1
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
2
|
Kapellou A, King A, Graham CAM, Pilic L, Mavrommatis Y. Genetics of caffeine and brain-related outcomes - a systematic review of observational studies and randomized trials. Nutr Rev 2023; 81:1571-1598. [PMID: 37029915 DOI: 10.1093/nutrit/nuad029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Although the stimulant and anxiogenic properties of caffeine are widely accepted, research on its specific effects on the brain remains controversial. Growing evidence shows that interindividual differences in caffeine response may be partly due to variations in genes such as CYP1A2 and ADORA2A, which have been used to identify individuals as "fast" or "slow" caffeine metabolizers and as having a "high" or "low" caffeine sensitivity, respectively. OBJECTIVE The objective of this review was to identify, evaluate, and discuss current evidence on the associations between common genetic variants, caffeine consumption, and brain-related outcomes in humans. DATA SOURCES PubMed and Embase databases were searched for relevant reports based on a predetermined search strategy. DATA EXTRACTION Reports of observational and experimental studies on healthy adults who underwent (a) genetic analysis for polymorphisms in genes associated with caffeine metabolism and effects and (b) measurements of brain-related effects such as anxiety, insomnia, and cognitive performance associated with the consumption of caffeine (habitual intake or supplementation) were included. DATA ANALYSIS Of the 22 records included, 15 were randomized controlled trials, 6 were cross-sectional studies, and 1 was a genome-wide association study. The main outcomes identified were cognitive performance (n = 9), anxiety (n = 7), and sleep disturbance/insomnia (n = 6). Polymorphisms in the CYP1A2 gene were associated with cognitive function, while variations in the ADORA2A gene were associated with anxiety and sleep disturbance. CONCLUSION The present review has provided evidence that variability in the CYP1A2 and the ADORA2A genes may modulate the association between caffeine and brain-related outcomes. Future studies are warranted to investigate the specific polymorphisms implicated in each brain outcome, which cognitive functions are particularly related to caffeine (simple vs complex), whether there are gender differences in anxiety effects, and how habitual caffeine intake may influence the acute effects of caffeine. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021257556.
Collapse
Affiliation(s)
- Angeliki Kapellou
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Alexandra King
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Catherine A M Graham
- Center for Interdisciplinary Research (CEFIR), Cereneo Foundation, Vitznau, Switzerland
| | - Leta Pilic
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Yiannis Mavrommatis
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| |
Collapse
|
3
|
Zhu M, Huang H. The Underlying Mechanisms of Sleep Deprivation Exacerbating Neuropathic Pain. Nat Sci Sleep 2023; 15:579-591. [PMID: 37533626 PMCID: PMC10392808 DOI: 10.2147/nss.s414174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Pain disrupts sleep, and sleep deprivation or interference can alter pain perception in animals and humans, for example by increasing sensitivity to pain. However, the mechanism by which sleep affects neuropathic pain remains unclear. In this review, we discuss the available evidence from the epidemiologic, clinical, and human, as well as laboratory studies. In previous studies, we have found that sleep deprivation affects various injurious systems, including opioids, dopaminergic, immune, orexins, hypothalamic-pituitary-adrenal axis, and adenosine. At the same time, these systems play a crucial role in neuropathic pain regulation. In the complex interactions between these neurobiological systems, there may be potential regulatory pathways through which sleep deprivation amplifies neuropathic pain. Because of the impact sleep problems and neuropathic pain can have on the patients' quality of life, studying the link between sleep and neuropathic pain is important for neuropathic pain prevention and public health.
Collapse
Affiliation(s)
- Manmin Zhu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, People’s Republic of China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, People’s Republic of China
| |
Collapse
|
4
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
5
|
Xiao S, Liu S, Yu H, Xie Y, Guo Y, Fan J, Yao W. A Study on the Mechanism of the Sedative-hypnotic Effect of Cinnamomum camphora chvar. Borneol Essential Oil Based on Network Pharmacology. J Oleo Sci 2022; 71:1063-1073. [PMID: 35691835 DOI: 10.5650/jos.ess21278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this paper, we investigated the sedative-hypnotic effect of Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol), a by-product of steam distillation of Cinnamomum camphora chvar. Borneol, from which natural crystalline borneol (NCB, 98.4% borneol) is obtained. Using locomotor activity tests and pentobarbital sodium-induced sleep test, it was found that BEO significantly reduced locomotor activity (p < 0.05), shortened sleep latency (p < 0.0001), prolonged sleep duration (p < 0.05), and had a sedative-hypnotic effect. We constructed the "components-targets-signaling pathways" and "protein-protein interaction" (PPI) network of BEO using network pharmacology. The results show that the 24 active components of BEO acted on 17 targets, mainly through response to alkaloid and catecholamine transport, and neuroactive ligand-receptor interaction. The PPI network identified 12 key proteins, mainly dopamine receptor (DR)D2, opioid receptor mu 1 (OPRM1), and opioid receptor kappa 1 (OPRK1), and we further analyzed the active components and targets of BEO through molecular docking. The results showed that the active components and targets obtained by network pharmacology analyses had good binding activity, which reflected their multi-component, multi-target, multi-pathway action characteristics. This paper provides a theoretical basis for further study of the mechanism of action of BEO in the treatment of insomnia.
Collapse
Affiliation(s)
- Shanshan Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Shuyan Liu
- Department of Laboratory, Shijiazhuang People's Hospital
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | | | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| |
Collapse
|
6
|
Zheng L, Wang Z, Liu Y, Zhao J, Huang S. Activation of the RMTg Nucleus by Chemogenetic Techniques Alleviates the Learning and Memory Impairment in APP/PS1 Mice. Neuropsychiatr Dis Treat 2022; 18:2957-2965. [PMID: 36573138 PMCID: PMC9789721 DOI: 10.2147/ndt.s388832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE There is a relationship between non-rapid eye movement (NREM) sleep and Alzheimer's disease (AD). The rostromedial tegmental nucleus (RMTg) is activated can enhance NREM. Therefore, our experiment was designed to investigate the effects of activation of RMTg by chemical genetic techniques on APP/PS1 mice learning and memory. MATERIALS AND METHODS After the AAV-hSyn-hM3Dq-mCherry virus was injected into the RMTg nucleus, CNO solution was intraperitoneally injected to activate RMTg. The new object test and Morris water maze were used to determine the learning and memory level; T2-weighted imaging (T2WI) scanning was performed to analyze the volume of hippocampus and entorhinal cortex of each group; The virus transfection status was determined by laser confocal microscope and use immunohistochemical detection to observe the deposition of Beta Amyloid 1-42 (Aβ42). RESULTS Activation of RMTg by chemical genetic techniques can reduce the escape latency and increase discrimination index (RI) and the number of crossing platform; Activation of RMTg by chemical genetic techniques reduced the atrophy of the entorhinal cortex. Aβ42 deposition in the brain was decreased after activation of RMTg. CONCLUSION Activation of the RMTg nucleus by chemogenetic techniques can improve the learning and memory impairment in APP/PS1 mice.
Collapse
Affiliation(s)
- Ling Zheng
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, People's Republic of China
| | - Zhenjie Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Yujia Liu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Jiapei Zhao
- Department of Rehabilitation Medicine, Xiamen Fifth Hospital, Xiamen, People's Republic of China
| | - Saie Huang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, People's Republic of China
| |
Collapse
|
7
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
8
|
Shah HE, Bhawnani N, Ethirajulu A, Alkasabera A, Onyali CB, Anim-Koranteng C, Mostafa JA. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus 2021; 13:e18138. [PMID: 34692346 PMCID: PMC8525689 DOI: 10.7759/cureus.18138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023] Open
Abstract
Iron deficiency anemia caused by severe iron deficiency in infancy is associated with poor health and severe neurological impairment such as mental, motor, social, emotional, neurophysiological, and neurocognitive dysfunction. The behavioral effects of iron deficiency can present themselves in infancy, but they are also found in adulthood. Some behaviors can start in childhood but persist throughout adulthood. The behaviors that are particularly often seen in infants and children include wariness and hesitance, lack of positive affect, and diminished social engagement. The affected behaviors in adults include anxiety, depression, higher complex cogitative tasks, and other psychological disorders. The mechanisms of how iron deficiency affects behavior include affecting the hippocampus, the corpus striatum, and certain neurotransmitters. The hippocampus is a brain region that is essential for memory, learning, and other purposes. The hippocampus is very sensitive to lack of Iron during early development. The corpus striatum dispatches dopamine-rich projects to the prefrontal cortex, and it is involved in controlling executive activities such as planning, inhibitory control, sustained attention, working memory, regulation of emotion, memory storage and retrieval, motivation, and reward. Iron deficiency has been known to cause changes in behavioral and developmental aspects by affecting neurotransmitters such as serotonin, noradrenaline, and dopamine. Iron deficiency causes behavior changes that can present in infancy and, even if corrected postnatally, it can have long-lasting effects well into adulthood.
Collapse
Affiliation(s)
- Hira E Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Bhawnani
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aarthi Ethirajulu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Almothana Alkasabera
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chike B Onyali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Jihan A Mostafa
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Mountney A, Blaze J, Wang Z, Umali M, Flerlage WJ, Dougherty J, Ge Y, Shear D, Haghighi F. Penetrating Ballistic Brain Injury Produces Acute Alterations in Sleep and Circadian-Related Genes in the Rodent Cortex: A Preliminary Study. Front Neurol 2021; 12:745330. [PMID: 34777213 PMCID: PMC8580116 DOI: 10.3389/fneur.2021.745330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans each year, with extremely high prevalence in the Veteran community, and sleep disturbance is one of the most commonly reported symptoms. Reduction in the quality and amount of sleep can negatively impact recovery and result in a wide range of behavioral and physiological symptoms, such as impaired cognition, mood and anxiety disorders, and cardiovascular effects. Thus, to improve long-term patient outcomes and develop novel treatments, it is essential to understand the molecular mechanisms involved in sleep disturbance following TBI. In this effort, we performed transcriptional profiling in an established rodent model of penetrating ballistic brain injury (PBBI) in conjunction with continuous sleep/wake EEG/EMG recording of the first 24 h after injury. Rats subjected to PBBI showed profound differences in sleep architecture. Injured animals spent significantly more time in slow wave sleep and less time in REM sleep compared to sham control animals. To identify PBBI-related transcriptional differences, we then performed transcriptome-wide gene expression profiling at 24 h post-injury, which identified a vast array of immune- related genes differentially expressed in the injured cortex as well as sleep-related genes. Further, transcriptional changes associated with total time spent in various sleep stages were identified. Such molecular changes may underlie the pathology and symptoms that emerge following TBI, including neurodegeneration, sleep disturbance, and mood disorders.
Collapse
Affiliation(s)
- Andrea Mountney
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Umali
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jacqueline Dougherty
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Yongchao Ge
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah Shear
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
10
|
Effects of Electroacupuncture on Sleep via the Dopamine System of the HPA Axis in Rats after Cage Change. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5527060. [PMID: 34306138 PMCID: PMC8270700 DOI: 10.1155/2021/5527060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Background Insomnia is often related to stressful events. The hypothalamus-pituitary-adrenal (HPA) axis is related to stress, and dopamine (DA) and DA receptors are involved in the regulation of HPA axis. Electroacupuncture (EA) can improve sleep in individuals with insomnia, but the mechanism is unclear. We demonstrated that EA can improve sleep in rats after cage change through DA and the DA receptors in the HPA axis. Methods A rat model of insomnia was established by cage change to a dirty cage. The rats in treatment groups were intervened by EA and D1R (or D2R) antagonists. Electroencephalography (EEG) and electromyogram (EMG) were recorded to compare the changes in sleep. The DA, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol (CORT) levels in the plasma and hypothalamus were measured by ELISAs, and the D1R and D2R levels were measured by RT-PCR and immunohistochemistry. Results The dirty group showed a significant increase in the amount of wakefulness and decrease in the amount of NREM sleep, with decreased numbers of long NREM sleep bouts and REM sleep bouts and increased mean duration of wakefulness during the light period. EA and D1R (or D2R) antagonists intervention could improve sleep disturbance by decreasing wakefulness in the light period after cage change, EA and D1R (or D2R) antagonists could increase the hypothalamus DA, CRH, ACTH, CORT level, and the D1R and D2R mRNA levels in the HPA axis, and the effect of EA plus D1R (or D2R) antagonist was not superior to that of EA or D1R (or D2R) antagonists alone. Conclusions EA can improve the sleep of rats after cage change, and the mechanism may be related to the regulation of DA and D1R or D2R in the HPA axis.
Collapse
|
11
|
Earl RK, Ward T, Gerdts J, Eichler EE, Bernier RA, Hudac CM. Sleep Problems in Children with ASD and Gene Disrupting Mutations. The Journal of Genetic Psychology 2021; 182:317-334. [PMID: 33998396 DOI: 10.1080/00221325.2021.1922869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sleep difficulties are pervasive in autism spectrum disorder (ASD), yet how sleep problems relate to underlying biological mechanisms such as genetic etiology is unclear, despite recent reports of profound sleep problems in children with ASD-associated de novo likely gene disrupting (dnLGD) mutations, CHD8, DYRK1A, and ADNP. We aimed to inform etiological contributions to ASD and sleep by characterizing sleep problems in individuals with dnLGD mutations. Participants (N = 2886) were families who completed dichotomous questions about sleep problems within a medical history interview for their child with ASD (age 3-28 years). Confirmatory factor analyses compared between those with ASD and a dnLGD mutation and those with idiopathic ASD (i.e., no known genetic event, NON) highlighted four domains (sleep onset, breathing issues, nighttime awakenings, and daytime tiredness) with sleep onset as a strong factor for both groups. Overall, participant predictors indicated that internalizing behavioral problems and lower cognitive scores were related to increased sleep problems. Internalizing problems were also related to increase nighttime awakenings in the dnLGD group. As an exploratory aim, patterns of sleep issues are described for genetic subgroups with unique patterns including more overall sleep issues in ADNP (n = 19), problems falling asleep in CHD8 (n = 22), and increased daytime naps in DYRK1A (n = 23). Implications for considering genetically defined subgroups when approaching sleep problems in children with ASD are discussed.
Collapse
Affiliation(s)
- Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tracey Ward
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
12
|
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021; 206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Dopamine, orexin (hypocretin), and adenosine systems have dual roles in reward and sleep/arousal suggesting possible mechanisms whereby drugs of abuse may influence both reward and sleep/arousal. While considerable variability exists across studies, drugs of abuse such as cocaine induce an acute sleep loss followed by an immediate recovery pattern that is consistent with a normal response to loss of sleep. Under more chronic cocaine exposure conditions, an abnormal recovery pattern is expressed that includes a retention of sleep disturbance under withdrawal and into abstinence conditions. Conversely, experimentally induced sleep disturbance can increase cocaine seeking. Thus, complementary, sleep-related therapeutic approaches may deserve further consideration along with development of non-human models to better characterize sleep disturbance-reward seeking interactions across drug experience.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
13
|
Erblang M, Sauvet F, Drogou C, Quiquempoix M, Van Beers P, Guillard M, Rabat A, Trignol A, Bourrilhon C, Erkel MC, Léger D, Thomas C, Gomez-Merino D, Chennaoui M. Genetic Determinants of Neurobehavioral Responses to Caffeine Administration during Sleep Deprivation: A Randomized, Cross Over Study (NCT03859882). Genes (Basel) 2021; 12:555. [PMID: 33920292 PMCID: PMC8069049 DOI: 10.3390/genes12040555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).
Collapse
Affiliation(s)
- Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Michaël Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Arnaud Rabat
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Aurélie Trignol
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Damien Léger
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, 75004 Paris, France
| | - Claire Thomas
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| |
Collapse
|
14
|
Downs BW, Blum K, Bagchi D, Kushner S, Bagchi M, Galvin JM, Lewis M, Siwicki D, Brewer R, Boyett B, Baron D, Giordano J, Badgaiyan RD. Molecular neuro-biological and systemic health benefits of achieving dopamine homeostasis in the face of a catastrophic pandemic (COVID- 19): A mechanistic exploration. ACTA ACUST UNITED AC 2020; 7. [PMID: 32934824 DOI: 10.15761/jsin.1000228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the face of the global pandemic of COVID 19, approaching 1.75 Million infected worldwide (4/12/2020) and associated mortality (over 108, 000 as of 4/12/2020) as well-as other catastrophic events including the opioid crisis, a focus on brain health seems prudent [1] (https://www.coronavirus.gov). This manuscript reports on the systemic benefits of restoring and achieving dopamine homeostasis to reverse and normalize thoughts and behaviors of Reward Deficiency Syndrome (RDS) dysfunctional conditions and their effects on behavioral physiology; function of reward genes; and focuses on digestive, immune, eye health, and the constellation of symptomatic behaviors. The role of nutrigenomic interventions on restoring normal brain functions and its benefits on these systems will be discussed. We demonstrate that modulation of dopamine homeostasis using nutrigenomic dopamine agonists, instead of pharmaceutical interventions, is achievable. The allied interlinking with diverse chronic diseases and disorders, roles of free radicals and incidence of anaerobic events have been extensively highlighted. In conjunction, the role of dopamine in aspects of sleep, rapid eye movement and waking are extensively discussed. The integral aspects of food indulgence, the influence of taste sensations, and gut-brain signaling are also discussed along with a special emphasis on ocular health. The detailed mechanistic insight of dopamine, immune competence and the allied aspects of autoimmune disorders are also highlighted. Finally, the integration of dopamine homeostasis utilizing a patented gene test and a research-validated nutrigenomic intervention are presented. Overall, a cutting-edge nutrigenomic intervention could prove to be a technological paradigm shift in our understanding of the extent to which achieving dopamine homeostasis will benefit overall health.
Collapse
Affiliation(s)
- B W Downs
- Department of Nutrigenomics Research, Victory Nutrition International, Inc., Lederach, PA, USA
| | - K Blum
- Department of Nutrigenomics Research, Victory Nutrition International, Inc., Lederach, PA, USA.,Western University, Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA.,Division of Precision Nutrition, GARS IP., LLC, Hollywood Fl., USA, & Geneus Health, LLC., San Antonio, TX, USA
| | - D Bagchi
- Department of Nutrigenomics Research, Victory Nutrition International, Inc., Lederach, PA, USA.,Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - S Kushner
- ALM Research & Development, Oldsmar, FL, USA
| | | | - J M Galvin
- Vitality Medical Wellness Institute, PLLC, Charlotte, NC, USA
| | - McG Lewis
- Departments of Anatomy & Psychiatry, Howard University, School of Medicine, Washington, D., USA
| | - D Siwicki
- Division of Precision Nutrition, GARS IP., LLC, Hollywood Fl., USA, & Geneus Health, LLC., San Antonio, TX, USA
| | - R Brewer
- Division of Precision Nutrition, GARS IP., LLC, Hollywood Fl., USA, & Geneus Health, LLC., San Antonio, TX, USA
| | - B Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
| | - D Baron
- Western University, Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - J Giordano
- National Institute of Holistic and Addiction Studies, Davie, FL, USA
| | - R D Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| |
Collapse
|
15
|
Dornbierer DA, Baur DM, Stucky B, Quednow BB, Kraemer T, Seifritz E, Bosch OG, Landolt HP. Neurophysiological signature of gamma-hydroxybutyrate augmented sleep in male healthy volunteers may reflect biomimetic sleep enhancement: a randomized controlled trial. Neuropsychopharmacology 2019; 44:1985-1993. [PMID: 30959514 PMCID: PMC6785068 DOI: 10.1038/s41386-019-0382-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Gamma-hydroxybutyrate (GHB) is an endogenous GHB/GABAB receptor agonist, which has demonstrated potency in consolidating sleep and reducing excessive daytime sleepiness in narcolepsy. Little is known whether GHB's efficacy reflects the promotion of physiological sleep mechanisms and no study has investigated its sleep consolidating effects under low sleep pressure. GHB (50 mg/kg p.o.) and placebo were administered in 20 young male volunteers at 2:30 a.m., the time when GHB is typically given in narcolepsy, in a randomized, double-blinded, crossover manner. Drug effects on sleep architecture and electroencephalographic (EEG) sleep spectra were analyzed. In addition, current source density (CSD) analysis was employed to identify the effects of GHB on the brain electrical sources of neuronal oscillations. Moreover, lagged-phase synchronization (LPS) analysis was applied to quantify the functional connectivity among sleep-relevant brain regions. GHB prolonged slow-wave sleep (stage N3) at the cost of rapid eye movement (REM) sleep. Furthermore, it enhanced delta-theta (0.5-8 Hz) activity in NREM and REM sleep, while reducing activity in the spindle frequency range (13-15 Hz) in sleep stage N2. The increase in delta power predominated in medial prefrontal cortex, parahippocampal and fusiform gyri, and posterior cingulate cortex. Theta power was particularly increased in the prefrontal cortex and both temporal poles. Moreover, the brain areas that showed increased theta power after GHB also exhibited increased lagged-phase synchronization among each other. Our study in healthy men revealed distinct similarities between GHB-augmented sleep and physiologically augmented sleep as seen in recovery sleep after prolonged wakefulness. The promotion of the sleep neurophysiological mechanisms by GHB may thus provide a rationale for GHB-induced sleep and waking quality in neuropsychiatric disorders beyond narcolepsy.
Collapse
Affiliation(s)
- Dario A Dornbierer
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zürich, Zürich, Switzerland.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland.
| | - Diego M Baur
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | - Benjamin Stucky
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zürich, Zürich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
- HMZ Flagship SleepLoop of UZH and ETHZ, Zürich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019; 253:207-241. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sleep and wakefulness are highly complex processes that are elegantly orchestrated by fine-tuned neurochemical changes among neuronal and non-neuronal ensembles, nuclei, and networks of the brain. Important neurotransmitters and neuromodulators regulating the circadian and homeostatic facets of sleep-wake physiology include melatonin, γ-aminobutyric acid, hypocretin, histamine, norepinephrine, serotonin, dopamine, and adenosine. Dysregulation of these neurochemical systems may cause sleep-wake disorders, which are commonly classified into insomnia disorder, parasomnias, circadian rhythm sleep-wake disorders, central disorders of hypersomnolence, sleep-related movement disorders, and sleep-related breathing disorders. Sleep-wake disorders can have far-reaching consequences on physical, mental, and social well-being and health and, thus, need be treated with effective and rational therapies. Apart from behavioral (e.g., cognitive behavioral therapy for insomnia), physiological (e.g., chronotherapy with bright light), and mechanical (e.g., continuous positive airway pressure treatment of obstructive sleep apnea) interventions, pharmacological treatments often are the first-line clinical option to improve disturbed sleep and wake states. Nevertheless, not all patients respond to pharmacotherapy in uniform and beneficial fashion, partly due to genetic differences. The improved understanding of the neurochemical mechanisms regulating sleep and wakefulness and the mode of action of sleep-wake therapeutics has provided a conceptual framework, to search for functional genetic variants modifying individual drug response phenotypes. This article will summarize the currently known genetic polymorphisms that modulate drug sensitivity and exposure, to partly determine individual responses to sleep-wake pharmacotherapy. In addition, a pharmacogenetic strategy will be outlined how based upon classical and opto-/chemogenetic strategies in animals, as well as human genetic associations, circuit mechanisms regulating sleep-wake functions in humans can be identified. As such, experimental human sleep-wake pharmacogenetics forms a bridge spanning basic research and clinical medicine and constitutes an essential step for the search and development of novel sleep-wake targets and therapeutics.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland.
| | - Sebastian C Holst
- Neurobiology Research Unit and Neuropharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Amandine Valomon
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
17
|
Satterfield BC, Stucky B, Landolt HP, Van Dongen HP. Unraveling the genetic underpinnings of sleep deprivation-induced impairments in human cognition. PROGRESS IN BRAIN RESEARCH 2019; 246:127-158. [DOI: 10.1016/bs.pbr.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Dijk DJ, Landolt HP. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. Handb Exp Pharmacol 2019; 253:441-481. [PMID: 31254050 DOI: 10.1007/164_2019_243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Abstract
Over the period of decades in the mid to late twentieth century, arousal-promoting functions were attributed to neuromodulators including serotonin, hypocretin, histamine, and noradrenaline. For some time, a relatively minor role in regulating sleep and wake states was ascribed to dopamine and the dopamine-producing cells of the ventral tegmental area, despite the fact that dopaminergic signaling is a major target, if not the primary target, for wake-promoting agents. In recent years, due to observations from human genetic studies, pharmacogenetic studies in animal models, and the increasingly sophisticated methods used to manipulate the nervous systems of experimental animals, it has become clear that dopaminergic signaling is central to the regulation of arousal. This chapter reviews this central role of dopaminergic signaling, and in particular its antagonistic interaction with adenosinergic signaling, in maintaining vigilance and in the response to wake-promoting therapeutics.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| |
Collapse
|
20
|
Satterfield BC, Wisor JP, Schmidt MA, Van Dongen HPA. Time-on-Task Effect During Sleep Deprivation in Healthy Young Adults Is Modulated by Dopamine Transporter Genotype. Sleep 2018; 40:4344479. [PMID: 29029252 DOI: 10.1093/sleep/zsx167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Study Objectives The time-on-task (TOT) effect and total sleep deprivation (TSD) have similar effects on neurobehavioral functioning, including increased performance instability during tasks requiring sustained attention. The TOT effect is exacerbated by TSD, suggesting potentially overlapping mechanisms. We probed these mechanisms by investigating genotype-phenotype relationships on psychomotor vigilance test (PVT) performance for 3 a-priori selected genes previously linked to the TOT effect and/or TSD: dopamine active transporter 1 (DAT1), catechol-O-methyltransferase (COMT), and tumor necrosis factor alpha (TNFα). Methods N = 82 healthy adults participated in 1 of 3 laboratory studies. A 10-min PVT was administered repeatedly during 38 h of TSD. We assessed changes in response time (RT) across each minute of the PVT as a function of time awake and genotype. Additionally, cumulative relative RT frequency distributions were constructed to examine changes in performance from the first to the second 5 min of the PVT as a function of genotype. Results DAT1, COMT, and TNFα were associated with differences in the build-up of the TOT effect across the 10-min PVT. DAT1 additionally modulated the interaction between TSD and the TOT effect. Subjects homozygous for the DAT1 10-repeat allele were relatively protected against TOT deficits on the PVT during TSD compared to carriers of the 9-repeat allele. Conclusions DAT1 is known to regulate dopamine reuptake and is highly expressed in the striatum. Our results implicate striatal dopamine in mechanisms involved in performance instability that appear to be common to TSD and the TOT effect. Furthermore, DAT1 may be a candidate biomarker of resilience to the build-up of performance impairment across TOT due to TSD.
Collapse
Affiliation(s)
- Brieann C Satterfield
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Jonathan P Wisor
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Michelle A Schmidt
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| |
Collapse
|
21
|
Chapman JL, Cayanan EA, Hoyos CM, Serinel Y, Comas M, Yee BJ, Wong KKH, Grunstein RR, Marshall NS. Does Armodafinil Improve Driving Task Performance and Weight Loss in Sleep Apnea? A Randomized Trial. Am J Respir Crit Care Med 2018; 198:941-950. [DOI: 10.1164/rccm.201712-2439oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Julia L. Chapman
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- Sydney Local Health District, Sydney, Australia
| | - Elizabeth A. Cayanan
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Nursing School, Sydney, Australia
| | - Camilla M. Hoyos
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney School of Psychology, Sydney, Australia
| | - Yasmina Serinel
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Medical School, Sydney, Australia; and
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Medical School, Sydney, Australia; and
| | - Brendon J. Yee
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Medical School, Sydney, Australia; and
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Keith K. H. Wong
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Medical School, Sydney, Australia; and
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ronald R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Medical School, Sydney, Australia; and
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Nathaniel S. Marshall
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- NeuroSleep, National Health and Medical Research Council Centre of Research Excellence, Sydney, Australia
- University of Sydney Nursing School, Sydney, Australia
| |
Collapse
|
22
|
Effects of COMT genotype and tolcapone on lapses of sustained attention after sleep deprivation in healthy young men. Neuropsychopharmacology 2018; 43:1599-1607. [PMID: 29472644 PMCID: PMC5983551 DOI: 10.1038/s41386-018-0018-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/15/2018] [Accepted: 01/20/2018] [Indexed: 12/26/2022]
Abstract
Tolcapone, a brain penetrant selective inhibitor of catechol-O-methyltransferase (COMT) devoid of psychostimulant properties, improves cognition and cortical information processing in rested volunteers, depending on the genotype of the functional Val158Met polymorphism of COMT. The impact of this common genetic variant on behavioral and neurophysiological markers of increased sleep need after sleep loss is controversial. Here we investigated the potential usefulness of tolcapone to mitigate consequences of sleep deprivation on lapses of sustained attention, and tested the hypothesis that dopamine signaling in the prefrontal cortex (PFC) causally contributes to neurobehavioral and neurophysiological markers of sleep homeostasis in humans. We first quantified in 73 young male volunteers the impact of COMT genotype on the evolution of attentional lapses during 40 h of extended wakefulness. Subsequently, we tested in an independent group of 30 young men whether selective inhibition of COMT activity with tolcapone counteracts attentional and neurophysiological markers of elevated sleep need in a genotype-dependent manner. Neither COMT genotype nor tolcapone affected brain electrical activity in wakefulness and sleep. By contrast, COMT genotype and tolcapone modulated the sleep loss-induced impairment of vigilant attention. More specifically, Val/Met heterozygotes produced twice as many lapses after a night without sleep than Met/Met homozygotes. Unexpectedly, tolcapone further deteriorated the sleep loss-induced performance deficits when compared to placebo, particularly in Val/Met and Met/Met genotypes. The findings suggest that PFC dopaminergic tone regulates sustained attention after sleep loss according to an inverse U-shape relationship, independently of neurophysiological markers of elevated sleep need.
Collapse
|
23
|
Pleasure: The missing link in the regulation of sleep. Neurosci Biobehav Rev 2018; 88:141-154. [PMID: 29548930 DOI: 10.1016/j.neubiorev.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
Although largely unrecognized by sleep scholars, sleeping is a pleasure. This report aims first, to fill the gap: sleep, like food, water and sex, is a primary reinforcer. The levels of extracellular mesolimbic dopamine show circadian oscillations and mark the "wanting" for pro-homeostatic stimuli. Further, the dopamine levels decrease during waking and are replenished during sleep, in opposition to sleep propensity. The wanting of sleep, therefore, may explain the homeostatic and circadian regulation of sleep. Accordingly, sleep onset occurs when the displeasure of excessive waking is maximal, coinciding with the minimal levels of mesolimbic dopamine. Reciprocally, sleep ends after having replenished the limbic dopamine levels. Given the direct relation between waking and mesolimbic dopamine, sleep must serve primarily to gain an efficient waking. Pleasant sleep (i.e. emotional sleep), can only exist in animals capable of feeling emotions. Therefore, although sleep-like states have been described in invertebrates and primitive vertebrates, the association sleep-pleasure clearly marks a difference between the sleep of homeothermic vertebrates and cool blooded animals.
Collapse
|
24
|
Cortical slow wave activity correlates with striatal synaptic strength in normal but not in Parkinsonian rats. Exp Neurol 2018; 301:50-58. [DOI: 10.1016/j.expneurol.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022]
|
25
|
Antidepressant treatment effects on dopamine transporter availability in patients with major depression: a prospective 123I-FP-CIT SPECT imaging genetic study. J Neural Transm (Vienna) 2018; 125:995-1005. [DOI: 10.1007/s00702-018-1863-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
|
26
|
|
27
|
Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation. Sci Rep 2017; 7:45982. [PMID: 28393838 PMCID: PMC5385564 DOI: 10.1038/srep45982] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.
Collapse
|
28
|
Zhang R, Yang YS, Liu XC, Yang JL, Li YH, Shi PZ, Yang C, Qu B. Correlation study of basic Chinese medicine syndromes and neurotransmitter levels in patients with primary insomnia. Chin J Integr Med 2016:10.1007/s11655-016-2752-2. [PMID: 28028724 DOI: 10.1007/s11655-016-2752-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the correlation between basic Chinese medicine (CM) syndromes (deficiency and excess syndromes) and intracranial neurotransmitter levels in primary insomnia (PI), to provide objective indicators and syndrome-based medical evidence for the differentiation of PI. METHODS A total of 158 patients with PI were recruited for CM syndrome differentiation. Another 30 healthy people without sleep disorders were selected as control group. An encephalofluctuograph analyzer was used to test the levels of intracranial neurotransmitters, including γ- aminobutyric acid (GABA), glutamate (Glu), 5-hydroxytryptamine (5-HT), dopamine (DA), etc., and their relevance were analyzed. RESULTS The neurotransmitter levels in the basic-deficiency group were lower than those in the healthy-control group, while the basic-excess group had higher levels than the healthy-control and basic-deficiency groups. Among the neurotransmitters, the 5-HT level was higher in the basic-excess group than in the basic-deficiency group (24.20±4.07 vs. 21.13±3.23; P<0.05); for the intermingled deficiency-excess group, the level of GABA was higher than that in the basic-deficiency group (9.48±3.07 vs. 7.23±3.67; P<0.05), Glu level was higher than that in the healthy-control group (7.53±4.10 vs. 5.83±0.99, P<0.05), and 5-HT and DA levels were lower than those in the healthy-control group (19.80±5.68 vs. 22.63±3.31, 5.27±3.79 vs. 6.83±1.58, respectively; P<0.05). CONCLUSIONS There was a correlation between the basic syndromes and intracranial neurotransmitter levels in patients with PI, which could objectively reflect the CM differentiation in PI. This information could be important for improving CM diagnosis and treatment in PI.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medical Administration, General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| | - Yun-Shuang Yang
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xiao-Chen Liu
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jin-Liang Yang
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Yan-Hui Li
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Peng-Zhan Shi
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Bin Qu
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| |
Collapse
|
29
|
Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 2016; 19:1356-66. [PMID: 27595385 PMCID: PMC5519826 DOI: 10.1038/nn.4377] [Citation(s) in RCA: 399] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Dopaminergic ventral tegmental area (VTA) neurons are critically involved in a variety of behaviors that rely on heightened arousal, but whether they directly and causally control the generation and maintenance of wakefulness is unknown. We recorded calcium activity using fiber photometry in freely behaving mice and found arousal-state-dependent alterations in VTA dopaminergic neurons. We used chemogenetic and optogenetic manipulations together with polysomnographic recordings to demonstrate that VTA dopaminergic neurons are necessary for arousal and that their inhibition suppresses wakefulness, even in the face of ethologically relevant salient stimuli. Nevertheless, before inducing sleep, inhibition of VTA dopaminergic neurons promoted goal-directed and sleep-related nesting behavior. Optogenetic stimulation, in contrast, initiated and maintained wakefulness and suppressed sleep and sleep-related nesting behavior. We further found that different projections of VTA dopaminergic neurons differentially modulate arousal. Collectively, our findings uncover a fundamental role for VTA dopaminergic circuitry in the maintenance of the awake state and ethologically relevant sleep-related behaviors.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Gideon Rothschild
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Jeff R Jones
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
30
|
Wen X, Chen X, Chen S, Tan Y, Rong F, Zhu J, Ma W. Influence of SKF38393 on changes of gene profile in rat prefrontal cortex during chronic paradoxical sleep deprivation. Behav Brain Res 2016; 304:60-6. [PMID: 26851556 DOI: 10.1016/j.bbr.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
Chronic paradoxical sleep deprivation (CSD) can induce dramatic physiological and neurofunctional changes in rats, including decreased body weight, reduced learning and memory, and declined locomotor function. SKF38393, a dopamine D1 receptor agonist, can reverse the above damages. However, the mechanism of CSD syndrome and reversal role of SKF38393 remains largely unexplained. To preliminarily elucidate the mechanism of the neural dysfunction caused by CSD, in the present study we use gene chips to examine the expression profile of more than 28,000 transcripts in the prefrontal cortex (PFC). Rats were sleep deprived by modified multi-platform method for 3 weeks. Totally 59 transcripts showed differential expressions in CSD group in contrast to controls; they included transcripts coding for caffeine metabolism, circadian rhythm, drug metabolism and some amino acid metabolism pathway. Among the 59 transcripts, 39 increased their expression and 20 decreased. Two transcripts can be specifically reversed with SKF38393, one of them is Homer1, which is related to 20 functional classifications and coding for Glutamatergic synapse pathway. Our findings in the present study indicate that long-term sleep deprivation may trigger the changes of some certain functions and pathways in the PFC, and lead to the dysfunction of this advanced neuron, and the activation of D1 receptor by SKF38393 might ameliorate these changes via modulation of some transcripts such as Homer1, which is involved in the Ca(2+) pathway and MAPK pathway related to Glutamatergic synapse pathway.
Collapse
Affiliation(s)
- Xiaosa Wen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China; Minhang District Center for Disease Control and Prevention, Shanghai 201101, China
| | - Xinmin Chen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Si Chen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Yue Tan
- Surgical Department, Tangshan Gongren Hospital, Tangshan 063000, China
| | - Fei Rong
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jiangbo Zhu
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China.
| | - Wenling Ma
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
31
|
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Zürich Center for Interdisciplinary Sleep Research, University of Zürich, Zürich, Switzerland
| | - Sebastian C. Holst
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Zürich Center for Interdisciplinary Sleep Research, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered Sleep Homeostasis in Rev-erbα Knockout Mice. Sleep 2016; 39:589-601. [PMID: 26564124 PMCID: PMC4763348 DOI: 10.5665/sleep.5534] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/26/2015] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.
Collapse
Affiliation(s)
- Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Chappuis
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Greer SM, Goldstein AN, Knutson B, Walker MP. A Genetic Polymorphism of the Human Dopamine Transporter Determines the Impact of Sleep Deprivation on Brain Responses to Rewards and Punishments. J Cogn Neurosci 2016; 28:803-10. [PMID: 26918589 DOI: 10.1162/jocn_a_00939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite an emerging link between alterations in motivated behavior and a lack of sleep, the impact of sleep deprivation on human brain mechanisms of reward and punishment remain largely unknown, as does the role of trait dopamine activity in modulating such effects in the mesolimbic system. Combining fMRI with an established incentive paradigm and individual genotyping, here, we test the hypothesis that trait differences in the human dopamine transporter (DAT) gene-associated with altered synaptic dopamine signalling-govern the impact of sleep deprivation on neural sensitivity to impending monetary gains and losses. Consistent with this framework, markedly different striatal reward responses were observed following sleep loss depending on the DAT functional polymorphisms. Only participants carrying a copy of the nine-repeat DAT allele-linked to higher phasic dopamine activity-expressed amplified striatal response during anticipation of monetary gain following sleep deprivation. Moreover, participants homozygous for the ten-repeat DAT allele-linked to lower phasic dopamine activity-selectively demonstrated an increase in sensitivity to monetary loss within anterior insula following sleep loss. Together, these data reveal a mechanistic dependency on human of trait dopaminergic function in determining the interaction between sleep deprivation and neural processing of rewards and punishments. Such findings have clinical implications in disorders where the DAT genetic polymorphism presents a known risk factor with comorbid sleep disruption, including attention hyperactive deficit disorder and substance abuse.
Collapse
|
34
|
Caffeine promotes wakefulness via dopamine signaling in Drosophila. Sci Rep 2016; 6:20938. [PMID: 26868675 PMCID: PMC4751479 DOI: 10.1038/srep20938] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine.
Collapse
|
35
|
Holst SC, Valomon A, Landolt HP. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu Rev Pharmacol Toxicol 2016; 56:577-603. [DOI: 10.1146/annurev-pharmtox-010715-103801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian C. Holst
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Amandine Valomon
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| |
Collapse
|
36
|
Ginani GE, Pradella-Hallinan M, Pompéia S. Identification of emotional expressiveness in facial photographs over 36 h of extended vigilance in healthy young men—a preliminary study. Cogn Emot 2015; 31:339-348. [PMID: 26689749 DOI: 10.1080/02699931.2015.1121863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giuliano Emerenciano Ginani
- Departamento de Psicologia, Faculdade União das Américas – UNIAMÉRICA, Foz do Iguaçu, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | | | - Sabine Pompéia
- Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| |
Collapse
|
37
|
Dauvilliers Y, Tafti M, Landolt HP. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev 2015; 22:47-53. [DOI: 10.1016/j.smrv.2014.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
|
38
|
Murat S, Ali U, Serdal K, Süleyman D, İlknur P, Mehmet S, Bahattin A, Tunahan U. Assessment of subjective sleep quality in iron deficiency anaemia. Afr Health Sci 2015; 15:621-7. [PMID: 26124812 PMCID: PMC4480468 DOI: 10.4314/ahs.v15i2.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES We aimed to assess the effect of anemia on subjective sleep quality in patients with iron deficiency anemia (IDA). METHODS One hundred and four patients diagnosed with IDA and 80 healthy individuals, who are gender and age matched, were included in the study. All participants were requested to fill 3 forms: a socio-demographic form (age, gender, marital status, income level and educational status), hospital anxiety and depression (HAD) scale and pittsburgh sleep quality index (PSQI). RESULTS According to the HAD scale, the average anxiety score was found 9.24±4.37 in patients and 7.58± 4.07 in controls. And, the average depression score was 7.53±4.10 in patients and 6.41±2.74 in controls. The total sleep quality score was 6.71±3.02 in patients and 4.11±1.64 in controls. There was a statistically significant difference in terms of anxiety, depression and sleep quality scores. Linear regression analysis showed no association between anxiety and depression with poor sleeping. CONCLUSION IDA affects sleep quality irrespective of psychological symptoms such as depression and anxiety.
Collapse
Affiliation(s)
- Semiz Murat
- Gülhane Military Medical Faculty, Department of Psychiatry, Ankara, Turkey
| | - Uslu Ali
- Eskişehir Military Hospital, Department of Internal Medicine, Eskisehir, Turkey
| | - Korkmaz Serdal
- Kayseri Education and Research Hospital, Division of Hematology, Kayseri, Turkey
| | - Demir Süleyman
- Department of Psychiatry, Dicle University, Diyarbakir, Turkey
| | - Parlak İlknur
- Cumhuriyet University Faculty of Medicine, Department of Internal Medicine, Sivas, Turkey
| | - Sencan Mehmet
- Cumhuriyet University Faculty of Medicine, Department of Hematology, Sivas, Turkey
| | - Aydın Bahattin
- Cumhuriyet University Faculty of Medicine, Department of Internal Medicine, Sivas, Turkey
| | - Uncu Tunahan
- Cumhuriyet University Faculty of Medicine, Department of Internal Medicine, Sivas, Turkey
| |
Collapse
|
39
|
Abstract
Autism spectrum disorders (ASD) are common neurodevelopmental conditions, affecting 1 in 68 children. Sleep disturbance, particularly insomnia, is very common in children diagnosed with ASD, with evidence supporting overlapping neurobiological and genetic underpinnings. Disturbed sleep exacerbates core and related ASD symptoms and has a substantial negative impact on the entire family. Treatment of sleep disturbance holds promise for ameliorating many of the challenging behavioral symptoms that children with ASD and their families face. Behavioral and pharmacological studies indicate promising approaches to treating sleep disturbances in this population. Awareness of treatment options is particularly important as parents and clinicians may believe that sleep disturbance is part of autism and refractory to therapy. In addition, autism symptoms refractory to treatment with conventional psychiatric medications may improve when sleep is addressed. Additional evidence-based studies are needed, including those that address the underlying biology of this condition.
Collapse
Affiliation(s)
- Olivia J Veatch
- Sleep Disorders Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela C Maxwell-Horn
- Department of Developmental Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Beth A Malow
- Sleep Disorders Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
|
41
|
Blum K, Oscar-Berman M, Badgaiyan RD, Khurshid KA, Gold MS. Dopaminergic Neurogenetics of Sleep Disorders in Reward Deficiency Syndrome (RDS). JOURNAL OF SLEEP DISORDERS & THERAPY 2014; 3:126. [PMID: 25657892 PMCID: PMC4314958 DOI: 10.4172/2167-0277.1000e126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well-known that sleep has a vital function especially as it relates to prevention of substance-related disorders as discussed in the DSM-V. We are cognizant that certain dopaminergic gene polymorphisms have been associated with various sleep disorders. The importance of "normal dopamine homeostasis" is tantamount for quality of life especially for the recovering addict. Since it is now know that sleep per se has been linked with metabolic clearance of neurotoxins in the brain, it is parsonomiuos to encourage continued research in sleep science, which should ultimately result in attenuation of sleep deprivation especially associated with substance related disorders.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA
- Department of Nutrigenomics, IGENE, LLC, Austin, Texas, USA
- Dominion Diagnostics, LLC ., North Kingstown, Rhode Island, USA
- Department of Clinical Neurology, PATH Foundation NY., USA
| | - Marlene Oscar-Berman
- Department of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, Massachusetts, USA
| | - Rajendra D Badgaiyan
- Department of Neuroimaging and Psychiatry, University of Buffalo College of Medicine, Buffalo, New York., USA
| | - Khurshid A. Khurshid
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark S. Gold
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|