats' renewal was detected. RESULTS After 1 w, compare with the model group, the number of autophagosomes and lysosomes and the expressions of protein of LC3-II/LC3-I and Beclin-1 in the ADSCs + Mel group were prominently increased, while the 3-MA group was significantly decreased. After 4 w, the function of the sciatic nerve in ADSCs + Mel was similar to that in the control group. Compared with the model group, the ADSCs + Mel group significantly increased myelin regeneration and the number of motor neurons and reduced gastrocnemius atrophy. CONCLUSIONS It was confirmed that ADSCs combined with Mel could promote sciatic nerve regeneration in rats by changing the early autophagy activity of the injured sciatic nerve.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Zhixiang Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Xinyan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Monan Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
10
|
Fornaro M, Marcus D, Rattin J, Goral J. Dynamic Environmental Physical Cues Activate Mechanosensitive Responses in the Repair Schwann Cell Phenotype. Cells 2021; 10:cells10020425. [PMID: 33671410 PMCID: PMC7922665 DOI: 10.3390/cells10020425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Schwann cells plastically change in response to nerve injury to become a newly reconfigured repair phenotype. This cell is equipped to sense and interact with the evolving and unusual physical conditions characterizing the injured nerve environment and activate intracellular adaptive reprogramming as a consequence of external stimuli. Summarizing the literature contributions on this matter, this review is aimed at highlighting the importance of the environmental cues of the regenerating nerve as key factors to induce morphological and functional changes in the Schwann cell population. We identified four different microenvironments characterized by physical cues the Schwann cells sense via interposition of the extracellular matrix. We discussed how the physical cues of the microenvironment initiate changes in Schwann cell behavior, from wrapping the axon to becoming a multifunctional denervated repair cell and back to reestablishing contact with regenerated axons.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
- Correspondence: ; Tel.: +001-630-515-6055
| | - Dominic Marcus
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Jacob Rattin
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| |
Collapse
|
11
|
Affiliation(s)
- Amelia Trimarco
- INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Carla Taveggia
- INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Zuo S, Shi G, Fan J, Fan B, Zhang X, Liu S, Hao Y, Wei Z, Zhou X, Feng S. Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 2020; 21:48. [PMID: 33273976 PMCID: PMC7706384 DOI: 10.3892/etm.2020.9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit β6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.
Collapse
Affiliation(s)
- Shanhuai Zuo
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guidong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianchao Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
13
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
14
|
Kerns JM, Walter JS, Patetta MJ, Sood A, Hussain AK, Chung JJ, Deshpande A, DesLaurier JT, Dieter RA, Siemionow M, Seiler FA, Amirouche FML, Gonzalez MH. Histological Assessment of Wallerian Degeneration of the Rat Tibial Nerve Following Crush and Transection Injuries. J Reconstr Microsurg 2020; 37:391-404. [PMID: 32971546 DOI: 10.1055/s-0040-1716870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Wallerian degeneration (WD) following peripheral nerve injury (PNI) is an area of growing focus for pharmacological developments. Clinically, WD presents challenges in achieving full functional recovery following PNI, as prolonged denervation of distal tissues for an extended period of time can irreversibly destabilize sensory and motor targets with secondary tissue atrophy. Our objective is to improve upon histological assessments of WD. METHODS Conventional methods utilize a qualitative system simply describing the presence or absence of WD in nerve fibers. We propose a three-category assessment that allows more quantification: A fibers appear normal, B fibers have moderate WD (altered axoplasm), and C fibers have extensive WD (myelin figures). Analysis was by light microscopy (LM) on semithin sections stained with toluidine blue in three rat tibial nerve lesion models (crush, partial transection, and complete transection) at 5 days postop and 5 mm distal to the injury site. The LM criteria were verified at the ultrastructural level. This early outcome measure was compared with the loss of extensor postural thrust and the absence of muscle atrophy. RESULTS The results showed good to excellent internal consistency among counters, demonstrating a significant difference between the crush and transection lesion models. A significant decrease in fiber density in the injured nerves due to inflammation/edema was observed. The growth cones of regenerating axons were evident in the crush lesion group. CONCLUSION The ABC method of histological assessment is a consistent and reliable method that will be useful to quantify the effects of different interventions on the WD process.
Collapse
Affiliation(s)
- James M Kerns
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - James S Walter
- Hines Veterans Affairs Hospital Research Service, Hines, Illinois
| | - Michael J Patetta
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Anshum Sood
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Awais K Hussain
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Joyce J Chung
- University of Illinois College of Medicine, Chicago, Illinois
| | | | | | - Raymond A Dieter
- Hines Veterans Affairs Hospital Research Service, Hines, Illinois
| | - Maria Siemionow
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Figen A Seiler
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois
| | - Farid M L Amirouche
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Mark H Gonzalez
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Huang CT, Chen SH, Chang CF, Lin SC, Lue JH, Tsai YJ. Melatonin reduces neuropathic pain behavior and glial activation through MT 2 melatonin receptor modulation in a rat model of lysophosphatidylcholine-induced demyelination neuropathy. Neurochem Int 2020; 140:104827. [PMID: 32853748 DOI: 10.1016/j.neuint.2020.104827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
In this study, we investigated whether melatonin treatment prevents development of neuropathic pain via suppression of glial mitogen-activated protein kinases (MAPKs) activation in the cuneate nucleus (CN) in a lysophosphatidylcholine (LPC)-induced median nerve demyelination neuropathy model. Rats were fed orally with melatonin once a day at a dose of 37.5, 75, or 150 mg/kg 30 min before until 3 days after LPC treatment. Subsequently, behavioral tests were conducted on these animals, and immunohistochemistry and immunoblotting were used for qualitative and quantitative analysis of glia and MAPKs, including ERK, JNK, and p38, activation. Enzyme-linked immunosorbent assays were applied to measure pro-inflammatory cytokine responses. Furthermore, intra-CN microinjection of S26131 (MT1 receptor antagonist), 4P-PDOT (MT2 receptor antagonist), or prazosin (MT3 receptor antagonist) were performed to investigate the association between melatonin receptor subtypes and effects of melatonin on demyelination neuropathy. LPC treatment of the median nerve induced a significant increase in glial fibrillary acidic protein (GFAP; an astrocyte marker) and ED1 (an activated microglia marker) immunoreactivity in the ipsilateral CN and led to development of neuropathic pain behavior. Inspection of GFAP-immunoreactive astrocytes revealed that astrocytic hypertrophy, but not proliferation, contributed to increased GFAP immunoreactivity. Double immunofluorescence showed that both GFAP-immunoreactive astrocytes and ED1-immunoreactive microglia co-expressed p-ERK, p-JNK, and p-p38 immunoreactivity. Melatonin administration dose-dependently reduced neuropathic pain behavior, decreased glial and MAPKs activation, and diminished the release of pro-inflammatory cytokines in the ipsilateral CN after LPC treatment. Furthermore, 4P-PDOT, but not S26131 or prazosin, antagonized the therapeutic effects of melatonin. In conclusion, administration of melatonin, via its cognate MT2 receptor, inhibited activation of glial MAPKs, production of pro-inflammatory cytokines, and development of demyelination-induced neuropathic pain behavior.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chang Lin
- Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Wang JB, Zhang Z, Li JN, Yang T, Du S, Cao RJ, Cui SS. SPP1 promotes Schwann cell proliferation and survival through PKCα by binding with CD44 and αvβ3 after peripheral nerve injury. Cell Biosci 2020; 10:98. [PMID: 32843960 PMCID: PMC7439540 DOI: 10.1186/s13578-020-00458-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Schwann cells (SCs) play a crucial role in Wallerian degeneration after peripheral nerve injury. The expression of genes in SCs undergo a series of changes, which greatly affect the proliferation and apoptosis of SCs as well as the fate of peripheral nerve regeneration. However, how do these genes regulate the proliferation and apoptosis of SCs remains unclear. RESULTS SPP1 and PKCα were found upregulated after human median peripheral nerve injury, which promoted SCs proliferation and survival. The promoted proliferation and inhibited apoptosis by SPP1 were blocked after the treatment of PKCα antagonist Gö6976. Whereas, the inhibited proliferation and enhanced apoptosis induced by silence of SPP1 could be rescued by the activation of PKCα, which suggested that SPP1 functioned through PKCα. Moreover, both CD44 and αvβ3 were found expressed in SCs and increased after peripheral nerve injury. Silence of CD44 or β3 alleviated the increased proliferation and inhibited apoptosis induced by recombinant osteopontin, suggesting the function of SPP1 on SCs were dependent on CD44 and β3. CONCLUSION These results suggested that SPP1 promoted proliferation and inhibited apoptosis of SCs through PKCα signaling pathway by binding with CD44 and αvβ3. This study provides a potential therapeutic target for improving peripheral nerve recovery.
Collapse
Affiliation(s)
- Jiang-Bo Wang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Jian-Nan Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Rang-Juan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Shu-Sen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| |
Collapse
|
17
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
18
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|
19
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Stassart RM, Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol 2020; 81:490-506. [PMID: 32628805 DOI: 10.1002/dneu.22771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Ruth M Stassart
- Department of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Ashwin Woodhoo
- Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
21
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
22
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
23
|
Abstract
Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
24
|
Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2019; 317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress. The current article serves as a comprehensive, in-depth perspective on peripheral nerve regeneration, particularly nerve guidance conduits and drug delivery strategies. A detailed background of peripheral nerve injury and repair pathology, and an in-depth look into augmented nerve regeneration, nerve guidance conduits, and drug delivery strategies provide a state-of-the-art perspective on the field.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
25
|
Mao S, Zhang S, Zhou S, Huang T, Feng W, Gu X, Yu B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB J 2019; 33:12409-12424. [PMID: 31415184 DOI: 10.1096/fj.201900965r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schwann cells (SCs) play an essential role in nerve injury repair. A striking feature of the cellular response to peripheral nerve injury is the proliferation of SCs. Circular (circ)RNAs are enriched in the nervous system and are involved in physiologic and pathologic processes. However, the potential role of circRNAs in SC proliferation post nerve injury remains largely unknown. Using a sciatic nerve crush model, we obtained an expression profiling of circRNAs in injured sciatic nerves in rats by RNA sequencing and bioinformatics analysis, and we further identified a circRNA [circ-ankyrin repeat and in-between Ring finger (IBR) domain containing 1 (Ankib1)] involved in SC proliferation by the transfection of specific small interfering RNAs. Overexpression of circ-Ankib1, which was specifically and highly enriched in SCs, impaired SC proliferation and axon regeneration following sciatic nerve injury. Mechanistically, increased expression of DEx/H-box helicase 9 (DHX9) postinjury might contribute to the down-regulation of circ-Ankib1, which further suppressed cytochrome P450, family 26, subfamily B, polypeptide 1 expression by sponging miR-423-5p, miR-485-5p, and miR-666-3p, leading to the induction of SC proliferation and nerve regeneration. Taken together, our results reveal a crucial role for circRNAs in regulating proliferation of SCs involved in sciatic nerve regeneration; as such, circRNAs may serve as a potential therapeutic avenue for nerve injury repair.-Mao, S., Zhang, S., Zhou, S., Huang, T., Feng, W., Gu, X., Yu, B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury.
Collapse
Affiliation(s)
- Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shanshan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuoshuo Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
26
|
Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of Metabolic Disruption in Alzheimer's Disease Pathology. Neurotherapeutics 2019; 16:600-610. [PMID: 31270743 PMCID: PMC6694332 DOI: 10.1007/s13311-019-00755-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive disease that slowly destroys cognitive function, such as thinking, remembering, and reasoning, to a level that one cannot carry out a daily living. As people live longer, the risk of developing AD has increased to 1 in 10 among people who are older than 65 and to almost 1 in 2 among those who are older than 85 according to a 2019 Alzheimer's Association report. As a most common cause of dementia, AD accounts for 60-80% of all dementia cases. AD is characterized by amyloid plaques and neurofibrillary tangles, composed of extracellular aggregates of amyloid-β peptides and intracellular aggregates of hyperphosphorylated tau, respectively. Besides plaques and tangles, AD pathology includes synaptic dysfunction including loss of synapses, inflammation, brain atrophy, and brain hypometabolism, all of which contribute to progressive cognitive decline. Recent genetic studies of sporadic cases of AD have identified a score of risk factors, as reported by Hollingworth et al. (Nat Genet 43:429-435, 2001) and Lambert et al. (Nat Genet 45:1452-1458, 2013). Of all these genes, apolipoprotein E4 (APOE4) still presents the biggest risk factor for sporadic cases of AD, as stated in Saunders et al. (Neurology 43:1467-1472, 1993): depending on whether you have 1 or 2 copies of APOE4 allele, the risk increases from 3- to 12-fold, respectively, in line with Genin et al. (Mol Psychiatry 16:903-907, 2011). Besides these genetic risk factors, having type 2 diabetes (T2D), a chronic metabolic disease, is known to increase the AD risk by at least 2-fold when these individuals age, conforming to Sims-Robinson et al. (Nat Rev Neurol 6:551-559, 2010). Diabetes is reaching a pandemic scale with over 422 million people diagnosed worldwide in 2014 according to World Health Organization. Although what proportion of these diabetic patients develop AD is not known, even if 10% of diabetic patients develop AD later in their life, it would double the number of AD patients in the world. Better understanding between T2D and AD is of paramount of importance for the future. The goal of this review is to examine our current understanding on metabolic dysfunction in AD, so that a potential target can be identified in the near future.
Collapse
Affiliation(s)
- J C Ryu
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA
| | - E R Zimmer
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - P Rosa-Neto
- Montreal Neurological Institute, Montreal, Canada
| | - S O Yoon
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front Cell Neurosci 2019; 13:93. [PMID: 30949030 PMCID: PMC6436609 DOI: 10.3389/fncel.2019.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination. We will detail how they control neuregulin-1 (NRG-1) activity at the post-translational level, as the concerted action of alpha, beta and gamma secretases cooperates to balance activating and inhibitory signals necessary for physiological myelination and remyelination. In addition, we will discuss the role of other proteases in nerve repair, among which A Disintegrin And Metalloproteinases (ADAMs) and gamma-secretases substrates. Moreover, we will present how matrix metalloproteinases (MMPs) and proteases of the blood coagulation cascade participate in forming newly synthetized myelin and in regulating axonal regeneration. Overall, we will highlight how a deeper comprehension of secretases and proteases mechanism of action in Wallerian degeneration might be useful to develop new therapies with the potential of readily and efficiently improve the regenerative process.
Collapse
Affiliation(s)
- Marta Pellegatta
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Lin YF, Xie Z, Zhou J, Yin G, Lin HD. Differential gene and protein expression between rat tibial nerve and common peroneal nerve during Wallerian degeneration. Neural Regen Res 2019; 14:2183-2191. [PMID: 31397358 PMCID: PMC6788246 DOI: 10.4103/1673-5374.262602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wallerian degeneration and nerve regeneration after injury are complex processes involving many genes, proteins and cytokines. After different peripheral nerve injuries the regeneration rate can differ. Whether this is caused by differential expression of genes and proteins during Wallerian degeneration remains unclear. The right tibial nerve and the common peroneal nerve of the same rat were exposed and completely cut through and then sutured in the same horizontal plane. On days 1, 7, 14, and 21 after surgery, 1–2 cm of nerve tissue distal to the suture site was dissected out from the tibial and common peroneal nerves. The differences in gene and protein expression during Wallerian degeneration of the injured nerves were then studied by RNA sequencing and proteomic techniques. In the tibial and common peroneal nerves, there were 1718, 1374, 1187, and 2195 differentially expressed genes, and 477, 447, 619, and 495 differentially expressed proteins on days 1, 7, 14, and 21 after surgery, respectively. Forty-seven pathways were activated during Wallerian degeneration. Three genes showing significant differential expression by RNA sequencing (Hoxd4, Lpcat4 and Tbx1) were assayed by real-time quantitative polymerase chain reaction. RNA sequencing and real-time quantitative polymerase chain reaction results were consistent. Our findings showed that expression of genes and proteins in injured tibial and the common peroneal nerves were significantly different during Wallerian degeneration at different time points. This suggests that the biological processes during Wallerian degeneration are different in different peripheral nerves after injury. The procedure was approved by the Animal Experimental Ethics Committee of the Second Military Medical University, China (approval No. CZ20160218) on February 18, 2016.
Collapse
Affiliation(s)
- Yao-Fa Lin
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Zheng Xie
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jun Zhou
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Dong Lin
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University; Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
31
|
Ma KH, Duong P, Moran JJ, Junaidi N, Svaren J. Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia 2018; 66:2487-2502. [PMID: 30306639 PMCID: PMC6289291 DOI: 10.1002/glia.23500] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
The transition of differentiated Schwann cells to support of nerve repair after injury is accompanied by remodeling of the Schwann cell epigenome. The EED-containing polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 methylation and represses key nerve repair genes such as Shh, Gdnf, and Bdnf, and their activation is accompanied by loss of H3K27 methylation. Analysis of nerve injury in mice with a Schwann cell-specific loss of EED showed the reversal of polycomb repression is required and a rate limiting step in the increased transcription of Neuregulin 1 (type I), which is required for efficient remyelination. However, mouse nerves with EED-deficient Schwann cells display slow axonal regeneration with significantly low expression of axon guidance genes, including Sema4f and Cntf. Finally, EED loss causes impaired Schwann cell proliferation after injury with significant induction of the Cdkn2a cell cycle inhibitor gene. Interestingly, PRC2 subunits and CDKN2A are commonly co-mutated in the transition from benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST's). RNA-seq analysis of EED-deficient mice identified PRC2-regulated molecular pathways that may contribute to the transition to malignancy in neurofibromatosis.
Collapse
Affiliation(s)
- Ki H. Ma
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John J. Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nabil Junaidi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
32
|
Park HT, Kim JK, Tricaud N. The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 2018; 67:571-581. [DOI: 10.1002/glia.23509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hwan Tae Park
- Department of Molecular Neuroscience; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Jong Kuk Kim
- Department of Neurology; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM); Université de Montpellier; Montpellier France
| |
Collapse
|
33
|
El Soury M, Fornasari BE, Morano M, Grazio E, Ronchi G, Incarnato D, Giacobini M, Geuna S, Provero P, Gambarotta G. Soluble Neuregulin1 Down-Regulates Myelination Genes in Schwann Cells. Front Mol Neurosci 2018; 11:157. [PMID: 29867349 PMCID: PMC5960709 DOI: 10.3389/fnmol.2018.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves are characterised by the ability to regenerate after injury. Schwann cell activity is fundamental for all steps of peripheral nerve regeneration: immediately after injury they de-differentiate, remove myelin debris, proliferate and repopulate the injured nerve. Soluble Neuregulin1 (NRG1) is a growth factor that is strongly up-regulated and released by Schwann cells immediately after nerve injury. To identify the genes regulated in Schwann cells by soluble NRG1, we performed deep RNA sequencing to generate a transcriptome database and identify all the genes regulated following 6 h stimulation of primary adult rat Schwann cells with soluble recombinant NRG1. Interestingly, the gene ontology analysis of the transcriptome reveals that NRG1 regulates genes belonging to categories that are regulated in the peripheral nerve immediately after an injury. In particular, NRG1 strongly inhibits the expression of genes involved in myelination and in glial cell differentiation, suggesting that NRG1 might be involved in the de-differentiation (or "trans-differentiation") process of Schwann cells from a myelinating to a repair phenotype. Moreover, NRG1 inhibits genes involved in the apoptotic process, and up-regulates genes positively regulating the ribosomal RNA processing, thus suggesting that NRG1 might promote cell survival and stimulate new protein expression. This in vitro transcriptome analysis demonstrates that in Schwann cells NRG1 drives the expression of several genes which partially overlap with genes regulated in vivo after peripheral nerve injury, underlying the pivotal role of NRG1 in the first steps of the nerve regeneration process.
Collapse
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Benedetta E Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Elio Grazio
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | | | - Mario Giacobini
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
34
|
Xu HY, Wang P, Sun YJ, Xu MY, Zhu L, Wu YJ. Activation of Neuregulin 1/ErbB Signaling Is Involved in the Development of TOCP-Induced Delayed Neuropathy. Front Mol Neurosci 2018; 11:129. [PMID: 29740279 PMCID: PMC5925568 DOI: 10.3389/fnmol.2018.00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is characterized by progressive axonal degeneration and demyelination of the spinal cord and sciatic nerves. The neuregulin 1/epidermal growth factor receptor (ErbB) signaling pathway is crucial for axonal myelination. In this study, we investigated whether the neuregulin 1/ErbB signaling pathway mediated the progression of OPIDN. Adult hens were given tri-o-cresyl phosphate (TOCP), a typical neuropathic organophosphorus compound, to induce OPIDN. The ErbB inhibitor lapatinib was administered to hens 4 h prior to and 4 days after TOCP exposure. The neuregulin 1/ErbB signaling pathway was examined for their role in maintaining spinal cord and sciatic nerve fiber integrity. Schwann cell line sNF96.2 was used as the in vitro cell model. The in vivo results showed that TOCP (750 mg/kg body weight, p.o.) induced prominent ataxia and significant axon degeneration in the spinal cord and sciatic nerves. Lapatinib (25 mg/kg body weight, p.o.) treatment attenuated OPIDN clinically and histopathlogically and partially prevented the TOCP-induced activation of neuregulin 1/ErbB signaling pathway. Lapatinib also prevented the TOCP-induced inhibition of neuropathy target esterase (NTE), a key enzyme during the development of OPIDN, and the disturbed metabolism of phosphatidylcholine in sciatic nerves. In addition, lapatinib was shown, in vitro, to protect sNF96.2 cells from TOCP-induced dedifferentiation through neuregulin 1/ErbB signaling. Our results suggest that neuregulin 1/ErbB, through regulation of NTE activity in the peripheral nervous system, mediates the progression of OPIDN. Thus, this signal may serve as a potential target for the treatment of OPIDN.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Zhu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Wang H, Wu J, Zhang X, Ding L, Zeng Q. Microarray analysis of the expression profile of lncRNAs reveals the key role of lncRNA BC088327 as an agonist to heregulin‑1β‑induced cell proliferation in peripheral nerve injury. Int J Mol Med 2018; 41:3477-3484. [PMID: 29568963 DOI: 10.3892/ijmm.2018.3571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/24/2017] [Indexed: 11/05/2022] Open
Abstract
Heregulin‑1β is capable of promoting the nerve regeneration of acellular nerve allografts with skin‑derived precursor differentiated Schwann cell (SC) therapy in peripheral nerve injury. Long non‑coding RNAs (lncRNAs) serve important roles in the regulation of gene transcription and trans-lation in multiple biological processes, but its association with the repair of peripheral nerve injury is unexplored. Therefore, in the present study, the aim was to identify novel indicators for peripheral nerve injury, and to detect whether there is an association between lncRNA expression and the treatment effect of heregulin‑1β on this disorder. The expression status of lncRNAs and mRNAs in a well‑built rat model with sciatic nerve injury was investigated using microarray assays. Based on the results of the microarray assays and quantitative polymerase chain reaction validation, it was inferred that lncRNA BC088327 was upregulated to the largest extent among all the lncRNAs. According to these findings, the role of BC088327 in peripheral nerve injury was further assessed by detecting the cell viability, cell cycle and apoptosis in a hypoxic SC cell model after suppressing the expression of BC088327 using specific small interfering RNA. Based on the results of the lncRNA microarray assay, 805 lncRNAs were significantly differentially expressed, among which, 323 lncRNAs were upregulated and 482 lncRNAs were downregulated. Based on the results of the mRNA microarray assay, 1,293 lncRNAs were significantly differentially expressed, including 603 upregulated and 690 downregulated lncRNAs. Moreover, knockdown of lncRNA BC088327 suppressed cell viability and induced cell apoptosis and S-phase cell cycle arrest in the SCs. In conclusion, expression profile changes of lncRNAs in peripheral nerve injuries were closely associated with treatment with heregulin‑1β. lncRNA BC088327 may play a synergistic role with heregulin‑1β in repairing peripheral injury, which has the potential be a biomarker for the detection of peripheral injury and a medical target for the development of therapeutic modalities.
Collapse
Affiliation(s)
- Houlei Wang
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jingping Wu
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Xinchao Zhang
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Lei Ding
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Qingmin Zeng
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
36
|
Shin JE, Ha H, Cho EH, Kim YK, Cho Y. Comparative analysis of the transcriptome of injured nerve segments reveals spatiotemporal responses to neural damage in mice. J Comp Neurol 2018; 526:1195-1208. [PMID: 29405296 DOI: 10.1002/cne.24404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
Nerves are particularly vulnerable to damage due to their unique structure with meter-long axons. In the peripheral nervous system neurons and Schwann cells can activate the injury-response program that directs axons to either regenerate or degenerate after traumatic nerve injury. However, the differences between the genetic programs driving nerve regeneration and degeneration have not yet been described extensively. To understand these differences, in this study we have compared the injury-induced transcriptomic changes between the regenerating proximal segment and the degenerating distal segment of a transected nerve, at different post-injury time points. We analyzed the spatiotemporal dynamics of the mouse transcriptome using a sciatic nerve-injury model by means of RNA sequencing. The results of the differentially regulated genes (DEGs) analysis show that some DEG groups are similarly regulated in both proximal and distal segments, and primarily display a positive correlation. However, some DEG groups are exclusively regulated in either the proximal or the distal segment, suggesting that these DEG groups constitute a genetic network for distinguishing the regenerative and degenerative responses. In addition, our gene ontology analysis revealed an enrichment of particular biological processes in different phases and locations. Thus, our data provide a spatiotemporal profile of the transcriptomes that are differentially regulated in either regenerating or degenerating nerves, in vivo. The specific biological processes enriched in the DEG groups might delineate the injury-responsive program that induces contrasting regenerative and degenerative responses in different nerve segments.
Collapse
Affiliation(s)
- Jung Eun Shin
- The Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.,Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Hye Cho
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.,Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
37
|
Zou Y, Xu F, Tang Z, Zhong T, Cao J, Guo Q, Huang C. Distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve. Mol Pain 2018; 12:1744806916681566. [PMID: 28256957 PMCID: PMC5521344 DOI: 10.1177/1744806916681566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although calcitonin gene-related peptide is a recognized pain transducer, the expression of calcitonin gene-related peptide in primary afferents may be differentially affected following different types of nerve injury. Here, we examined whether different calcitonin gene-related peptide expression patterns in primary afferents contributes to distinct sensory disturbances in three animal models of sciatic nerve injury: chronic constriction injury, mild (100g force) or strong (1000g force) transient crush in rats. Assessments of withdrawal reflexes and spontaneous behavior indicated that chronic constriction injury and mild crush resulted in positive neuropathic symptoms (static/dynamic mechanical allodynia, heat hyperalgesia, cold allodynia, spontaneous pain). However, strong crush led to both positive (dynamic mechanical allodynia, cold allodynia, spontaneous pain) and negative symptoms (static mechanical hypoesthesia, heat hypoalgesia). Calcitonin gene-related peptide immunoreactivity in dorsal root ganglia and corresponding spinal cord segments, and calcitonin gene-related peptide mRNA levels in dorsal root ganglia, indicated that the primary afferent calcitonin gene-related peptide supply was markedly reduced only after strong crush. This reduction paralleled the development of negative symptoms (static mechanical hypoesthesia and heat hypoalgesia). Administration of exogenous calcitonin gene-related peptide intrathecally after strong crush did not alter heat hypoalgesia but ameliorated static mechanical hypoesthesia, an effect blocked by a calcitonin gene-related peptide receptor antagonist. Thus, reducing the primary afferent calcitonin gene-related peptide supply contributed to subsequent negative neuropathic symptoms, especially to static mechanical stimuli. Moreover, nerve injury caused a subcellular redistribution of calcitonin gene-related peptide from small- and medium-size dorsal root ganglia neurons to large-size dorsal root ganglia neurons, which paralleled the development of positive neuropathic symptoms. Intrathecal administration of the calcitonin gene-related peptide receptor antagonist ameliorated these positive symptoms, indicating that the expression of calcitonin gene-related peptide in large-size dorsal root ganglia neurons is important for the positive neuropathic symptoms in all three models. Taken together, these results suggest that distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve.
Collapse
Affiliation(s)
- Yu Zou
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Fangting Xu
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhaohui Tang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Tao Zhong
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Jiawei Cao
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Changsheng Huang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:41-71. [PMID: 30151648 DOI: 10.1007/5584_2018_254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the "gold standard" is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.
Collapse
Affiliation(s)
- Metzere Bierlein De la Rosa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,Veterinary Specialty Center, Buffalo Grove, IL, USA
| | - Emily M Kozik
- Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald S Sakaguchi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA. .,Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Neuroscience Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
39
|
Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J Neurosci 2017; 37:10955-10970. [PMID: 28982707 DOI: 10.1523/jneurosci.0903-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
Collapse
|
40
|
Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R, Jessen KR, Aitman TJ. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury. Cell Rep 2017; 20:2719-2734. [PMID: 28903050 PMCID: PMC5608958 DOI: 10.1016/j.celrep.2017.08.064] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/17/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022] Open
Abstract
Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair.
Collapse
Affiliation(s)
- Peter J Arthur-Farraj
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Medicine, Imperial College, London W12 0NN, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Claire C Morgan
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Martyna Adamowicz
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 2XU, UK
| | - Jose A Gomez-Sanchez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Shaline V Fazal
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Anthony Beucher
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Bonnie Razzaghi
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Timothy J Aitman
- Department of Medicine, Imperial College, London W12 0NN, UK; Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 2XU, UK.
| |
Collapse
|
41
|
Martinez-Moreno M, O'Shea TM, Zepecki JP, Olaru A, Ness JK, Langer R, Tapinos N. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA. Cell Rep 2017; 20:1950-1963. [PMID: 28834756 PMCID: PMC5800313 DOI: 10.1016/j.celrep.2017.07.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 07/24/2017] [Indexed: 10/24/2022] Open
Abstract
Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology.
Collapse
Affiliation(s)
- Margot Martinez-Moreno
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Timothy Mark O'Shea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John P Zepecki
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Alexander Olaru
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Jennifer K Ness
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikos Tapinos
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA.
| |
Collapse
|
42
|
Jang SY, Yoon BA, Shin YK, Yun SH, Jo YR, Choi YY, Ahn M, Shin T, Park JI, Kim JK, Park HT. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia 2017; 65:1848-1862. [DOI: 10.1002/glia.23200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 02/03/2023]
Affiliation(s)
- So Young Jang
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Byeol-A Yoon
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Yoon Kyung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Seoug Hoon Yun
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Young Rae Jo
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Yun Young Choi
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute; JeJu National University; Jeju 63243 Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute; JeJu National University; Jeju 63243 Republic of Korea
| | - Joo In Park
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| |
Collapse
|
43
|
Boerboom A, Reusch C, Pieltain A, Chariot A, Franzen R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017; 65:1682-1696. [PMID: 28699206 DOI: 10.1002/glia.23188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
The molecular mechanisms that regulate Schwann cell (SC) plasticity and the role of the Nrg1/ErbB-induced MEK1/ERK1/2 signalling pathway in SC dedifferentiation or in myelination remain unclear. It is currently believed that different levels of MEK1/ERK1/2 activation define the state of SC differentiation. Thus, the identification of new regulators of MEK1/ERK1/2 signalling could help to decipher the context-specific aspects driving the effects of this pathway on SC plasticity. In this perspective, we have investigated the potential role of KIAA1199, a protein that promotes ErbB and MEK1/ERK1/2 signalling in cancer cells, in SC plasticity. We depleted KIAA1199 in the SC-derived MSC80 cell line with RNA-interference-based strategy and also generated Tamoxifen-inducible and conditional mouse models in which KIAA1199 is inactivated through homologous recombination, using the Cre-lox technology. We show that the invalidation of KIAA1199 in SC decreases the expression of cJun and other negative regulators of myelination and elevates Krox20, driving them towards a pro-myelinating phenotype. We further show that in dedifferentiation conditions, SC invalidated for KIAA1199 exhibit lower myelin clearance as well as increased myelination capacity. Finally, the Nrg1-induced activation of the MEK/ERK/1/2 pathway is severely reduced when KIAA1199 is absent, indicating that KIAA1199 promotes Nrg1-dependent MEK1 and ERK1/2 activation in SCs. In conclusion, this work identifies KIAA1199 as a novel regulator of MEK/ERK-induced SC dedifferentiation and contributes to a better understanding of the molecular control of SC dedifferentiation.
Collapse
Affiliation(s)
| | - Céline Reusch
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | | | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wavre, Belgium
| | | |
Collapse
|
44
|
Abstract
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.
Collapse
|
45
|
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 2017; 74:4049-4057. [PMID: 28600652 PMCID: PMC5641270 DOI: 10.1007/s00018-017-2565-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Collapse
Affiliation(s)
- Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
46
|
Soto J, Monje PV. Axon contact-driven Schwann cell dedifferentiation. Glia 2017; 65:864-882. [PMID: 28233923 DOI: 10.1002/glia.23131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022]
Abstract
Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Jennifer Soto
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Paula V Monje
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| |
Collapse
|
47
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
48
|
AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A 2017; 114:E1707-E1716. [PMID: 28137843 DOI: 10.1073/pnas.1612136114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury.
Collapse
|
49
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
50
|
Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res 2017; 12:1013-1023. [PMID: 28852375 PMCID: PMC5558472 DOI: 10.4103/1673-5374.211172] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development, maturation and regeneration of Schwann cells (SCs), the main glial cells of the peripheral nervous system, require the coordinate and complementary interaction among several factors, signals and intracellular pathways. These regulatory molecules consist of integrins, neuregulins, growth factors, hormones, neurotransmitters, as well as entire intracellular pathways including protein-kinase A, C, Akt, Erk/MAPK, Hippo, mTOR, etc. For instance, Hippo pathway is overall involved in proliferation, apoptosis, regeneration and organ size control, being crucial in cancer proliferation process. In SCs, Hippo is linked to merlin and YAP/TAZ signaling and it seems to respond to mechanic/physical challenges. Recently, among factors regulating SCs, also the signaling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) proved relevant for SC fate, participating in the regulation of adhesion, motility, migration and in vitro myelination. In SCs, the factors Src and FAK are regulated by the neuroactive steroid allopregnanolone, thus corroborating the importance of this steroid in the control of SC maturation. In this review, we illustrate some old and novel signaling pathways modulating SC biology and functions during the different developmental, mature and regenerative states.
Collapse
Affiliation(s)
- Luca Franco Castelnovo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Melfi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marinella Ballabio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|