1
|
Ellingson PJ, Shams YO, Parker JR, Calabrese RL, Cymbalyuk GS. Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition. Front Cell Neurosci 2024; 18:1395026. [PMID: 39355175 PMCID: PMC11442309 DOI: 10.3389/fncel.2024.1395026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/08/2024] [Indexed: 10/03/2024] Open
Abstract
For animals to meet environmental challenges, the activity patterns of specialized oscillatory neural circuits, central pattern generators (CPGs), controlling rhythmic movements like breathing and locomotion, are adjusted by neuromodulation. As a representative example, the leech heartbeat is controlled by a CPG driven by two pairs of mutually inhibitory interneurons, heart interneuron (HN) half-center oscillators (HCO). Experiments and modeling indicate that neuromodulation of HCO navigates this CPG between dysfunctional regimes by employing a co-regulating inverted relation; reducing Na+/K+ pump current and increasing hyperpolarization-activated (h-) current. Simply reducing pump activity or increasing h-current leads to either seizure-like bursting or an asymmetric bursting dysfunctional regime, respectively. Here, we demonstrate through modeling that, alongside this coregulation path, a new bursting regime emerges. Both regimes fulfill the criteria for functional bursting activity. Although the cycle periods and burst durations of these patterns are roughly the same, the new one exhibits an intra-burst spike frequency that is twice as high as the other. This finding suggests that neuromodulation could introduce additional functional regimes with higher spike frequency, and thus more effective synaptic transmission to motor neurons. We found that this new regime co-exists with the original bursting. The HCO can be switched between them by a short pulse of excitatory or inhibitory conductance. In this domain of coexisting functional patterns, an isolated cell model exhibits only one regime, a severely dysfunctional plateau-containing, seizure-like activity. This aligns with widely reported notion that deficiency of inhibition can cause seizures and other dysfunctional neural activities. We show that along the coregulation path of neuromodulation, the high excitability of the single HNs induced by myomodulin is harnessed by mutually inhibitory synaptic interactions of the HCO into the functional bursting pattern.
Collapse
Affiliation(s)
- Parker J. Ellingson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Yousif O. Shams
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jessica R. Parker
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
2
|
Voges N, Lima V, Hausmann J, Brovelli A, Battaglia D. Decomposing Neural Circuit Function into Information Processing Primitives. J Neurosci 2024; 44:e0157232023. [PMID: 38050070 PMCID: PMC10866194 DOI: 10.1523/jneurosci.0157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023] Open
Abstract
It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.
Collapse
Affiliation(s)
- Nicole Voges
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Vinicius Lima
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
| | - Johannes Hausmann
- R&D Department, Hyland Switzerland Sarl, Corcelles NE 2035, Switzerland
| | - Andrea Brovelli
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Demian Battaglia
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67000, France
| |
Collapse
|
3
|
Lane BJ, Kick DR, Wilson DK, Nair SS, Schulz DJ. Dopamine maintains network synchrony via direct modulation of gap junctions in the crustacean cardiac ganglion. eLife 2018; 7:e39368. [PMID: 30325308 PMCID: PMC6199132 DOI: 10.7554/elife.39368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
The Large Cell (LC) motor neurons of the crab cardiac ganglion have variable membrane conductance magnitudes even within the same individual, yet produce identical synchronized activity in the intact network. In a previous study we blocked a subset of K+ conductances across LCs, resulting in loss of synchronous activity (Lane et al., 2016). In this study, we hypothesized that this same variability of conductances makes LCs vulnerable to desynchronization during neuromodulation. We exposed the LCs to serotonin (5HT) and dopamine (DA) while recording simultaneously from multiple LCs. Both amines had distinct excitatory effects on LC output, but only 5HT caused desynchronized output. We further determined that DA rapidly increased gap junctional conductance. Co-application of both amines induced 5HT-like output, but waveforms remained synchronized. Furthermore, DA prevented desynchronization induced by the K+ channel blocker tetraethylammonium (TEA), suggesting that dopaminergic modulation of electrical coupling plays a protective role in maintaining network synchrony.
Collapse
Affiliation(s)
- Brian J Lane
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Daniel R Kick
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - David K Wilson
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Satish S Nair
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaUnited States
| | - David J Schulz
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| |
Collapse
|
4
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
White RS, Spencer RM, Nusbaum MP, Blitz DM. State-dependent sensorimotor gating in a rhythmic motor system. J Neurophysiol 2017; 118:2806-2818. [PMID: 28814634 DOI: 10.1152/jn.00420.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity.NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.
Collapse
Affiliation(s)
- Rachel S White
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dawn M Blitz
- Department of Biology, Miami University, Oxford, Ohio; and
| |
Collapse
|
6
|
Chever O, Dossi E, Pannasch U, Derangeon M, Rouach N. Astroglial networks promote neuronal coordination. Sci Signal 2016; 9:ra6. [DOI: 10.1126/scisignal.aad3066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Marder E, O'Leary T, Shruti S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 2015; 37:329-46. [PMID: 25032499 DOI: 10.1146/annurev-neuro-071013-013958] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators act, a phenomenon known as state dependence. We provide insights from experiments and computational work that show how state dependence can arise and the consequences it can have for cellular and circuit function. These observations pose a general unsolved question that is relevant to all nervous systems: How is robust modulation achieved in spite of animal-to-animal variability and degenerate, nonlinear mechanisms for the production of neuronal and network activity?
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454; , ,
| | | | | |
Collapse
|
8
|
Davis A, Abraham E, McEvoy E, Sonnenfeld S, Lewis C, Hubbard CS, Dolence EK, Rose JD, Coddington E. Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis. Horm Behav 2015; 69:39-49. [PMID: 25528549 DOI: 10.1016/j.yhbeh.2014.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT-OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 μg/0.1mL amphibian Ringers). The brains were collected 30 min post-VT-OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT-OG, sum intensity of VT-OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses.
Collapse
Affiliation(s)
- Audrey Davis
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Emily Abraham
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Erin McEvoy
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Sarah Sonnenfeld
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Christine Lewis
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Catherine S Hubbard
- Department of Neural & Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - E Kurt Dolence
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - James D Rose
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Emma Coddington
- Department of Biology, Willamette University, Salem, OR 97301, USA.
| |
Collapse
|
9
|
Abstract
We use computational models to examine the circumstances under which modulation of a single neuron can alter the dynamics of an entire circuit. We show that under some circumstances, the circuit's behavior is robust to the neuromodulation of a single hub neuron, while under other circumstances the same neuromodulatory action of a single neuron can produce a large variety of circuit outcomes. Neuromodulation of a single neuron in a circuit can either have little to no effect on the output of the circuit, or it can change the pattern of activity within that circuit. This is dependent on the synaptic parameters given the same circuit architecture, thus illustrating the insufficiency of the connectome alone for determining circuit behavior. ![]()
When does neuromodulation of a single neuron influence the output of the entire network? We constructed a five-cell circuit in which a neuron is at the center of the circuit and the remaining neurons form two distinct oscillatory subnetworks. All neurons were modeled as modified Morris−Lecar models with a hyperpolarization-activated conductance (ḡh) in addition to calcium (ḡCa), potassium (ḡK), and leak conductances. We determined the effects of varying ḡCa, ḡK, and ḡh on the frequency, amplitude, and duty cycle of a single neuron oscillator. The frequency of the single neuron was highest when the ḡK and ḡh conductances were high and ḡCa was moderate whereas, in the traditional Morris−Lecar model, the highest frequencies occur when both ḡK and ḡCa are high. We randomly sampled parameter space to find 143 hub oscillators with nearly identical frequencies but with disparate maximal conductance, duty cycles, and burst amplitudes, and then embedded each of these hub neurons into networks with different sets of synaptic parameters. For one set of network parameters, circuit behavior was virtually identical regardless of the underlying conductances of the hub neuron. For a different set of network parameters, circuit behavior varied with the maximal conductances of the hub neuron. This demonstrates that neuromodulation of a single target neuron may dramatically alter the performance of an entire network when the network is in one state, but have almost no effect when the circuit is in a different state.
Collapse
|
10
|
The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. J Neurosci 2013; 33:16565-75. [PMID: 24133260 DOI: 10.1523/jneurosci.2903-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor neuron activity is transformed into muscle movement through a cascade of complex molecular and biomechanical events. This nonlinear mapping of neural inputs to motor behaviors is called the neuromuscular transform (NMT). We examined the NMT in the cardiac system of the lobster Homarus americanus by stimulating a cardiac motor nerve with rhythmic bursts of action potentials and measuring muscle movements in response to different stimulation patterns. The NMT was similar across preparations, which suggested that it could be used to predict muscle movement from spontaneous neural activity in the intact heart. We assessed this possibility across semi-intact heart preparations in two separate analyses. First, we performed a linear regression analysis across 122 preparations in physiological saline to predict muscle movements from neural activity. Under these conditions, the NMT was predictive of contraction duty cycle but was unable to predict contraction amplitude, likely as a result of uncontrolled interanimal variability. Second, we assessed the ability of the NMT to predict changes in motor output induced by the neuropeptide C-type allatostatin. Wiwatpanit et al. (2012) showed that bath application of C-type allatostatin produced either increases or decreases in the amplitude of the lobster heart contractions. We show that an important component of these preparation-dependent effects can arise from quantifiable differences in the basal state of each preparation and the nonlinear form of the NMT. These results illustrate how properly characterizing the relationships between neural activity and measurable physiological outputs can provide insight into seemingly idiosyncratic effects of neuromodulators across individuals.
Collapse
|
11
|
Bistability of silence and seizure-like bursting. J Neurosci Methods 2013; 220:179-89. [DOI: 10.1016/j.jneumeth.2013.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/17/2022]
|
12
|
Removal of default state-associated inhibition during repetition priming improves response articulation. J Neurosci 2013; 32:17740-52. [PMID: 23223294 DOI: 10.1523/jneurosci.4137-12.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Behavior is a product of both the stimuli encountered and the current internal state. At the level of the nervous system, the internal state alters the biophysical properties of, and connections between, neurons establishing a "network state." To establish a network state, the nervous system must be altered from an initial default/resting state, but what remains unclear is the extent to which this process represents induction from a passive default state or the removal of suppression by an active default state. We use repetition priming (a history-dependent improvement of behavioral responses to repeatedly encountered stimuli) to determine the cellular mechanisms underlying the transition from the default to the primed network state. We demonstrate that both removal of active suppression and induction of neuron excitability changes each contribute separately to the production of a primed state. The feeding system of Aplysia californica displays repetition priming via an increase in the activity of the radula closure neuron B8, which results in increased bite strength with each motor program. We found that during priming, B8 received progressively less inhibitory input from the multifunctional neurons B4/5. Additionally, priming enhanced the excitability of B8, but the rate at which B8 activity increased as a result of these changes was regulated by the progressive removal of inhibitory input. Thus, the establishment of the network state involves the induction of processes from a rested state, yet the consequences of these processes are conditional upon critical gating mechanisms actively enforced by the default state.
Collapse
|
13
|
High prevalence of multistability of rest states and bursting in a database of a model neuron. PLoS Comput Biol 2013; 9:e1002930. [PMID: 23505348 PMCID: PMC3591289 DOI: 10.1371/journal.pcbi.1002930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/07/2013] [Indexed: 12/26/2022] Open
Abstract
Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance ()) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of . We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation. It is often not appreciated that different activity regimes can coexist with each other in a given neuron so that a transient stimulus can cause a persistent change of activity. Such multistability of the neuronal dynamics has in fact been shown in a variety of neurons and can play either a functional role or present a substrate for neurological diseases. We explored the propensity for multistability in a database of a leech heart interneuron model, testing each case (parameter set) in a database for multistability. We found a large proportion of multistable cases, especially the coexistence of silent and bursting regimes. This was a surprising result, since these cells pace the heartbeat of the leech, and the coexistence of silence and bursting could disrupt the functional pattern, threatening the viability of the leech. Analysis of networks of mutually inhibitory multistable neurons, however, showed robustness in maintaining functional activity, suggesting that the mutually inhibitory coupling can act as a protective mechanism against failures induced by multistability.
Collapse
|
14
|
Wiwatpanit T, Powers B, Dickinson PS. Inter-animal variability in the effects of C-type allatostatin on the cardiac neuromuscular system in the lobster Homarus americanus. ACTA ACUST UNITED AC 2012; 215:2308-18. [PMID: 22675192 DOI: 10.1242/jeb.069989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the global effects of many modulators on pattern generators are relatively consistent among preparations, modulators can induce different alterations in different preparations. We examined the mechanisms that underlie such variability in the modulatory effects of the peptide C-type allatostatin (C-AST; pQIRYHQCYFNPISCF) on the cardiac neuromuscular system of the lobster Homarus americanus. Perfusion of C-AST through the semi-intact heart consistently decreased the frequency of ongoing contractions. However, the effect of C-AST on contraction amplitude varied between preparations, decreasing in some preparations and increasing in others. To investigate this variable effect, we examined the effects of C-AST both peripherally and centrally. When contractions of the myocardium were elicited by controlled stimuli, C-AST did not alter heart contraction at the periphery (myocardium or neuromuscular junction) in any hearts. However, when applied either to the semi-intact heart or to the cardiac ganglion (CG) isolated from hearts that responded to C-AST with increased contraction force, C-AST increased both motor neuron burst duration and the number of spikes per burst by about 25%. In contrast, CG output was increased only marginally in hearts that responded to C-AST with a decrease in contraction amplitude, suggesting that the decrease in amplitude in those preparations resulted from decreased peripheral facilitation. Our data suggest that the differential effects of a single peptide on the cardiac neuromuscular system are due solely to differential effects of the peptide on the pattern generator; the extent to which the peptide induces increased burst duration is crucial in determining its overall effect on the system.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
15
|
Clemens S, Belin-Rauscent A, Simmers J, Combes D. Opposing modulatory effects of D1- and D2-like receptor activation on a spinal central pattern generator. J Neurophysiol 2012; 107:2250-9. [DOI: 10.1152/jn.00366.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of dopamine in regulating spinal cord function is receiving increasing attention, but its actions on spinal motor networks responsible for rhythmic behaviors remain poorly understood. Here, we have explored the modulatory influence of dopamine on locomotory central pattern generator (CPG) circuitry in the spinal cord of premetamorphic Xenopus laevis tadpoles. Bath application of exogenous dopamine to isolated brain stem-spinal cords exerted divergent dose-dependent effects on spontaneous episodic patterns of locomotory-related activity recorded extracellularly from spinal ventral roots. At low concentration (2 μM), dopamine reduced the occurrence of bursts and fictive swim episodes and increased episode cycle periods. In contrast, at high concentration (50 μM) dopamine reversed its actions on fictive swimming, now increasing both burst and swim episode occurrences while reducing episode periods. The low-dopamine effects were mimicked by the D2-like receptor agonists bromocriptine and quinpirole, whereas the D1-like receptor agonist SKF 38393 reproduced the effects of high dopamine. Furthermore, the motor response to the D1-like antagonist SCH 23390 resembled that to the D2 agonists, whereas the D2-like antagonist raclopride mimicked the effects of the D1 agonist. Together, these findings indicate that dopamine plays an important role in modulating spinal locomotor activity. Moreover, the transmitter's opposing influences on the same target CPG are likely to be accomplished by a specific, concentration-dependent recruitment of independent D2- and D1-like receptor signaling pathways that differentially mediate inhibitory and excitatory actions.
Collapse
Affiliation(s)
- S. Clemens
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina; and
| | - A. Belin-Rauscent
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - J. Simmers
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - D. Combes
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| |
Collapse
|
16
|
Griffith LC. Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect. Curr Opin Neurobiol 2012; 22:609-14. [PMID: 22285110 DOI: 10.1016/j.conb.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
Drosophila melanogaster has historically been the premier model system for understanding the molecular and genetic bases of complex behaviors. In the last decade technical advances, in the form of new genetic tools and electrophysiological and optical methods, have allowed investigators to begin to dissect the neuronal circuits that generate behavior in the adult. The blossoming of circuit analysis in this organism has also reinforced our appreciation of the inadequacy of wiring diagrams for specifying complex behavior. Neuromodulation and neuronal plasticity act to reconfigure circuits on both short and long time scales. These processes act on the connectome, providing context by integrating external and internal cues that are relevant for behavioral choices. New approaches in the fly are providing insight into these basic principles of circuit function.
Collapse
Affiliation(s)
- Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University MS008, Waltham, MA 02454-9110, USA.
| |
Collapse
|
17
|
Viemari JC, Garcia AJ, Doi A, Ramirez JM. Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. Eur J Neurosci 2011; 33:2228-37. [PMID: 21615559 DOI: 10.1111/j.1460-9568.2011.07706.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biogenic amines are not just 'modulators', they are often essential for the execution of behaviors. Here, we explored the role of biogenic amines acting on the pre-Bötzinger complex (pre-BötC), an area located in the ventrolateral medulla which is critical for the generation of different forms of breathing. Isolated in transverse slices from mice, this region continues to spontaneously generate rhythmic activities that resemble normal (eupneic) inspiratory activity in normoxia and gasping in hypoxia. We refer to these as 'fictive eupneic' and 'fictive gasping' activity. When exposed to hypoxia, the pre-BötC transitions from a network state relying on calcium-activated nonspecific cation currents (I(CAN)) and persistent sodium currents (I(Nap)) to one that primarily depends on the I(Nap) current. Here we show that in inspiratory neurons I(Nap)-dependent bursting, blocked by riluzole, but not I(CAN) -dependent bursting, required endogenously released norepinephrine acting on alpha2-noradrenergic receptors (α2-NR). At the network level, fictive eupneic activity persisted while fictive gasping ceased following the blockade of α2-NR. Blockade of α2-NR eliminated fictive gasping even in slice preparations as well as in inspiratory island preparations. Blockade of fictive gasping by α2-NR antagonists was prevented by activation of 5-hydroxytryptamine type 2A receptors (5-HT2A). Our data suggest that gasping depends on the converging aminergic activation of 5-HT2AR and α2-NR acting on riluzole-sensitive mechanisms that have been shown to be crucial for gasping.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Laboratoire Plasticité et Physio-Pathologie de la motricité, CNRS UMR 6196, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
18
|
Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K. Generalised filtering and stochastic DCM for fMRI. Neuroimage 2011; 58:442-57. [PMID: 21310247 DOI: 10.1016/j.neuroimage.2011.01.085] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 11/18/2022] Open
Abstract
This paper is about the fitting or inversion of dynamic causal models (DCMs) of fMRI time series. It tries to establish the validity of stochastic DCMs that accommodate random fluctuations in hidden neuronal and physiological states. We compare and contrast deterministic and stochastic DCMs, which do and do not ignore random fluctuations or noise on hidden states. We then compare stochastic DCMs, which do and do not ignore conditional dependence between hidden states and model parameters (generalised filtering and dynamic expectation maximisation, respectively). We first characterise state-noise by comparing the log evidence of models with different a priori assumptions about its amplitude, form and smoothness. Face validity of the inversion scheme is then established using data simulated with and without state-noise to ensure that DCM can identify the parameters and model that generated the data. Finally, we address construct validity using real data from an fMRI study of internet addiction. Our analyses suggest the following. (i) The inversion of stochastic causal models is feasible, given typical fMRI data. (ii) State-noise has nontrivial amplitude and smoothness. (iii) Stochastic DCM has face validity, in the sense that Bayesian model comparison can distinguish between data that have been generated with high and low levels of physiological noise and model inversion provides veridical estimates of effective connectivity. (iv) Relaxing conditional independence assumptions can have greater construct validity, in terms of revealing group differences not disclosed by variational schemes. Finally, we note that the ability to model endogenous or random fluctuations on hidden neuronal (and physiological) states provides a new and possibly more plausible perspective on how regionally specific signals in fMRI are generated.
Collapse
Affiliation(s)
- Baojuan Li
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
19
|
Garcia AJ, Zanella S, Koch H, Doi A, Ramirez JM. Chapter 3--networks within networks: the neuronal control of breathing. PROGRESS IN BRAIN RESEARCH 2011; 188:31-50. [PMID: 21333801 DOI: 10.1016/b978-0-444-53825-3.00008-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Breathing emerges through complex network interactions involving neurons distributed throughout the nervous system. The respiratory rhythm generating network is composed of micro networks functioning within larger networks to generate distinct rhythms and patterns that characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within the ventrolateral medulla assumes a core function without which respiratory rhythm generation and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic membrane properties that give rise to different types of respiratory rhythmic activities including eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the behaving animal as part of a larger network that receives important inputs from areas such as the pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and sensory inputs that imbue the network with the important ability to adapt to changes in the behavioral, metabolic, and developmental conditions of the organism. This review summarizes our current understanding of these interactions and relates the emerging concepts to insights gained in other rhythm generating networks.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
20
|
History-dependent excitability as a single-cell substrate of transient memory for information discrimination. PLoS One 2010; 5:e15023. [PMID: 21203387 PMCID: PMC3010997 DOI: 10.1371/journal.pone.0015023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron "sees" through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and functional connectivity of different neuronal types.
Collapse
|
21
|
Certel SJ, Leung A, Lin CY, Perez P, Chiang AS, Kravitz EA. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010; 5:e13248. [PMID: 20967276 PMCID: PMC2953509 DOI: 10.1371/journal.pone.0013248] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/05/2010] [Indexed: 11/18/2022] Open
Abstract
Situations requiring rapid decision-making in response to dynamic environmental demands occur repeatedly in natural environments. Neuromodulation can offer important flexibility to the output of neural networks in coping with changing conditions, but the contribution of individual neuromodulatory neurons in social behavior networks remains relatively unknown. Here we manipulate the Drosophila octopaminergic system and assay changes in adult male decision-making in courtship and aggression paradigms. When the functional state of OA neural circuits is enhanced, males exhibit elevated courtship behavior towards other males in both behavioral contexts. Eliminating the expression of the male form of the neural sex determination factor, Fruitless (Fru(M)), in three OA suboesophageal ganglia (SOG) neurons also leads to increased male-male courtship behavior in these same contexts. We analyzed the fine anatomical structure through confocal examination of labeled single neurons to determine the arborization patterns of each of the three Fru(M)-positive OA SOG neurons. These neurons send processes that display mirror symmetric, widely distributed arbors of endings within brain regions including the ventrolateral protocerebra, the SOG and the peri-esophageal complex. The results suggest that a small subset of OA neurons have the potential to provide male selective modulation of behavior at a single neuron level.
Collapse
Affiliation(s)
- Sarah J Certel
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
22
|
Repetition priming of motoneuronal activity in a small motor network: intercellular and intracellular signaling. J Neurosci 2010; 30:8906-19. [PMID: 20592213 DOI: 10.1523/jneurosci.1287-10.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characteristics of central pattern generator (CPG) outputs are subject to extensive modulation. Previous studies of neuromodulation largely focused on immediate actions of neuromodulators, i.e., actions that were exerted at the time when either neuromodulators were present or neuromodulatory inputs to the CPG were active. However, neuromodulatory actions are known to persist when neuromodulators are no longer present. In Aplysia, stimulation of cerebral-buccal interneuron-2 (CBI-2), which activates the feeding CPG, produces a repetition priming of motor programs. This priming is reflected in an increase of firing of motoneurons. As CBI-2 contains two neuromodulatory peptides, FCAP (feeding circuit-activating peptide) and CP2 (cerebral peptide 2), we hypothesized that repetition priming may involve persistent peptidergic neuromodulation. We find that these peptides produce priming-like effects, i.e., they increase the firing of radula-opening (B48) and radula-closing (B8) motoneurons during motor programs. Proekt et al. (2004, 2007) showed that repetition priming of neuron B8 is implemented by modulatory inputs that B8 receives from the CPG. In contrast, our current findings indicate that priming of B48 may be implemented by a direct peptidergic modulation of its intrinsic characteristics via a pathway that activates cAMP. We suggest that the direct versus indirect, i.e., CPG-dependent, repetition priming may be related to the type of input that individual motoneurons receive from the CPG. We suggest that in motoneurons that are driven by concurrent excitation-inhibition, repetition priming is indirect as it is preferentially implemented via modulation of the output of CPGs. In contrast, in motoneurons that are driven by alternating excitation-inhibition, direct modulation of motoneurons may be preferentially used.
Collapse
|
23
|
State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 2010; 30:8251-62. [PMID: 20554877 DOI: 10.1523/jneurosci.5361-09.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
All neuronal networks are modulated by multiple neuropeptides and biogenic amines. Yet, few studies investigate how different modulators interact to regulate network activity. Here we explored the state-dependent functional interactions between three excitatory neuromodulators acting on neurokinin1 (NK1), alpha1 noradrenergic (alpha1 NE), and 5-HT2 serotonin receptors within the pre-Bötzinger complex (pre-BötC), an area critical for the generation of breathing. In anesthetized, in vivo mice, the reliance on endogenous NK1 activation depended on spontaneous breathing frequency and the modulatory state of the animal. Endogenous NK1 activation had no significant respiratory effect when stimulating raphe magnus and/or locus ceruleus, but became critical when alpha1 NE and 5-HT2 receptors were pharmacologically blocked. The dependence of the centrally generated respiratory rhythm on NK1 activation was blunted in the presence of alpha1 NE and 5-HT2 agonists as demonstrated in slices containing the pre-BötC. We conclude that a modulator's action is determined by the concurrent modulation and interaction with other neuromodulators. Deficiencies in one neuromodulator are immediately compensated by the action of other neuromodulators. This interplay could play a role in the state dependency of certain breathing disorders.
Collapse
|
24
|
Friedman AK, Zhurov Y, Ludwar BC, Weiss KR. Motor outputs in a multitasking network: relative contributions of inputs and experience-dependent network states. J Neurophysiol 2009; 102:3711-27. [PMID: 19846618 DOI: 10.1152/jn.00844.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Network outputs elicited by a specific stimulus may differ radically depending on the momentary network state. One class of networks states-experience-dependent states-is known to operate in numerous networks, yet the fundamental question concerning the relative role that inputs and states play in determining the network outputs remains to be investigated in a behaviorally relevant manner. Because previous work indicated that in the isolated nervous system the motor outputs of the Aplysia feeding network are affected by experience-dependent states, we sought to establish the behavioral relevance of these outputs. We analyzed the phasing of firing of radula opening motoneurons (B44 and B48) relative to other previously characterized motoneurons. We found that the overall pattern of motoneuronal firing corresponds to the phasing of movements during feeding behavior, thus indicating a behavioral relevance of network outputs. Previous studies suggested that network inputs act to trigger a response rather than to shape its characteristics, with the latter function being fulfilled by network states. We show this is an oversimplification. In a rested state, different inputs elicited distinct responses, indicating that inputs not only trigger but also shape the responses. However, depending on the combination of inputs and states, responses were either dramatically altered by the network state or were indistinguishable from those observed in the rested state. We suggest that the relative contributions of inputs and states are dynamically regulated and, rather than being fixed, depend on the specifics of states and inputs.
Collapse
Affiliation(s)
- Allyson K Friedman
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|