1
|
Dereli AS, Oh AYS, McMullan S, Kumar NN. Galaninergic and hypercapnia-activated neuronal projections to the ventral respiratory column. Brain Struct Funct 2024; 229:1121-1142. [PMID: 38578351 PMCID: PMC11147908 DOI: 10.1007/s00429-024-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.
Collapse
Affiliation(s)
- Ayse S Dereli
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Alice Y S Oh
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Yegen CH, Lambert M, Beurnier A, Montani D, Humbert M, Planès C, Boncoeur E, Voituron N, Antigny F. KCNK3 channel is important for the ventilatory response to hypoxia in rats. Respir Physiol Neurobiol 2023; 318:104164. [PMID: 37739151 DOI: 10.1016/j.resp.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Mélanie Lambert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Antoine Beurnier
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Service de Physiologie et d'explorations fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; AP-HP, Department of Physiology - Functional Explorations, DMU Thorinno, bi-site Hôpital Bicêtre (Le Kremlin Bicêtre) and Ambroise Paré (Boulogne-Billancourt), France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; Département STAPS, Université Sorbonne Paris Nord, Bobigny, France.
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.
| |
Collapse
|
3
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
4
|
Severs LJ, Bush NE, Quina LA, Hidalgo-Andrade S, Burgraff NJ, Dashevskiy T, Shih AY, Baertsch NA, Ramirez JM. Purinergic signaling mediates neuroglial interactions to modulate sighs. Nat Commun 2023; 14:5300. [PMID: 37652903 PMCID: PMC10471608 DOI: 10.1038/s41467-023-40812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.
Collapse
Affiliation(s)
- Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Skyler Hidalgo-Andrade
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Horner RL. Targets for obstructive sleep apnea pharmacotherapy: principles, approaches, and emerging strategies. Expert Opin Ther Targets 2023; 27:609-626. [PMID: 37494064 DOI: 10.1080/14728222.2023.2240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a common and serious breathing disorder. Several pathophysiological factors predispose individuals to OSA. These factors are quantifiable, and modifiable pharmacologically. AREAS COVERED Four key pharmacotherapeutic targets are identified and mapped to the major determinants of OSA pathophysiology. PubMed and Clinicaltrials.gov were searched through April 2023. EXPERT OPINION Target #1: Pharyngeal Motor Effectors. Increasing pharyngeal muscle activity and responsivity with noradrenergic-antimuscarinic combination is central to recent breakthrough OSA pharmacotherapy. Assumptions, knowledge gaps, future directions, and other targets are identified. #2: Upper Airway Sensory Afferents. There is translational potential of sensitizing and amplifying reflex pharyngeal dilator muscle responses to negative airway pressure via intranasal delivery of new potassium channel blockers. Rationales, advantages, findings, and potential strategies to enhance effectiveness are identified. #3: Chemosensory Afferents and Ventilatory Control. Strategies to manipulate ventilatory control system sensitivity by carbonic anhydrase inhibitors are supported in theory and initial studies. Intranasal delivery of agents to stimulate central respiratory activity are also introduced. #4: Sleep-Wake Mechanisms. Arousability is the fourth therapeutic target rationalized. Evolving automated tools to measure key pathophysiological factors predisposing to OSA will accelerate pharmacotherapy. Although not currently ready for general clinical settings, the identified targets are of future promise.
Collapse
Affiliation(s)
- Richard L Horner
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
7
|
Mouradian GC, Liu P, Nakagawa P, Duffy E, Gomez Vargas J, Balapattabi K, Grobe JL, Sigmund CD, Hodges MR. Patch-to-Seq and Transcriptomic Analyses Yield Molecular Markers of Functionally Distinct Brainstem Serotonin Neurons. Front Synaptic Neurosci 2022; 14:910820. [PMID: 35844900 PMCID: PMC9280690 DOI: 10.3389/fnsyn.2022.910820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 01/22/2023] Open
Abstract
Acute regulation of CO2 and pH homeostasis requires sensory feedback from peripheral (carotid body) and central (central) CO2/pH sensitive cells - so called respiratory chemoreceptors. Subsets of brainstem serotonin (5-HT) neurons in the medullary raphe are CO2 sensitive or insensitive based on differences in embryonic origin, suggesting these functionally distinct subpopulations may have unique transcriptional profiles. Here, we used Patch-to-Seq to determine if the CO2 responses in brainstem 5-HT neurons could be correlated to unique transcriptional profiles and/or unique molecular markers and pathways. First, firing rate changes with hypercapnic acidosis were measured in fluorescently labeled 5-HT neurons in acute brainstem slices from transgenic, Dahl SS (SSMcwi) rats expressing T2/ePet-eGFP transgene in Pet-1 expressing (serotonin) neurons (SS ePet1-eGFP rats). Subsequently, the transcriptomic and pathway profiles of CO2 sensitive and insensitive 5-HT neurons were determined and compared by single cell RNA (scRNAseq) and bioinformatic analyses. Low baseline firing rates were a distinguishing feature of CO2 sensitive 5-HT neurons. scRNAseq of these recorded neurons revealed 166 differentially expressed genes among CO2 sensitive and insensitive 5-HT neurons. Pathway analyses yielded novel predicted upstream regulators, including the transcription factor Egr2 and Leptin. Additional bioinformatic analyses identified 6 candidate gene markers of CO2 sensitive 5-HT neurons, and 2 selected candidate genes (CD46 and Iba57) were both expressed in 5-HT neurons determined via in situ mRNA hybridization. Together, these data provide novel insights into the transcriptional control of cellular chemoreception and provide unbiased candidate gene markers of CO2 sensitive 5-HT neurons. Methodologically, these data highlight the utility of the patch-to-seq technique in enabling the linkage of gene expression to specific functions, like CO2 chemoreception, in a single cell to identify potential mechanisms underlying functional differences in otherwise similar cell types.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gary C. Mouradian Jr.,
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Duffy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Javier Gomez Vargas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kirthikaa Balapattabi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|
9
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
García-Morales V, Gento-Caro Á, Portillo F, Montero F, González-Forero D, Moreno-López B. Lysophosphatidic Acid and Several Neurotransmitters Converge on Rho-Kinase 2 Signaling to Manage Motoneuron Excitability. Front Mol Neurosci 2021; 14:788039. [PMID: 34938160 PMCID: PMC8685439 DOI: 10.3389/fnmol.2021.788039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1–/–) and TASK3 (task3–/–, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3–/–, but not in task1–/– HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.
Collapse
Affiliation(s)
- Victoria García-Morales
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Ángela Gento-Caro
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Fernando Montero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - David González-Forero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
11
|
Wang X, Guan R, Zhao X, Chen J, Zhu D, Shen L, Song N. TASK1 and TASK3 in orexin neuron of lateral hypothalamus contribute to respiratory chemoreflex by projecting to nucleus tractus solitarius. FASEB J 2021; 35:e21532. [PMID: 33817828 DOI: 10.1096/fj.202002189r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
TWIK-related acid-sensitive potassium channels (TASKs)-like current was recorded in orexin neurons in the lateral hypothalamus (LH), which are essential in respiratory chemoreflex. However, the specific mechanism responsible for the pH-sensitivity remains elusive. Thus, we hypothesized that TASKs contribute to respiratory chemoreflex. In the present study, we found that TASK1 and TASK3 were expressed in orexin neurons. Blocking TASKs or microinjecting acid artificial cerebrospinal fluid (ACSF) in the LH stimulated breathing. In contrast, alkaline ACSF inhibited breathing, which was attenuated by blocking TASK1. Damage of orexin neurons attenuated the stimulatory effect on respiration caused by microinjection of acid ACSF (at a pH of 6.5) or TASKs antagonists. The orexinA-positive fiber and orexin type 1 receptor (OX1R) neurons were located in the nucleus tractus solitarius (NTS). The exciting effect of acidosis in the LH on respiration was inhibited by blocking OX1R of the NTS. Taken together, we conclude that orexin neurons sense the extracellular pH change through TASKs and regulate respiration by projecting to the NTS.
Collapse
Affiliation(s)
- Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaomei Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Dale N. CO 2 sensing by connexin26 and its role in the control of breathing. Interface Focus 2021; 11:20200029. [PMID: 33633831 PMCID: PMC7898151 DOI: 10.1098/rsfs.2020.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Breathing is essential to provide the O2 required for metabolism and to remove its inevitable CO2 by-product. The rate and depth of breathing is controlled to regulate the excretion of CO2 to maintain the pH of arterial blood at physiological values. A widespread consensus is that chemosensory cells in the carotid body and brainstem measure blood and tissue pH and adjust the rate of breathing to ensure its homeostatic regulation. In this review, I shall consider the evidence that underlies this consensus and highlight historical data indicating that direct sensing of CO2 also plays a significant role in the regulation of breathing. I shall then review work from my laboratory that provides a molecular mechanism for the direct detection of CO2 via the gap junction protein connexin26 (Cx26) and demonstrates the contribution of this mechanism to the chemosensory regulation of breathing. As there are many pathological mutations of Cx26 in humans, I shall discuss which of these alter the CO2 sensitivity of Cx26 and the extent to which these mutations could affect human breathing. I finish by discussing the evolution of the CO2 sensitivity of Cx26 and its link to the evolution of amniotes.
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
14
|
Kraft M, Büscher A, Wiedmann F, L’hoste Y, Haefeli WE, Frey N, Katus HA, Schmidt C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Front Pharmacol 2021; 12:638445. [PMID: 33897427 PMCID: PMC8058608 DOI: 10.3389/fphar.2021.638445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia with a prevalence of up to 4% and an upwards trend due to demographic changes. It is associated with an increase in mortality and stroke incidences. While stroke risk can be significantly reduced through anticoagulant therapy, adequate treatment of other AF related symptoms remains an unmet medical need in many cases. Two main treatment strategies are available: rate control that modulates ventricular heart rate and prevents tachymyopathy as well as rhythm control that aims to restore and sustain sinus rhythm. Rate control can be achieved through drugs or ablation of the atrioventricular node, rendering the patient pacemaker-dependent. For rhythm control electrical cardioversion and pharmacological cardioversion can be used. While electrical cardioversion requires fasting and sedation of the patient, antiarrhythmic drugs have other limitations. Most antiarrhythmic drugs carry a risk for pro-arrhythmic effects and are contraindicated in patients with structural heart diseases. Furthermore, catheter ablation of pulmonary veins can be performed with its risk of intraprocedural complications and varying success. In recent years TASK-1 has been introduced as a new target for AF therapy. Upregulation of TASK-1 in AF patients contributes to prolongation of the action potential duration. In a porcine model of AF, TASK-1 inhibition by gene therapy or pharmacological compounds induced cardioversion to sinus rhythm. The DOxapram Conversion TO Sinus rhythm (DOCTOS)-Trial will reveal whether doxapram, a potent TASK-1 inhibitor, can be used for acute cardioversion of persistent and paroxysmal AF in patients, potentially leading to a new treatment option for AF.
Collapse
Affiliation(s)
- Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Antonius Büscher
- Clinic for Cardiology II: Electrophysiology, University Hospital Münster, Münster, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Yannick L’hoste
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
16
|
Li QQ, Wan KX, Xu MS, Wang LM, Zhang YY, Wang CT, Mao FX, Zhu JL, Pan ZM, Gao R. The pH-Sensitive Potassium Channel TASK-1 Is a Chemosensor for Central Respiratory Regulation in Rats. Mol Biol 2020. [DOI: 10.1134/s0026893320030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
18
|
Genetic variants of rs1275988 and rs2586886 in TWIK-related acid-sensitive K+ channel-1 gene may be potential risk factors for obese patients with obstructive sleep apnea. Chin Med J (Engl) 2020; 132:2059-2065. [PMID: 31436597 PMCID: PMC6793785 DOI: 10.1097/cm9.0000000000000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: The pathogenesis of obstructive sleep apnea (OSA) remains not fully understood. This study aimed to explore the mechanism of OSA by assessing the association between the human tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ channel-1 (TASK-1) gene and OSA. Methods: A total of 164 patients with severe OSA and 171 patients without OSA were recruited from the Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region (China) from April to December in 2016. Two single nucleotide polymorphisms (rs1275988 and rs2586886) in the TASK-1 gene were selected and genotyped using a kompetitive allele specific polymerase chain reaction genotyping system. Clinical-pathological characteristics and genotype data were compared between the severe and non-OSA groups to explore the association between TASK-1 gene polymorphism and severe OSA. Results: There were no significant differences in genotype distribution, allele frequency, and the recessive and dominant model of the two selected single nucleotide polymorphisms (rs1275988 and rs2586886) between the severe and non-OSA groups in the total population (P > 0.05). However, for patients with a body mass index (BMI) ≥28 kg/m2, the distribution of genotypes and alleles, and the recessive model (GG + GA vs. AA) exhibited significant differences between the severe and non-OSA group (for genotypes: P = 0.014 and P = 0.026; for alleles: P = 0.006 and P = 0.011; for the recessive model: P = 0.005 and P = 0.009, respectively). The simple logistic regression analysis revealed that the GG genotype was a risk factor for OSA. The odds ratio (OR) and 95% confidence intervals (CI) were 4.902 (1.582–15.186, P = 0.006) for rs1275988 and 4.420 (1.422–13.734, P = 0.010) for rs2586886, respectively. In multivariate logistic regression analysis, the combination of GG genotypes of rs1275988 with BMI ≥28 kg/m2 increased the risk of severe OSA (OR = 8.916, 95% CI 4.506–17.645, P < 0.001). Conclusion: Both the GG genotype of rs1275988 and GG genotype of rs2586886 in the TASK-1 gene may play as potential risk factors in obese patients with OSA.
Collapse
|
19
|
Postnatal changes in O2 and CO2 sensitivity in rodents. Respir Physiol Neurobiol 2020; 272:103313. [DOI: 10.1016/j.resp.2019.103313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
20
|
Shi L, Yuan F, Wang X, Wang R, Liu K, Tian Y, Guo Z, Zhang X, Wang S. Mineralocorticoid Receptor-Dependent Impairment of Baroreflex Contributes to Hypertension in a Mouse Model of Primary Aldosteronism. Front Physiol 2019; 10:1434. [PMID: 31824340 PMCID: PMC6883352 DOI: 10.3389/fphys.2019.01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension. The paucity of good animal models hinders our understanding of the pathophysiology of PA and the hypertensive mechanism of PA remains incompletely known. It was recently reported that genetic deletion of TWIK-related acid-sensitive potassium-1 and potassium-3 channels from mice (TASK−/−) generates aldosterone excess and mild hypertension. We addressed the hypertensive mechanism by assessing autonomic regulation of cardiovascular activity in this TASK−/− mouse line that exhibits the hallmarks of PA. Here, we demonstrate that TASK−/− mice were hypertensive with 24-h ambulatory arterial pressure. Either systemic or central blockade of the mineralocorticoid receptor (MR) markedly reduced elevated arterial pressure to normal level in TASK−/− mice. The response of heart rate to the muscarinic cholinergic receptor blocker atropine was similar between TASK−/− and wild-type mice. However, the responses of heart rate to the β-adrenergic receptor blocker propranolol and of arterial pressure to the ganglion blocker hexamethonium were enhanced in TASK−/− mice relative to the counterparts. Moreover, the bradycardiac rather than tachycardiac gain of the arterial baroreflex was significantly attenuated and blockade of MRs to a large degree rescued the dysautonomia and baroreflex gain in TASK−/− mice. Overall, the present study suggests that the MR-dependent dysautonomia and reduced baroreflex gain contribute to the development of hyperaldosteronism-related hypertension.
Collapse
Affiliation(s)
- Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xuefang Wang
- Department of Physiology, Hebei North University, Zhangjiakou, China
| | - Ri Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Laboratory Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zan Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front Pharmacol 2019; 10:1367. [PMID: 32038227 PMCID: PMC6988797 DOI: 10.3389/fphar.2019.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Collapse
Affiliation(s)
- Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Cummins EP, Strowitzki MJ, Taylor CT. Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiol Rev 2019; 100:463-488. [PMID: 31539306 DOI: 10.1152/physrev.00003.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular oxygen (O2) and carbon dioxide (CO2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O2 and CO2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O2 and CO2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.
Collapse
Affiliation(s)
- Eoin P Cummins
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Moritz J Strowitzki
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
23
|
Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019; 62:10044-10058. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.
Collapse
Affiliation(s)
- Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , El Llano Subercaseaux 2801, Piso 6 , 8900000 Santiago , Chile
| |
Collapse
|
24
|
Astrocyte networks modulate respiration – sniffing glue. Respir Physiol Neurobiol 2019; 265:3-8. [DOI: 10.1016/j.resp.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
|
25
|
Kuo FS, Cleary CM, LoTurco JJ, Chen X, Mulkey DK. Disordered breathing in a mouse model of Dravet syndrome. eLife 2019; 8:e43387. [PMID: 31025941 PMCID: PMC6506208 DOI: 10.7554/elife.43387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Dravet syndrome (DS) is a form of epilepsy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Respiratory failure is a leading cause of SUDEP, and DS patients' frequently exhibit disordered breathing. Despite this, mechanisms underlying respiratory dysfunction in DS are unknown. We found that mice expressing a DS-associated Scn1a missense mutation (A1783V) conditionally in inhibitory neurons (Slc32a1cre/+::Scn1aA1783V fl/+; defined as Scn1aΔE26) exhibit spontaneous seizures, die prematurely and present a respiratory phenotype including hypoventilation, apnea, and a diminished ventilatory response to CO2. At the cellular level in the retrotrapezoid nucleus (RTN), we found inhibitory neurons expressing the Scn1a A1783V variant are less excitable, whereas glutamatergic chemosensitive RTN neurons, which are a key source of the CO2/H+-dependent drive to breathe, are hyper-excitable in slices from Scn1aΔE26 mice. These results show loss of Scn1a function can disrupt respiratory control at the cellular and whole animal levels.
Collapse
Affiliation(s)
- Fu-Shan Kuo
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Colin M Cleary
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph J LoTurco
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Xinnian Chen
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Daniel K Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| |
Collapse
|
26
|
Albrecht S, Korr S, Nowack L, Narayanan V, Starost L, Stortz F, Araúzo‐Bravo MJ, Meuth SG, Kuhlmann T, Hundehege P. The K
2P
‐channel TASK1 affects Oligodendroglial differentiation but not myelin restoration. Glia 2019; 67:870-883. [DOI: 10.1002/glia.23577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Albrecht
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Sabrina Korr
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Luise Nowack
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Laura Starost
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Franziska Stortz
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Marcos J. Araúzo‐Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Tanja Kuhlmann
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| |
Collapse
|
27
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
28
|
Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses. PLoS One 2018; 13:e0192724. [PMID: 29474404 PMCID: PMC5825021 DOI: 10.1371/journal.pone.0192724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Previous reports indicate roles for acid-sensing ion channels (ASICs) in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/-) and wild-type (WT) mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.
Collapse
|
29
|
Quintero MC, Putnam RW, Cordovez JM. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus. PLoS Comput Biol 2017; 13:e1005853. [PMID: 29267284 PMCID: PMC5755939 DOI: 10.1371/journal.pcbi.1005853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/05/2018] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC). We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes), in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously thought. This highlights the importance of considering electrical synaptic transmission in studies of intrinsic chemosensitivity. The sensory mechanism by which changes in CO2 and H+ levels are detected in the brain is known as central chemoreception. Altered chemoreception is common to a wide variety of clinical conditions, including sleep apnea, sudden infant death syndrome, hyperventilation, depression, anxiety and asthma. In addition, CO2/H+-sensitive neurons are present in some regions of the brain that have been identified as drug targets for the treatment of anxiety and panic disorders. We are interested in understanding the cellular mechanisms that determine and modulate the behavior of these neurons. We previously investigated possible mechanisms underlying their behavior in rats to elucidate whether they respond to changes in intracellular or extracellular pH, CO2, or a combination of these stimuli. To study the roles that signals and ion channel targets play in individual neurons we develop mathematical models that simulate their electrochemical behavior and their responses to hypercapnic and/or acidotic stimuli. Nowadays, we are focused on using computational tools to explore the firing pattern of such neurons in response to chemical (CO2/H+) and electrical (synaptic) stimulation. Our results reveal significant effects of electrical stimulation on the responses of brainstem neurons and highlight the importance of considering synaptic transmission in experimental studies of chemosensitivity.
Collapse
Affiliation(s)
- Maria C. Quintero
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| | - Robert W. Putnam
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Juan M. Cordovez
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| |
Collapse
|
30
|
Sex-dependent differences in the in vivo respiratory phenotype of the TASK-1 potassium channel knockout mouse. Respir Physiol Neurobiol 2017; 245:13-28. [DOI: 10.1016/j.resp.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
31
|
Crosstalk between KCNK3-Mediated Ion Current and Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity. Cell 2017; 171:836-848.e13. [PMID: 28988768 DOI: 10.1016/j.cell.2017.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/10/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023]
Abstract
Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.
Collapse
|
32
|
Chang AJ. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J Appl Physiol (1985) 2017; 123:1335-1343. [PMID: 28819004 DOI: 10.1152/japplphysiol.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022] Open
Abstract
Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models.
Collapse
Affiliation(s)
- Andy J Chang
- Department of Physiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
33
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
34
|
Massey CA, Richerson GB. Isoflurane, ketamine-xylazine, and urethane markedly alter breathing even at subtherapeutic doses. J Neurophysiol 2017; 118:2389-2401. [PMID: 28747467 DOI: 10.1152/jn.00350.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
Anesthetics are widely used for animal research on respiratory control in vivo, but their effect on breathing and CO2 chemoreception has not been well characterized in mice, a species now often used for these studies. We previously demonstrated that 1% isoflurane markedly reduces the hypercapnic ventilatory response (HCVR) in adult mice in vivo and masks serotonin [5-hydroxytryptamine (5-HT)] neuron chemosensitivity in vitro. Here we investigated effects of 0.5% isoflurane on breathing in adult mice and also found a large reduction in the HCVR even at this subanesthetic concentration. We then tested the effects on breathing of ketamine-xylazine and urethane, anesthetics widely used in research on breathing. We found that these agents altered baseline breathing and blunted the HCVR at doses within the range typically used experimentally. At lower doses ventilation was decreased, but mice appropriately matched their ventilation to metabolic demands due to a parallel decrease in O2 consumption. Neither ketamine nor urethane decreased chemosensitivity of 5-HT neurons. These results indicate that baseline breathing and/or CO2 chemoreception in mice are decreased by anesthetics widely viewed as not affecting respiratory control, and even at subtherapeutic doses. These effects of anesthetics on breathing may alter the interpretation of studies of respiratory physiology in vivo.NEW & NOTEWORTHY Anesthetics are frequently used in animal research, but their effects on physiological functions in mice have not been well defined. Here we investigated the effects of commonly used anesthetics on breathing in mice. We found that all tested anesthetics significantly reduced the hypercapnic ventilatory response (HCVR), even at subtherapeutic doses. In addition, ketamine-xylazine and urethane anesthesia altered baseline breathing. These data indicate that breathing and the HCVR in mice are highly sensitive to anesthetic modulation.
Collapse
Affiliation(s)
- Cory A Massey
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Neurology, University of Iowa, Iowa City, Iowa
| | - George B Richerson
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa; .,Department of Neurology, University of Iowa, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; and.,Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
35
|
Buehler PK, Bleiler D, Tegtmeier I, Heitzmann D, Both C, Georgieff M, Lesage F, Warth R, Thomas J. Abnormal respiration under hyperoxia in TASK-1/3 potassium channel double knockout mice. Respir Physiol Neurobiol 2017; 244:17-25. [PMID: 28673876 DOI: 10.1016/j.resp.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/29/2023]
Abstract
Despite intensive research, the exact function of TASK potassium channels in central and peripheral chemoreception is still under debate. In this study, we investigated the respiration of unrestrained TASK-3 (TASK-3-/-) and TASK-1/TASK-3 double knockout (TASK-1/3-/-) adult male mice in vivo using a plethysmographic device. Ventilation parameters of TASK-3-/- mice were normal under control condition (21% O2) and upon hypoxia and hypercapnia they displayed the physiological increase of ventilation. TASK-1/3-/- mice showed increased ventilation under control conditions. This increase of ventilation was caused by increased tidal volumes (VT), a phenomenon similarly observed in TASK-1-/- mice. Under acute hypoxia, TASK-1/3-/- mice displayed the physiological increase of the minute volume. Interestingly, this increase was not related to an increase of the respiratory frequency (fR), as observed in wild-type mice, but was caused by a strong increase of VT. This particular respiratory phenotype is reminiscent of the respiratory phenotype of carotid body-denervated rodents in the compensated state. Acute hypercapnia (5% CO2) stimulated ventilation in TASK-1/3-/- and wild-type mice to a similar extent; however, at higher CO2 concentrations (>5% CO2) the stimulation of ventilation was more pronounced in TASK-1/3-/- mice. At hyperoxia (100% O2), TASK-1-/-, TASK-3-/- and wild-type mice showed the physiological small decrease of ventilation. In sharp contrast, TASK-1/3-/- mice exhibited an abnormal increase of ventilation under hyperoxia. In summary, these measurements showed a grossly normal respiration of TASK-3-/- mice and a respiratory phenotype of TASK-1/3-/- mice that was characterized by a markedly enhanced tidal volume, similar to the one observed in TASK-1-/- mice. The abnormal hyperoxia response, exclusively found in TASK-1/3-/- double mutant mice, indicates that both TASK-1 and TASK-3 are essential for the hyperoxia-induced hypoventilation. The peculiar respiratory phenotype of TASK-1/3 knockout mice is reminiscent of the respiration of animals with long-term carotid body dysfunction. Taken together, TASK-1 and TASK-3 appear to serve specific and distinct roles in the complex processes underlying chemoreception and respiratory control.
Collapse
Affiliation(s)
- Philipp K Buehler
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland
| | - Doris Bleiler
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany; Department of Anaesthesia, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Ines Tegtmeier
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dirk Heitzmann
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany; University Medical Centre Mannheim, V. Medical Clinic, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Both
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland
| | - Michael Georgieff
- Institute of Anesthesiology, University of Ulm, D-89081 Ulm, Germany
| | - Florian Lesage
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, 660 Route des Lucioles, 06560, Valbonne, France
| | - Richard Warth
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Jörg Thomas
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland.
| |
Collapse
|
36
|
TASK channels contribute to neuroprotective action of inhalational anesthetics. Sci Rep 2017; 7:44203. [PMID: 28276488 PMCID: PMC5343576 DOI: 10.1038/srep44203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 01/13/2023] Open
Abstract
Postconditioning with inhalational anesthetics can reduce ischemia-reperfusion brain injury, although the cellular mechanisms for this effect have not been determined. The current study was designed to test if TASK channels contribute to their neuroprotective actions. Whole cell recordings were used to examine effects of volatile anesthetic on TASK currents in cortical neurons and to verify loss of anesthetic-activated TASK currents from TASK−/− mice. A transient middle cerebral artery occlusion (tMCAO) model was used to establish brain ischemia-reperfusion injury. Quantitative RT-PCR analysis revealed that TASK mRNA was reduced by >90% in cortex and hippocampus of TASK−/− mice. The TASK−/− mice showed a much larger region of infarction than C57BL/6 J mice after tMCAO challenge. Isoflurane or sevoflurane administered after the ischemic insult reduced brain infarct percentage and neurological deficit scores in C57BL/6 J mice, these effect were reduced in TASK−/− mice. Whole cell recordings revealed that the isoflurane-activated background potassium current observed in cortical pyramidal neurons from wild type mice was conspicuously reduced in TASK−/− mice. Our studies demonstrate that TASK channels can limit ischemia-reperfusion damage in the cortex, and postconditioning with volatile anesthetics provides neuroprotective actions that depend, in part, on activation of TASK currents in cortical neurons.
Collapse
|
37
|
Puissant MM, Mouradian GC, Liu P, Hodges MR. Identifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels. Front Cell Neurosci 2017; 11:34. [PMID: 28270749 PMCID: PMC5318415 DOI: 10.3389/fncel.2017.00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 11/30/2022] Open
Abstract
Ventilation is continuously adjusted by a neural network to maintain blood gases and pH. Acute CO2 and/or pH regulation requires neural feedback from brainstem cells that encode CO2/pH to modulate ventilation, including but not limited to brainstem serotonin (5-HT) neurons. Brainstem 5-HT neurons modulate ventilation and are stimulated by hypercapnic acidosis, the sensitivity of which increases with increasing postnatal age. The proper function of brainstem 5-HT neurons, particularly during post-natal development is critical given that multiple abnormalities in the 5-HT system have been identified in victims of Sudden Infant Death Syndrome. Here, we tested the hypothesis that there are age-dependent increases in expression of pH-sensitive ion channels in brainstem 5-HT neurons, which may underlie their cellular CO2/pH sensitivity. Midline raphe neurons were acutely dissociated from neonatal and mature transgenic SSePet-eGFP rats [which have enhanced green fluorescent protein (eGFP) expression in all 5-HT neurons] and sorted with fluorescence-activated cell sorting (FACS) into 5-HT-enriched and non-5-HT cell pools for subsequent RNA extraction, cDNA library preparation and RNA sequencing. Overlapping differential expression analyses pointed to age-dependent shifts in multiple ion channels, including but not limited to the pH-sensitive potassium ion (K+) channel genes kcnj10 (Kir4.1), kcnj16 (Kir5.1), kcnk1 (TWIK-1), kcnk3 (TASK-1) and kcnk9 (TASK-3). Intracellular contents isolated from single adult eGFP+ 5-HT neurons confirmed gene expression of Kir4.1, Kir5.1 and other K+ channels, but also showed heterogeneity in the expression of multiple genes. 5-HT neuron-enriched cell pools from selected post-natal ages showed increases in Kir4.1, Kir5.1, and TWIK-1, fitting with age-dependent increases in Kir4.1 and Kir5.1 protein expression in raphe tissue samples. Immunofluorescence imaging confirmed Kir5.1 protein was co-localized to brainstem neurons and glia including 5-HT neurons as expected. However, Kir4.1 protein expression was restricted to glia, suggesting that it may not contribute to 5-HT neuron pH sensitivity. Although there are caveats to this approach, the data suggest that pH-sensitive Kir5.1 channels may underlie cellular CO2/pH chemosensitivity in brainstem 5-HT neurons.
Collapse
Affiliation(s)
- Madeleine M Puissant
- Department of Physiology, Medical College of Wisconsin, MilwaukeeWI, USA; Neuroscience Research Center, Medical College of Wisconsin, MilwaukeeWI, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, MilwaukeeWI, USA; Center for Systems Molecular Medicine, Medical College of Wisconsin, MilwaukeeWI, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, MilwaukeeWI, USA; Center for Systems Molecular Medicine, Medical College of Wisconsin, MilwaukeeWI, USA; Cancer Research Center, Medical College of Wisconsin, MilwaukeeWI, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, MilwaukeeWI, USA; Neuroscience Research Center, Medical College of Wisconsin, MilwaukeeWI, USA; Center for Systems Molecular Medicine, Medical College of Wisconsin, MilwaukeeWI, USA
| |
Collapse
|
38
|
Beltrán-Castillo S, Morgado-Valle C, Eugenín J. The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:163-192. [PMID: 29080027 DOI: 10.1007/978-3-319-62817-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms responsible for the onset of respiratory activity during fetal life are unknown. The onset of respiratory rhythm may be a consequence of the genetic program of each of the constituents of the respiratory network, so they start to interact and generate respiratory cycles when reaching a certain degree of maturation. Alternatively, generation of cycles might require the contribution of recently formed sensory inputs that will trigger oscillatory activity in the nascent respiratory neural network. If this hypothesis is true, then sensory input to the respiratory generator must be already formed and become functional before the onset of fetal respiration. In this review, we evaluate the timing of the onset of the respiratory rhythm in comparison to the appearance of receptors, neurotransmitter machinery, and afferent projections provided by two central chemoreceptive nuclei, the raphe and locus coeruleus nuclei.
Collapse
Affiliation(s)
- Sebastián Beltrán-Castillo
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Campus Xalapa, Berlin 7, Fracc., Monte Magno Animas, C.P. 91190, Xalapa, Veracruz, Mexico.
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile.
| |
Collapse
|
39
|
Murtaza G, Mermer P, Pfeil U, Kummer W. Avertin®, but Not Volatile Anesthetics Addressing the Two-Pore Domain K+ Channel, TASK-1, Slows Down Cilia-Driven Particle Transport in the Mouse Trachea. PLoS One 2016; 11:e0167919. [PMID: 27930725 PMCID: PMC5145217 DOI: 10.1371/journal.pone.0167919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Volatile anesthetics inhibit mucociliary clearance in the airways. The two-pore domain K+ channel, TASK-1, represents one of their molecular targets in that they increase its open probability. Here, we determine whether particle transport speed (PTS) at the mucosal surface of the mouse trachea, an important factor of the cilia-driven mechanism in mucociliary clearance, is regulated by TASK-1. METHODOLOGY/RESULTS RT-PCR analysis revealed expression of TASK-1 mRNA in the manually dissected and laser-assisted microdissected tracheal epithelium of the mouse. Effects of anesthetics (isoflurane and Avertin®) and TASK-1 inhibitors (anandamide and A293) on ciliary activity were investigated by assessment of PTS at the mucosal surface of the explanted and opened murine trachea. Neither TASK-1 inhibitors nor isoflurane had any impact on basal and ATP-stimulated PTS. Avertin® reduced basal PTS, and ATP-stimulated PTS decreased in its presence in wild-type (WT) mice. Avertin®-induced decrease in basal PTS persisted in WT mice in the presence of TASK-1 inhibitors, and in two different strains of TASK-1 knockout mice. CONCLUSIONS/SIGNIFICANCE Our findings indicate that TASK-1 is expressed by the tracheal epithelium but is not critically involved in the regulation of tracheal PTS in mice. Avertin® reduces PTS independent of TASK-1.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- * E-mail:
| | - Petra Mermer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| |
Collapse
|
40
|
Cerpa VJ, Wu Y, Bravo E, Teran FA, Flynn RS, Richerson GB. Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience 2016; 344:1-14. [PMID: 27619736 DOI: 10.1016/j.neuroscience.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/27/2023]
Abstract
Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1-7 (P1-P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p<0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1bf/f/p and WT mice was equal to each other, but were both much less than adult WT mice. By P21 the HCVR of WT mice increased to near adult levels, but the HCVR of Lmx1bf/f/p mice had not changed, and was 42% less than WT mice. Primary cell cultures were prepared from the ventromedial medulla of neonatal mice, and patch-clamp recordings were made from neurons identified as serotonergic by expression of a reporter gene. In parallel with developmental changes of the HCVR in vivo, 5-HT neurons had little chemosensitivity to acidosis until 12days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia.
Collapse
Affiliation(s)
- Veronica J Cerpa
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Yuanming Wu
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Rachel S Flynn
- Department of Neurology, Yale University, New Haven, CT 06510, United States
| | - George B Richerson
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA 52242, United States; Veterans Affairs Medical Center, Iowa City, IA 52242, United States
| |
Collapse
|
41
|
Manichaikul A, Rich SS, Allison MA, Guagliardo NA, Bayliss DA, Carey RM, Barrett PQ. KCNK3 Variants Are Associated With Hyperaldosteronism and Hypertension. Hypertension 2016; 68:356-64. [PMID: 27296998 PMCID: PMC4945430 DOI: 10.1161/hypertensionaha.116.07564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
Blood pressure (BP) is a complex trait that is the consequence of an interaction between genetic and environmental determinants. Previous studies have demonstrated increased BP in mice with global deletion of TASK-1 channels contemporaneous with diverse dysregulation of aldosterone production. In humans, genome-wide association studies in ≈100 000 individuals of European, East Asian, and South Asian ancestry identified a single nucleotide polymorphism (SNP) in KCNK3 (the gene encoding TASK-1) associated with mean arterial pressure. The current study was motivated by the hypotheses that (1) association of KCNK3 SNPs with BP and related traits extends to blacks and Hispanics, and (2) KCNK3 SNPs exhibit associations with plasma renin activity and aldosterone levels. We examined baseline BP measurements for 7840 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), and aldosterone levels and plasma renin activity in a subset of 1653 MESA participants. We identified statistically significant association of the previously reported KCNK3 SNP (rs1275988) with mean arterial pressure in MESA blacks (P=0.024) and a nearby SNP (rs13394970) in MESA Hispanics (P=0.031). We discovered additional KCNK3 SNP associations with systolic BP, mean arterial pressure, and hypertension. We also identified statistically significant association of KCNK3 rs2586886 with plasma aldosterone level in MESA and demonstrated that global deletion of TASK-1 channels in mice produces a mild-hyperaldosteronism, not associated with a decrease in renin. Our results suggest that genetic variation in the KCNK3 gene may contribute to BP variation and less severe hypertensive disorders in which aldosterone may be one of several causative factors.
Collapse
Affiliation(s)
- Ani Manichaikul
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Stephen S Rich
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Matthew A Allison
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Nick A Guagliardo
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Douglas A Bayliss
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Robert M Carey
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.)
| | - Paula Q Barrett
- From the Center for Public Health Genomics (A.M., S.S.R.), Biostatistics Section, Department of Public Health Sciences (A.M.), Department of Pharmacology (N.A.G., D.A.B., P.Q.B.), and Division of Endocrinology and Metabolism and Department of Medicine (R.M.C.), University of Virginia, Charlottesville; and Department of Family and Preventive Medicine, University of California San Diego, La Jolla (M.A.A.).
| |
Collapse
|
42
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Basham KJ, Hung HA, Lerario AM, Hammer GD. Mouse models of adrenocortical tumors. Mol Cell Endocrinol 2016; 421:82-97. [PMID: 26678830 PMCID: PMC4720156 DOI: 10.1016/j.mce.2015.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly A Hung
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
Sobrinho CR, Kuo FS, Barna BF, Moreira TS, Mulkey DK. Cholinergic control of ventral surface chemoreceptors involves Gq/inositol 1,4,5-trisphosphate-mediated inhibition of KCNQ channels. J Physiol 2015; 594:407-19. [PMID: 26572090 DOI: 10.1113/jp271761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS ACh is an important modulator of breathing, including at the level of the retrotrapezoid nucleus (RTN), where evidence suggests that ACh is essential for the maintenance of breathing. Despite this potentially important physiological role, little is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we show at the cellular level that ACh increases RTN chemoreceptor activity by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. These results dispel the theory that ACh is required for RTN chemoreception by showing that ACh, similar to serotonin and other modulators, controls the activity of RTN chemoreceptors without interfering with the mechanisms by which these cells sense H(+). By identifying the mechanisms by which wake-on neurotransmitters such as ACh modulate RTN chemoreception, the results of the present study provide a framework for understanding the molecular basis of the sleep-wake state-dependent control of breathing. ABSTRACT ACh has long been considered important for the CO2/H(+)-dependent drive to breathe produced by chemosensitive neurons in the retrotrapezoid nucleus (RTN). However, despite this potentially important physiological role, almost nothing is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we used slice-patch electrophysiology and pharmacological tools to characterize the effects of ACh on baseline activity and CO2/H(+)-sensitivity of RTN chemoreceptors, as well as to dissect the signalling pathway by which ACh activates these neurons. We found that ACh activates RTN chemoreceptors in a dose-dependent manner (EC50 = 1.2 μm). The firing response of RTN chemoreceptors to ACh was mimicked by a muscarinic receptor agonist (oxotremorine; 1 μm), and blunted by M1- (pirezenpine; 2 μm) and M3- (diphenyl-acetoxy-N-methyl-piperidine; 100 nm) receptor blockers, but not by a nicotinic-receptor blocker (mecamylamine; 10 μm). Furthermore, pirenzepine, diphenyl-acetoxy-N-methyl-piperidine and mecamylamine had no measurable effect on the CO2/H(+)-sensitivity of RTN chemoreceptors. The effects of ACh on RTN chemoreceptor activity were also blunted by inhibition of inositol 1,4,5-trisphosphate receptors with 2-aminoethoxydiphenyl borate (100 μm), depletion of intracellular Ca(2+) stores with thapsigargin (10 μm), inhibition of casein kinase 2 (4,5,6,7-tetrabromobenzotriazole; 10 μm) and blockade of KCNQ channels (XE991; 10 μm). These results show that ACh activates RTN chemoreceptors by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. Identifying the components of the signalling pathway coupling muscarinic receptor activation to changes in chemoreceptor activity may provide new potential therapeutic targets for the treatment of respiratory control disorders.
Collapse
Affiliation(s)
- Cleyton R Sobrinho
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Barbara F Barna
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
45
|
Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. ACTA ACUST UNITED AC 2015; 218:526-36. [PMID: 25696816 DOI: 10.1242/jeb.110080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexandra S Martinson
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Layden
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Fortunay H Diatta
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna P Sberna
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - David K Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Timothy J Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
46
|
Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun 2015; 6:8780. [PMID: 26549439 PMCID: PMC4659937 DOI: 10.1038/ncomms9780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 01/03/2023] Open
Abstract
In the cochlea, K(+) is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K(+) channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5(-/-) mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5(-/-) mice have a normal endolymphatic [K(+)] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K(+) secretion in stria vascularis have normal expression in Kcnk5(-/-) mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K(+) recycling along the outer sulcus lateral route.
Collapse
Affiliation(s)
- Yves Cazals
- Laboratoire de Neurosciences Intégratives et Adaptatives (UMR7260), Fédération de Recherche 3C (Cerveau, Comportement, Cognition), Aix-Marseille-Université and CNRS, Marseille 13331, France
| | - Michelle Bévengut
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| | - Sébastien Zanella
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Jacques Barhanin
- Laboratoire de Physio-Médecine Moléculaire (UMR7370), Université de Nice-Sophia Antipolis and CNRS, Nice 06107, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
| | - Christian Gestreau
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| |
Collapse
|
47
|
Chokshi RH, Larsen AT, Bhayana B, Cotten JF. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore. Mol Pharmacol 2015; 88:926-34. [PMID: 26268529 PMCID: PMC4613942 DOI: 10.1124/mol.115.100107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2''-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. To test our hypothesis, we mutated each residue in or near the predicted PKTHPP and A1899 binding site (residues 118-128 and 228-248), individually, to a negatively charged aspartate. We quantified each mutation's effect on TASK-3 potassium channel concentration response to PKTHPP. Studies were conducted on TASK-3 transiently expressed in Fischer rat thyroid epithelial monolayers; channel function was measured in an Ussing chamber. TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded.
Collapse
Affiliation(s)
- Rikki H Chokshi
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Aaron T Larsen
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
48
|
Abstract
Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, central command and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA
| |
Collapse
|
49
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
50
|
The brain acid–base homeostasis and serotonin: A perspective on the use of carbon dioxide as human and rodent experimental model of panic. Prog Neurobiol 2015; 129:58-78. [DOI: 10.1016/j.pneurobio.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
|