1
|
Bernard PB, Castano AM, Buonarati OR, Camp CR, Hell JW, Benke TA. Early life seizures chronically disrupt L-type voltage gated calcium channel regulation of mGluR mediated long term depression via interactions with protein phosphatase 2A. Neurobiol Dis 2025; 209:106884. [PMID: 40147739 PMCID: PMC12039582 DOI: 10.1016/j.nbd.2025.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
We probed the dependence of metabotropic glutamate receptor dependent long-term depression (mGluR-LTD) on L-type voltage gated calcium channels (LTCCs). In prior work, we found that in a rat model of early life seizures (ELS), exaggerated mGluR-LTD was partly mediated by LTCCs and protein phosphatase 2A (PP2A). Here, we further investigated the interactive role of LTCCs, PP2A, and protein kinase A (PKA) in this same model. PP2Ac is known to bind CaV1.2 and modulate its function; displacement of PP2A (C subunit, or PP2Ac) as well as PKA phosphorylation of CaV1.2 at serine 1928, result in enhanced CaV1.2 function. We found that ELS enhanced LTCC activity. We further found that pharmacological displacement of PP2Ac (but not PP2B/calcineurin) from CaV1.2 enhanced mGluR-LTD in controls. This was occluded by blockade of PP2A or ELS. The LTCC-dihydropyridine agonist BayK 8644 enhanced mGluR-LTD in controls, which was also occluded by ELS. Up-regulation of both intracellular Ca2+ and PKA activity were implicated in ELS enhancement of mGluR-LTD, as LTD was normalized in ELS by depletion of internal calcium stores or blockade of PKA. These results support a dynamic model of mGluR-LTD regulation by LTCCs through PP2Ac binding and phosphorylation by PKA. This regulation is chronically lost after ELS. Together with our prior work, these studies tie hyperactive LTCCs to the chronic ELS behavioral phenotype that includes abnormal working memory, fear conditioning and socialization.
Collapse
Affiliation(s)
- Paul B Bernard
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America
| | - Anna M Castano
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Olivia R Buonarati
- Pharmacology, University of Colorado, School of Medicine, United States of America; Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Chad R Camp
- Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Tim A Benke
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America; Neurology, University of Colorado, School of Medicine, United States of America; Otolaryngology, University of Colorado, School of Medicine, United States of America.
| |
Collapse
|
2
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
3
|
de la Cruz L, Kushmerick C, Sullivan JM, Kruse M, Vivas O. Hippocampal neurons maintain a large PtdIns(4)P pool that results in faster PtdIns(4,5)P2 synthesis. J Gen Physiol 2022; 154:e202113001. [PMID: 35179558 PMCID: PMC8906353 DOI: 10.1085/jgp.202113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/01/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
PtdIns(4,5)P2 is a signaling lipid central to the regulation of multiple cellular functions. It remains unknown how PtdIns(4,5)P2 fulfills various functions in different cell types, such as regulating neuronal excitability, synaptic release, and astrocytic function. Here, we compared the dynamics of PtdIns(4,5)P2 synthesis in hippocampal neurons and astrocytes with the kidney-derived tsA201 cell line. The experimental approach was to (1) measure the abundance and rate of PtdIns(4,5)P2 synthesis and precursors using specific biosensors, (2) measure the levels of PtdIns(4,5)P2 and its precursors using mass spectrometry, and (3) use a mathematical model to compare the metabolism of PtdIns(4,5)P2 in cell types with different proportions of phosphoinositides. The rate of PtdIns(4,5)P2 resynthesis in hippocampal neurons after depletion by cholinergic or glutamatergic stimulation was three times faster than for tsA201 cells. In tsA201 cells, resynthesis of PtdIns(4,5)P2 was dependent on the enzyme PI4K. In contrast, in hippocampal neurons, the resynthesis rate of PtdIns(4,5)P2 was insensitive to the inhibition of PI4K, indicating that it does not require de novo synthesis of the precursor PtdIns(4)P. Measurement of phosphoinositide abundance indicated a larger pool of PtdIns(4)P, suggesting that hippocampal neurons maintain sufficient precursor to restore PtdIns(4,5)P2 levels. Quantitative modeling indicates that the measured differences in PtdIns(4)P pool size and higher activity of PI4K can account for the experimental findings and indicates that high PI4K activity prevents depletion of PtdIns(4)P. We further show that the resynthesis of PtdIns(4,5)P2 is faster in neurons than astrocytes, providing context to the relevance of cell type-specific mechanisms to sustain PtdIns(4,5)P2 levels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Christopher Kushmerick
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jane M. Sullivan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Schiel KA. A beneficial role for elevated extracellular glutamate in Amyotrophic Lateral Sclerosis and cerebral ischemia. Bioessays 2021; 43:e2100127. [PMID: 34585427 DOI: 10.1002/bies.202100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022]
Abstract
This hypothesis proposes that increased extracellular glutamate in Amyotrophic Lateral Sclerosis (ALS) and cerebral ischemia, currently viewed as a trigger for excitotoxicity, is actually beneficial as it stimulates the utilization of glutamate as metabolic fuel. Renewed appreciation of glutamate oxidation by ischemic neurons has raised questions regarding the role of extracellular glutamate in ischemia. Is it detrimental, as suggested by excitotoxicity in early in vitro studies, or beneficial, as suggested by its oxidation in later in vivo studies? The answer may depend on the activity of N-methyl-D-aspartate (NMDA) glutamate receptors. Early in vitro procedures co-activated NMDA receptors (NMDARs) containing 2A (GluN2A) and 2B (GluN2B) subunits, an event now believed to trigger excitotoxicity; however, during in vivo ischemia D-serine and zinc molecules are released and these ensure only GluN2B receptors are stimulated. This not only prevents excitotoxicity but also initiates signaling cascades that allow ischemic neurons to import and oxidize glutamate.
Collapse
|
5
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Ribeiro LF, Catarino T, Carvalho M, Cortes L, Santos SD, Opazo PO, Ribeiro LR, Oliveiros B, Choquet D, Esteban JA, Peça J, Carvalho AL. Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci Signal 2021; 14:14/670/eabb1953. [PMID: 33593997 DOI: 10.1126/scisignal.abb1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845 Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor-dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.
Collapse
Affiliation(s)
- Luís F Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Tatiana Catarino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Mário Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,MIT-Portugal Bioengineering Systems Doctoral Program, NOVA University of Lisbon, 1099-85, Lisboa, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Sandra D Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Patricio O Opazo
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France
| | - Lyn Rosenbrier Ribeiro
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, Cambridge CB2 0SL, UK
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France.,Bordeaux Imaging Center, UMS 3420, CNRS-Bordeaux University, US4 INSERM, 33000 Bordeaux, France
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacology 2018; 143:95-105. [DOI: 10.1016/j.neuropharm.2018.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022]
|
9
|
Danesi C, Achuta VS, Corcoran P, Peteri UK, Turconi G, Matsui N, Albayrak I, Rezov V, Isaksson A, Castrén ML. Increased Calcium Influx through L-type Calcium Channels in Human and Mouse Neural Progenitors Lacking Fragile X Mental Retardation Protein. Stem Cell Reports 2018; 11:1449-1461. [PMID: 30503263 PMCID: PMC6294261 DOI: 10.1016/j.stemcr.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The absence of FMR1 protein (FMRP) causes fragile X syndrome (FXS) and disturbed FMRP function is implicated in several forms of human psychopathology. We show that intracellular calcium responses to depolarization are augmented in neural progenitors derived from human induced pluripotent stem cells and mouse brain with FXS. Increased calcium influx via nifedipine-sensitive voltage-gated calcium (Cav) channels contributes to the exaggerated responses to depolarization and type 1 metabotropic glutamate receptor activation. The ratio of L-type/T-type Cav channel expression is increased in FXS progenitors and correlates with enhanced progenitor differentiation to glutamate-responsive cells. Genetic reduction of brain-derived neurotrophic factor in FXS mouse progenitors diminishes the expression of Cav channels and activity-dependent responses, which are associated with increased phosphorylation of the phospholipase C-γ1 site within TrkB receptors and changes of differentiating progenitor subpopulations. Our results show developmental effects of increased calcium influx via L-type Cav channels in FXS neural progenitors. Responses to activity are augmented in neural progenitors in fragile X syndrome (FXS). Increased Ca2+ influx contributes to the exaggerated FXS progenitor responses L-type voltage-gated channels are abnormally activated in FXS progenitors Reduced BDNF diminishes Ca2+ influx and modulates FXS progenitor differentiation
Collapse
Affiliation(s)
- Claudia Danesi
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Venkat Swaroop Achuta
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, PO Box 3056, 75003 Uppsala, Sweden
| | - Ulla-Kaisa Peteri
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Giorgio Turconi
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Nobuaki Matsui
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Ilyas Albayrak
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Veronika Rezov
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Anders Isaksson
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, PO Box 3056, 75003 Uppsala, Sweden
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons. J Neurosci 2018; 39:224-237. [PMID: 30459224 DOI: 10.1523/jneurosci.2935-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
The input-output relationships in neural circuits are determined not only by synaptic efficacy but also by neuronal excitability. Activity-dependent alterations of synaptic efficacy have been extensively investigated, but relatively less is known about how the neuronal output is modulated when synaptic efficacy changes are associated with neuronal excitability changes. In this study, we demonstrate that paired pulses of low-frequency stimulation (PP-LFS) induced metabotropic glutamate receptor (mGluR)-dependent LTD at Schaffer collateral (SC)-CA1 synapses in Sprague Dawley rats (both sexes), and this LTD was associated with EPSP to spike (E-S) potentiation, leading to the increase in action potential (AP) outputs. Threshold voltage (Vth) for APs evoked by synaptic stimulation and that by somatic current injection were hyperpolarized significantly after PP-LFS. Blockers of GABA receptors mimicked and occluded PP-LFS effects on E-S potentiation and Vth hyperpolarization, suggesting that suppression of GABAergic mechanisms is involved in E-S potentiation after PP-LFS. Indeed, IPSCs and tonic inhibitory currents were reduced after PP-LFS. The IPSC reduction was accompanied by increased paired-pulse ratio, and abolished by AM251, a blocker for Type 1 cannabinoid receptors, suggesting that PP-LFS suppresses presynaptic GABA release by mGluR-dependent endocannabinoids signaling. By contrast, a Group 1 mGluR agonist, 3, 5-dihydroxyphenylglycine, induced LTD at SC-CA1 synapses but failed to induce significant IPSC reduction and AP output increase. We propose that mGluR signaling that induces LTD coexpression at excitatory and inhibitory synapses regulates an excitation-inhibition balance to increase neuronal output in CA1 neurons.SIGNIFICANCE STATEMENT Long-lasting forms of synaptic plasticity are usually associated with excitability changes, the ability to fire action potentials. However, excitability changes have been regarded to play subsidiary roles to synaptic plasticity in modifying neuronal output. We demonstrate that, when metabotropic glutamate receptor-dependent LTD is induced by paired pulses of low-frequency stimulation, the action potential output in response to a given input paradoxically increases, indicating that increased excitability is more powerful than synaptic depression. This increase is mediated by the suppression of a presynaptic GABA release via metabotropic glutamate receptor-dependent endocannabinoid signaling. Our study shows that neuronal output changes do not always follow the direction of synaptic plasticity at excitatory synapses, highlighting the importance of regulating inhibitory tone via endocannabinoid signaling.
Collapse
|
11
|
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry 2018; 84:95-105. [PMID: 29100629 PMCID: PMC5858955 DOI: 10.1016/j.biopsych.2017.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
The metabotropic glutamatergic receptor subtype 5 (mGluR5) may represent a promising therapeutic target for stress-related psychiatric disorders. Here, we describe mGluR5 findings in stress disorders, particularly major depressive disorder (MDD), highlighting insights from positron emission tomography studies. Positron emission tomography studies report either no differences or lower mGluR5 in MDD, potentially reflecting MDD heterogeneity. Unlike the rapidly acting glutamatergic agent ketamine, mGluR5-specific modulation has not yet shown antidepressant efficacy in MDD and bipolar disorder. Although we recently showed that ketamine may work, in part, through significant mGluR5 modulation, the specific role of mGluR5 downregulation in ketamine's antidepressant response is unclear. In contrast to MDD, there has been much less investigation of mGluR5 in bipolar disorder, yet initial studies indicate that mGluR5-specific treatments may aid in both depressed and manic mood states. The direction of modulation needed may be state dependent, however, limiting clinical feasibility. There has been relatively little study of posttraumatic stress disorder or obsessive-compulsive disorder to date, although there is evidence for the upregulation of mGluR5 in these disorders. However, while antagonism of mGluR5 may reduce fear conditioning, it may also reduce fear extinction. Therefore, studies are needed to determine the role mGluR5 modulation might play in the treatment of these conditions. Further challenges in modulating this prevalent neurotransmitter system include potential induction of significant side effects. As such, more research is needed to identify level and type (positive/negative allosteric modulation or full antagonism) of mGluR5 modulation required to translate existing knowledge into improved therapies.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, Connecticut; US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veteran's Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | | | - Priya Sharma
- Department of Psychiatry, Schulich School of Medicine and Dentistry; Western University- London, Ontario, Canada; London Health Sciences Centre- Victoria Hospital
| | - John H. Krystal
- Yale University, Department of Psychiatry,Yale University, Department of Neuroscience,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Christine DeLorenzo
- Stony Brook University, Department of Psychiatry,Stony Brook University, Department of Biomedical Engineering
| |
Collapse
|
12
|
Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, Yang J, Pittenger C, Sanacora G, Krystal JH, Parsey RV, Carson RE, DeLorenzo C. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [ 11C]ABP688 and PET imaging study in depression. Mol Psychiatry 2018; 23:824-832. [PMID: 28397841 PMCID: PMC5636649 DOI: 10.1038/mp.2017.58] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
The mechanisms of action of the rapid antidepressant effects of ketamine, an N-methyl-D-aspartate glutamate receptor antagonist, have not been fully elucidated. This study examined the effects of ketamine on ligand binding to a metabotropic glutamatergic receptor (mGluR5) in individuals with major depressive disorder (MDD) and healthy controls. Thirteen healthy and 13 MDD nonsmokers participated in two [11C]ABP688 positron emission tomography (PET) scans on the same day-before and during intravenous ketamine administration-and a third scan 1 day later. At baseline, significantly lower [11C]ABP688 binding was detected in the MDD as compared with the control group. We observed a significant ketamine-induced reduction in mGluR5 availability (that is, [11C]ABP688 binding) in both MDD and control subjects (average of 14±9% and 19±22%, respectively; P<0.01 for both), which persisted 24 h later. There were no differences in ketamine-induced changes between MDD and control groups at either time point (P=0.8). A significant reduction in depressive symptoms was observed following ketamine administration in the MDD group (P<0.001), which was associated with the change in binding (P<0.04) immediately after ketamine. We hypothesize that glutamate released after ketamine administration moderates mGluR5 availability; this change appears to be related to antidepressant efficacy. The sustained decrease in binding may reflect prolonged mGluR5 internalization in response to the glutamate surge.
Collapse
Affiliation(s)
- Irina Esterlis
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | | | - Robert H. Pietrzak
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - David Matuskey
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
| | - Nabeel Nabulsi
- Yale University Department of Radiology and Biomedical Imaging
| | - Chadi G. Abdallah
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Jie Yang
- Stony Brook University Department of Preventive Medicine
| | | | | | - John H. Krystal
- Yale University Department of Psychiatry
- Yale University Department of Neuroscience
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Ramin V. Parsey
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
- Stony Brook University Department of Radiology
| | - Richard E. Carson
- Yale University Department of Radiology and Biomedical Imaging
- Yale University Department of Biomedical Engineering
| | - Christine DeLorenzo
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
| |
Collapse
|
13
|
González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons. Front Cell Neurosci 2017; 11:363. [PMID: 29311823 PMCID: PMC5735122 DOI: 10.3389/fncel.2017.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons, the presence and functions of SOCE are still in question. Here, we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase, which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs), being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions, but the underlying mechanism and, specifically, the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons, we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD, pointing out a key function of calcium and SOCE in synaptic plasticity.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, Spain
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Jorgina Satrústegui
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
14
|
Escobar-Peso A, Chioua M, Frezza V, Martínez-Alonso E, Marco-Contelles J, Alcázar A. Nitrones, Old Fellows for New Therapies in Ischemic Stroke. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Majewski Ł, Maciąg F, Boguszewski PM, Wasilewska I, Wiera G, Wójtowicz T, Mozrzymas J, Kuznicki J. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1071-1087. [PMID: 27913207 DOI: 10.1016/j.bbamcr.2016.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
STIM1 is an endoplasmic reticulum calcium sensor that is involved in several processes in neurons, including store-operated calcium entry. STIM1 also inhibits voltage-gated calcium channels, such as Cav1.2 and Cav3.1, and is thus considered a multifunctional protein. The aim of this work was to investigate the ways in which transgenic neuronal overexpression of STIM1 in FVB/NJ mice affects animal behavior and the electrophysiological properties of neurons in acute hippocampal slices. We overexpressed STIM1 from the Thy1.2 promoter and verified neuronal expression by quantitative reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry. Mature primary hippocampal cultures expressed STIM1 but exhibited no changes in calcium homeostasis. Basal synaptic transmission efficiency and short-term plasticity were comparable in slices that were isolated from transgenic mice, similarly as the magnitude of long-term potentiation. However, long-term depression that was induced by the glutamate receptor 1/5 agonist (S)-3,5-dihydroxyphenylglycine was impaired in STIM1 slices. Interestingly, transgenic mice exhibited a decrease in anxiety-like behavior and improvements in contextual learning. In summary, our data indicate that STIM1 overexpression in neurons in the brain perturbs metabotropic glutamate receptor signaling, leading to impairments in long-term depression and alterations in animal behavior. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Łukasz Majewski
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Filip Maciąg
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Iga Wasilewska
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Grzegorz Wiera
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland; Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, 30 Cybulskiego Str., 50-205 Wroclaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland
| | - Jerzy Mozrzymas
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland; Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, 30 Cybulskiego Str., 50-205 Wroclaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland.
| |
Collapse
|
16
|
Abbas AK. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats. PLoS One 2016; 11:e0161270. [PMID: 27517693 PMCID: PMC4982604 DOI: 10.1371/journal.pone.0161270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022] Open
Abstract
In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8–10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary.
Collapse
Affiliation(s)
- Abdul-Karim Abbas
- Institute of Neuroscience and Physiology, University of Gothenburg, Box 432, SE-40530, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
17
|
Metabotropic Glutamate Receptors Induce a Form of LTP Controlled by Translation and Arc Signaling in the Hippocampus. J Neurosci 2016; 36:1723-9. [PMID: 26843652 DOI: 10.1523/jneurosci.0878-15.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Activity-dependent bidirectional modifications of excitatory synaptic strength are essential for learning and storage on new memories. Research on bidirectional synaptic plasticity has largely focused on long-term potentiation (LTP) and long-term depression (LTD) mechanisms that rely on the activation of NMDA receptors. In principle, metabotropic glutamate receptors (mGluRs) are also suitable to convert synaptic activity into intracellular signals for synaptic modification. Indeed, dysfunction of a form of LTD that depends on Type I mGluRs (mGluR-LTD), but not NMDARs, has been implicated in learning deficits in aging and mouse models of several neurological conditions, including Fragile X syndrome and Alzheimer's disease. To determine whether mGluR activation can also induce LTP in the absence of NMDAR activation, we examined in hippocampal slices from rats and mice, an NMDAR-independent form of LTP previously characterized as dependent on voltage-gated Ca(2+) channels. We found that this form of LTP requires activation of Type I mGluRs and, like mGluR-LTD but unlike NMDAR-dependent plasticity, depends crucially on protein synthesis controlled by fragile X mental retardation protein and on Arc signaling. Based on these observations, we propose the coexistence of two distinct activity-dependent systems of bidirectional synaptic plasticity: one that is based on the activity of NMDARs and the other one based on the activation of mGluRs. SIGNIFICANCE STATEMENT Bidirectional changes of synaptic strength are crucial for the encoding of new memories. Currently, the only activity-dependent mechanism known to support such bidirectional changes are long-term potentiation (LTP) and long-term depression (LTD) forms that relay on the activation of NMDA receptors. Metabotropic glutamate receptors (mGluRs) are, in principle, also suitable to trigger bidirectional synaptic modifications. However, only the mGluR-dependent form of LTD has been characterized. Here we report that an NMDAR-independent form of LTP, initially characterized as dependent on voltage-gated Ca(2+) channels, also requires the activation of mGluRs. These finding suggest the coexistence of two distinct activity-dependent systems of bidirectional synaptic plasticity: one that is based on the activity of NMDARs and the other one based on the activation of mGluRs.
Collapse
|