1
|
Shkryl VM. Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons. Biomolecules 2024; 14:1617. [PMID: 39766324 PMCID: PMC11727531 DOI: 10.3390/biom14121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells. It is a versatile signaling molecule that influences neurotransmitter release, muscle contraction, gene expression, and cell survival. This review focuses on the intricate dynamics of calcium signaling in hippocampal neurons, with particular emphasis on the activation of voltage-gated and ionotropic glutamate receptors in the plasma membrane and ryanodine and inositol 1,4,5-trisphosphate receptors in the ER. These channels and receptors are involved in the generation and transmission of electrical signals and the modulation of calcium concentrations within the neuronal network. By analyzing calcium fluctuations in neurons and the associated calcium handling mechanisms at the ER, mitochondria, endo-lysosome and cytosol, we can gain a deeper understanding of the mechanistic pathways underlying neuronal interactions and information transfer.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine
| |
Collapse
|
2
|
Lu F, Yang P, Zhang D, Wang X, Cheng H. Thirty years of Ca 2+ spark research: digital principle of cell signaling unveiled. BIOPHYSICS REPORTS 2024; 10:259-265. [PMID: 39539284 PMCID: PMC11554578 DOI: 10.52601/bpr.2024.240031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium ions (Ca2+) are an archetypical and most versatile second messenger in virtually all cell types. Inspired by the discovery of Ca2+ sparks in the 1990s, vibrant research over the last three decades has unveiled a constellation of Ca2+ microdomains as elementary events of Ca2+ signaling and, more importantly, a digital-analog dualism as the system design principle of Ca2+ signaling. In this brief review, we present a sketchy summary on advances in the field of sparkology, and discuss how the digital subsystem can fulfill physiological roles otherwise impossible for any analog system. In addition, we attempt to address how the digital-analog dualism endows the simple cation messenger with signaling speediness, specificity, efficiency, stability, and unparalleled versatility.
Collapse
Affiliation(s)
- Fujian Lu
- Department of Cardiology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Xianhua Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
| | - Heping Cheng
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
4
|
Wang ZW, Riaz S, Niu L. Roles and Sources of Calcium in Synaptic Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:139-170. [PMID: 37615866 DOI: 10.1007/978-3-031-34229-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
5
|
Shkryl VM. The spatio-temporal properties of calcium transients in hippocampal pyramidal neurons in vitro. Front Cell Neurosci 2022; 16:1054950. [PMID: 36589284 PMCID: PMC9795003 DOI: 10.3389/fncel.2022.1054950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The spatio-temporal properties of calcium signals were studied in cultured pyramidal neurons of the hippocampus using two-dimensional fluorescence microscopy and ratiometric dye Fura-2. Depolarization-induced Ca2+ transients revealed an asynchronous delayed increase in free Ca2+ concentration. We found that the level of free resting calcium in the cell nucleus is significantly lower compared to the soma, sub-membrane, and dendritic tree regions. Calcium release from the endoplasmic reticulum under the action of several stimuli (field stimulation, high K+ levels, and caffeine) occurs in all areas studied. Under depolarization, calcium signals developed faster in the dendrites than in other areas, while their amplitude was significantly lower since larger and slower responses inside the soma. The peak value of the calcium response to the application of 10 mM caffeine, ryanodine receptors (RyRs) agonist, does not differ in the sub-membrane zone, central region, and nucleus but significantly decreases in the dendrites. In the presence of caffeine, the delay of Ca2+ signals between various areas under depolarization significantly declined. Thirty percentage of the peak amplitude of Ca2+ transients at prolonged electric field stimulation corresponded to calcium release from the ER store by RyRs, while short-term stimulation did not depend on them. 20 μM dantrolene, RyRs inhibitor, significantly reduces Ca2+ transient under high K+ levels depolarization of the neuron. RyRs-mediated enhancement of the Ca2+ signal is more pronounced in the central part and nucleus compared to the sub-membrane or dendrites regions of the neuron. In summary, using the ratiometric imaging allowed us to obtain additional information about the involvement of RyRs in the intracellular dynamics of Ca2+ signals induced by depolarization or electrical stimulation train, with an underlying change in Ca2+ concentration in various regions of interest in hippocampal pyramidal neurons.
Collapse
|
6
|
Kishor C, Spillings BL, Luhur J, Lutomski CA, Lin CH, McKinstry WJ, Day CJ, Jennings MP, Jarrold MF, Mak J. Calcium Contributes to Polarized Targeting of HIV Assembly Machinery by Regulating Complex Stability. JACS AU 2022; 2:522-530. [PMID: 35253001 PMCID: PMC8889552 DOI: 10.1021/jacsau.1c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Polarized or precision targeting of protein complexes to their destinations is fundamental to cellular homeostasis, but the mechanism underpinning directional protein delivery is poorly understood. Here, we use the uropod targeting HIV synapse as a model system to show that the viral assembly machinery Gag is copolarized with the intracellular calcium (Ca2+) gradient and binds specifically with Ca2+. Conserved glutamic/aspartic acids flanking endosomal sorting complexes required for transport binding motifs are major Ca2+ binding sites. Deletion or mutation of these Ca2+ binding residues resulted in altered protein trafficking phenotypes, including (i) changes in the Ca2+-Gag distribution relationship during uropod targeting and/or (ii) defects in homo/hetero-oligomerization with Gag. Mutation of Ca2+ binding amino acids is associated with enhanced ubiquitination and a decline in virion release via uropod protein complex delivery. Our data that show Ca2+-protein binding, via the intracellular Ca2+ gradient, represents a mechanism that regulates intracellular protein trafficking.
Collapse
Affiliation(s)
- Chandan Kishor
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Johana Luhur
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Corinne A. Lutomski
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chi-Hung Lin
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Martin F. Jarrold
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Johnson Mak
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Silva M, Tran V, Marty A. Calcium-dependent docking of synaptic vesicles. Trends Neurosci 2021; 44:579-592. [PMID: 34049722 DOI: 10.1016/j.tins.2021.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale. Recordings from so-called 'simple synapses' indicate that calcium not only triggers exocytosis, but also modifies synaptic strength by controlling a final, rapid vesicle maturation step before release. Molecular studies identify several calcium-sensitive domains on Munc13 and on synaptotagmin-1 that are likely involved in bringing the vesicular and plasma membranes closer together in response to calcium elevation. Together, these results suggest that calcium-dependent vesicle docking occurs in a wide range of time domains and plays a crucial role in several phenomena including synaptic facilitation, post-tetanic potentiation, and neuromodulator-induced potentiation.
Collapse
Affiliation(s)
- Melissa Silva
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France.
| |
Collapse
|
8
|
Rey S, Maton G, Satake S, Llano I, Kang S, Surmeier DJ, Silverman RB, Collin T. Physiological involvement of presynaptic L-type voltage-dependent calcium channels in GABA release of cerebellar molecular layer interneurons. J Neurochem 2020; 155:390-402. [PMID: 32491217 DOI: 10.1111/jnc.15100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
While high threshold voltage-dependent Ca2+ channels (VDCCs) of the N and P/Q families are crucial for evoked neurotransmitter release in the mammalian CNS, it remains unclear to what extent L-type Ca2+ channels (LTCCs), which have been mainly considered as acting at postsynaptic sites, participate in the control of transmitter release. Here, we investigate the possible role of LTCCs in regulating GABA release by cerebellar molecular layer interneurons (MLIs) from rats. We found that BayK8644 (BayK) markedly increases mIPSC frequency in MLIs and Purkinje cells (PCs), suggesting that LTCCs are expressed presynaptically. Furthermore, we observed (1) a potentiation of evoked IPSCs in the presence of BayK, (2) an inhibition of evoked IPSCs in the presence of the LTCC-specific inhibitor Compound 8 (Cp8), and (3) a strong reduction of mIPSC frequency by Cp8. BayK effects are reduced by dantrolene, suggesting that ryanodine receptors act in synergy with LTCCs. Finally, BayK enhances presynaptic AP-evoked Ca2+ transients and increases the frequency of spontaneous axonal Ca2+ transients observed in TTX. Taken together, our data demonstrate that LTCCs are of primary importance in regulating GABA release by MLIs.
Collapse
Affiliation(s)
- Stéphanie Rey
- Saints Pères Paris Institute for the Neurociences CNRS-UMR 8003, Université de Paris, Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS/Université de Paris - Bâtiment Buffon, Paris, France
| | - Shin'Ichiro Satake
- Departement of Infornation Physiology, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Isabel Llano
- Saints Pères Paris Institute for the Neurociences CNRS-UMR 8003, Université de Paris, Paris, France
| | - Soosung Kang
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Dalton James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard B Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Thibault Collin
- Saints Pères Paris Institute for the Neurociences CNRS-UMR 8003, Université de Paris, Paris, France
| |
Collapse
|
9
|
Velázquez-Marrero C, Custer EE, Marrero H, Ortiz-Miranda S, Lemos JR. Voltage-induced Ca 2+ release by ryanodine receptors causes neuropeptide secretion from nerve terminals. J Neuroendocrinol 2020; 32:e12840. [PMID: 32227430 DOI: 10.1111/jne.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Depolarisation-secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+ ]o ). Ryanodine receptor (RyR)-sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+ ]i ) that are voltage-dependent. We hypothesised that voltage-elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage-gated calcium channels and/or from such voltage-sensitive ryanodine-mediated calcium stores. Increases in [Ca2+ ]i upon depolarisation in the presence of voltage-gated calcium channel blockers, or in the absence of [Ca2+ ]o , still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+ ]o , there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Furthermore, such depolarisations lead to increases in [Ca2+ ]i . Pre-incubation with BAPTA-AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage-induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation-induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine-sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.
Collapse
Affiliation(s)
| | - Edward E Custer
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - Héctor Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Sonia Ortiz-Miranda
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - José R Lemos
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Tasker JG, Prager-Khoutorsky M, Teruyama R, Lemos JR, Amstrong WE. Advances in the neurophysiology of magnocellular neuroendocrine cells. J Neuroendocrinol 2020; 32:e12826. [PMID: 31917875 PMCID: PMC7192795 DOI: 10.1111/jne.12826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Hypothalamic magnocellular neuroendocrine cells have unique electrical properties and a remarkable capacity for morphological and synaptic plasticity. Their large somatic size, their relatively uniform and dense clustering in the supraoptic and paraventricular nuclei, and their large axon terminals in the neurohypophysis make them an attractive target for direct electrophysiological interrogation. Here, we provide a brief review of significant recent findings in the neuroplasticity and neurophysiological properties of these neurones that were presented at the symposium "Electrophysiology of Magnocellular Neurons" during the 13th World Congress on Neurohypophysial Hormones in Ein Gedi, Israel in April 2019. Magnocellular vasopressin (VP) neurones respond directly to hypertonic stimulation with membrane depolarisation, which is triggered by cell shrinkage-induced opening of an N-terminal-truncated variant of transient receptor potential vanilloid type-1 (TRPV1) channels. New findings indicate that this mechanotransduction depends on actin and microtubule cytoskeletal networks, and that direct coupling of the TRPV1 channels to microtubules is responsible for mechanical gating of the channels. Vasopressin neurones also respond to osmostimulation by activation of epithelial Na+ channels (ENaC). It was shown recently that changes in ENaC activity modulate magnocellular neurone basal firing by generating tonic changes in membrane potential. Both oxytocin and VP neurones also undergo robust excitatory synapse plasticity during chronic osmotic stimulation. Recent findings indicate that new glutamate synapses induced during chronic salt loading express highly labile Ca2+ -permeable GluA1 receptors requiring continuous dendritic protein synthesis for synapse maintenance. Finally, recordings from the uniquely tractable neurohypophysial terminals recently revealed an unexpected property of activity-dependent neuropeptide release. A significant fraction of the voltage-dependent neurohypophysial neurosecretion was found to be independent of Ca2+ influx through voltage-gated Ca2+ channels. Together, these findings provide a snapshot of significant new advances in the electrophysiological signalling mechanisms and neuroplasticity of the hypothalamic-neurohypophysial system, a system that continues to make important contributions to the field of neurophysiology.
Collapse
Affiliation(s)
- Jeffrey G. Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Correspondence: Jeffrey Tasker, PhD, Tulane University, Cell and Molecular Biology Dept, 2000 Percival Stern Hall, New Orleans, LA 70118, USA; .; William Armstrong, PhD, University of Tennessee Health Science Center, Anatomy and Neurobiology Dept and Neuroscience Institute, 855 Monroe Ave, Memphis, TN 38163, USA;
| | | | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - José R. Lemos
- Department of Microbiology and Physiological Systems & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - William E. Amstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Correspondence: Jeffrey Tasker, PhD, Tulane University, Cell and Molecular Biology Dept, 2000 Percival Stern Hall, New Orleans, LA 70118, USA; .; William Armstrong, PhD, University of Tennessee Health Science Center, Anatomy and Neurobiology Dept and Neuroscience Institute, 855 Monroe Ave, Memphis, TN 38163, USA;
| |
Collapse
|
11
|
SICT: automated detection and supervised inspection of fast Ca 2+ transients. Sci Rep 2018; 8:15523. [PMID: 30341397 PMCID: PMC6195629 DOI: 10.1038/s41598-018-33847-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer unprecedented opportunities, but also generate an unmet need for data processing. Here we developed SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection of automatically detected events, reducing manual labour to less than 10% while maintaining quality control. The detection performance was tested using synthetic data with various signal-to-noise ratios. The event inspection phase was evaluated by four human observers. Reliability of the method was demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.
Collapse
|
12
|
Pulido C, Marty A. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Physiol Rev 2017; 97:1403-1430. [DOI: 10.1152/physrev.00032.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at “reactive sites” where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| |
Collapse
|
13
|
Ríos E, Figueroa L, Manno C, Kraeva N, Riazi S. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle. ACTA ACUST UNITED AC 2016; 145:459-74. [PMID: 26009541 PMCID: PMC4442791 DOI: 10.1085/jgp.201411321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation–contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose alteration may lead to disease. Within a generally similar plan, the couplons of skeletal and cardiac muscle show, in a few places, marked structural divergence associated with critical differences in the mechanisms whereby they fulfill their signaling role. Most important among these are the presence of a mechanical or allosteric communication between voltage sensors and Ca2+ release channels, exclusive to the skeletal couplon, and the smaller capacity of the Ca stores in cardiac muscle, which results in greater swings of store concentration during physiological function. Consideration of these structural and functional differences affords insights into the pathogenesis of several couplonopathies. The exclusive mechanical connection of the skeletal couplon explains differences in pathogenesis between malignant hyperthermia (MH) and catecholaminergic polymorphic ventricular tachycardia (CPVT), conditions most commonly caused by mutations in homologous regions of the skeletal and cardiac Ca2+ release channels. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of secondary modifications, typically an increase in store-operated calcium entry, that are relevant in MH pathogenesis. Similar considerations help explain the different consequences that mutations in triadin and calsequestrin have in these two tissues. As more information is gathered on the composition of cardiac and skeletal couplons, this comparative and mechanistic approach to couplonopathies should be useful to understand pathogenesis, clarify diagnosis, and propose tissue-specific drug development.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
14
|
McNally JM, Custer EE, Ortiz-Miranda S, Woodbury DJ, Kraner SD, Salzberg BM, Lemos JR. Functional ryanodine receptors in the membranes of neurohypophysial secretory granules. ACTA ACUST UNITED AC 2014; 143:693-702. [PMID: 24863930 PMCID: PMC4035742 DOI: 10.1085/jgp.201311110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Highly localized Ca(2+) release events have been characterized in several neuronal preparations. In mouse neurohypophysial terminals (NHTs), such events, called Ca(2+) syntillas, appear to emanate from a ryanodine-sensitive intracellular Ca(2+) pool. Traditional sources of intracellular Ca(2+) appear to be lacking in NHTs. Thus, we have tested the hypothesis that large dense core vesicles (LDCVs), which contain a substantial amount of calcium, represent the source of these syntillas. Here, using fluorescence immunolabeling and immunogold-labeled electron micrographs of NHTs, we show that type 2 ryanodine receptors (RyRs) are localized specifically to LDCVs. Furthermore, a large conductance nonspecific cation channel, which was identified previously in the vesicle membrane and has biophysical properties similar to that of an RyR, is pharmacologically affected in a manner characteristic of an RyR: it is activated in the presence of the RyR agonist ryanodine (at low concentrations) and blocked by the RyR antagonist ruthenium red. Additionally, neuropeptide release experiments show that these same RyR agonists and antagonists modulate Ca(2+)-elicited neuropeptide release from permeabilized NHTs. Furthermore, amperometric recording of spontaneous release events from artificial transmitter-loaded terminals corroborated these ryanodine effects. Collectively, our findings suggest that RyR-dependent syntillas could represent mobilization of Ca(2+) from vesicular stores. Such localized vesicular Ca(2+) release events at the precise location of exocytosis could provide a Ca(2+) amplification mechanism capable of modulating neuropeptide release physiologically.
Collapse
Affiliation(s)
- James M McNally
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655
| | - Edward E Custer
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655
| | - Sonia Ortiz-Miranda
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655
| | - Dixon J Woodbury
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602
| | - Susan D Kraner
- Department of Neuroscience and Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Brian M Salzberg
- Department of Neuroscience and Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Department of Neuroscience and Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - José R Lemos
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
15
|
Lefkowitz JJ, DeCrescenzo V, Duan K, Bellve KD, Fogarty KE, Walsh JV, ZhuGe R. Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression. J Physiol 2014; 592:4639-55. [PMID: 25128575 DOI: 10.1113/jphysiol.2014.278127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as 'rest and digest'. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus-secretion coupling, where exocytosis is synchronized to AP-induced Ca(2+) influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca(2+) influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca(2+) syntillas (i.e. transient, focal Ca(2+) release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca(2+) syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis.
Collapse
Affiliation(s)
- Jason J Lefkowitz
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Valerie DeCrescenzo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kailai Duan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Karl D Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - John V Walsh
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
16
|
μ-Opioid inhibition of Ca2+ currents and secretion in isolated terminals of the neurohypophysis occurs via ryanodine-sensitive Ca2+ stores. J Neurosci 2014; 34:3733-42. [PMID: 24599471 DOI: 10.1523/jneurosci.2505-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
μ-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, μ-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on κ-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.
Collapse
|
17
|
Rebello MR, Maliphol AB, Medler KF. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS One 2013; 8:e68174. [PMID: 23826376 PMCID: PMC3694925 DOI: 10.1371/journal.pone.0068174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/27/2013] [Indexed: 12/04/2022] Open
Abstract
Introduction We reported that ryanodine receptors are expressed in two different types of mammalian peripheral taste receptor cells: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx. Methodology/Principal Findings The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage. Conclusions/Significance Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.
Collapse
Affiliation(s)
- Michelle R. Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Amanda B. Maliphol
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Thr136Ile polymorphism of human vesicular monoamine transporter-1 (SLC18A1 gene) influences its transport activity in vitro. Neural Plast 2013; 2012:945373. [PMID: 23213575 PMCID: PMC3504448 DOI: 10.1155/2012/945373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 12/23/2022] Open
Abstract
The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca2+ and Ca2+-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca2+-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids) and show how they might contribute to hippocampal neuron activities and Ca2+-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction.
Collapse
|
19
|
Bannister RA, Beam KG. Ca(V)1.1: The atypical prototypical voltage-gated Ca²⁺ channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1587-97. [PMID: 22982493 DOI: 10.1016/j.bbamem.2012.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²⁺ channel which contributes to a form of activity-dependent Ca²⁺ entry that has been termed Excitation-coupled Ca²⁺ entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²⁺ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²⁺ entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine, Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
20
|
Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 2012; 51:293-9. [DOI: 10.1016/j.ceca.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022]
|
21
|
Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium 2012; 51:309-20. [DOI: 10.1016/j.ceca.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|
22
|
Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 2012; 51:284-92. [PMID: 22341671 DOI: 10.1016/j.ceca.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 11/21/2022]
Abstract
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, μ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.
Collapse
|
23
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|
24
|
Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F. 182nd ENMC International Workshop: RYR1-related myopathies, 15-17th April 2011, Naarden, The Netherlands. Neuromuscul Disord 2012; 22:453-62. [PMID: 22226685 DOI: 10.1016/j.nmd.2011.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/04/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Heinz Jungbluth
- Clinical Neuroscience Division, IOP, King's College, London, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Type 1 ryanodine receptor knock-in mutation causing central core disease of skeletal muscle also displays a neuronal phenotype. Proc Natl Acad Sci U S A 2011; 109:610-5. [PMID: 22203976 DOI: 10.1073/pnas.1115111108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.
Collapse
|
26
|
Fois G, Wittekindt O, Zheng X, Felder ET, Miklavc P, Frick M, Dietl P, Felder E. An ultra fast detection method reveals strain-induced Ca(2+) entry via TRPV2 in alveolar type II cells. Biomech Model Mechanobiol 2011; 11:959-71. [PMID: 22190268 DOI: 10.1007/s10237-011-0365-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
Abstract
A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30 ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute for General Physiology / M-25, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Walter AM, Groffen AJ, Sørensen JB, Verhage M. Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats? Trends Neurosci 2011; 34:487-97. [PMID: 21831459 DOI: 10.1016/j.tins.2011.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 12/25/2022]
Abstract
Regulated neurotransmitter secretion depends on Ca(2+) sensors, C2 domain proteins that associate with phospholipids and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes to trigger release upon Ca(2+) binding. Ca(2+) sensors are thought to prevent spontaneous fusion at rest (clamping) and to promote fusion upon Ca(2+) activation. At least eight, often coexpressed, Ca(2+) sensors have been identified in mammals. Accumulating evidence suggests that multiple Ca(2+) sensors interact, rather than work autonomously, to produce the complex secretory response observed in neurons and secretory cells. In this review, we present several working models to describe how different sensors might be arranged to mediate synchronous, asynchronous and spontaneous neurotransmitter release. We discuss the scenario that different Ca(2+) sensors typically act on one shared vesicle pool and compete for binding the multiple SNARE complexes that are likely to assemble at single vesicles, to exert both clamping and fusion-promoting functions.
Collapse
Affiliation(s)
- Alexander M Walter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Salmina AB, Lopatina O, Ekimova MV, Mikhutkina SV, Higashida H. CD38/cyclic ADP-ribose system: a new player for oxytocin secretion and regulation of social behaviour. J Neuroendocrinol 2010; 22:380-92. [PMID: 20141572 DOI: 10.1111/j.1365-2826.2010.01970.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxytocin is important for regulating a number of physiological processes. Disruption of the secretion, metabolism or action of oxytocin results in an impairment of reproductive function, social and sexual behaviours, and stress responses. This review discusses current views on the regulation and autoregulation of oxytocin release in the hypothalamic-neurohypophysial system, with special focus on the activity of the CD38/cADP-ribose system as a new component in this regulation. Data from our laboratories indicate that an impairment of this system results in alterations of oxytocin secretion and abnormal social behaviour, thus suggesting new clues that help in our understanding of the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
| | | | | | | | | |
Collapse
|
29
|
Groffen AJ, Martens S, Arazola RD, Cornelisse LN, Lozovaya N, de Jong APH, Goriounova NA, Habets RLP, Takai Y, Borst JG, Brose N, McMahon HT, Verhage M. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 2010; 327:1614-8. [PMID: 20150444 PMCID: PMC2846320 DOI: 10.1126/science.1183765] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synaptic vesicle fusion in brain synapses occurs in phases that are either tightly coupled to action potentials (synchronous), immediately following action potentials (asynchronous), or as stochastic events in the absence of action potentials (spontaneous). Synaptotagmin-1, -2, and -9 are vesicle-associated Ca2+ sensors for synchronous release. Here we found that double C2 domain (Doc2) proteins act as Ca2+ sensors to trigger spontaneous release. Although Doc2 proteins are cytosolic, they function analogously to synaptotagmin-1 but with a higher Ca2+ sensitivity. Doc2 proteins bound to N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complexes in competition with synaptotagmin-1. Thus, different classes of multiple C2 domain-containing molecules trigger synchronous versus spontaneous fusion, which suggests a general mechanism for synaptic vesicle fusion triggered by the combined actions of SNAREs and multiple C2 domain-containing proteins.
Collapse
Affiliation(s)
- Alexander J. Groffen
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Sascha Martens
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | - Rocío Díez Arazola
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - L. Niels Cornelisse
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Natalia Lozovaya
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, CNCR, VU University, Amsterdam, The Netherlands
| | - Arthur P. H. de Jong
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Natalia A. Goriounova
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, CNCR, VU University, Amsterdam, The Netherlands
| | - Ron L. P. Habets
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Japan
| | - J. Gerard Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Nils Brose
- Max-Planck-Institut für Experimentelle Medizin, Abteilung Molekulare Neurobiologie, Göttingen, Germany
| | | | - Matthijs Verhage
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
31
|
Lefkowitz JJ, Fogarty KE, Lifshitz LM, Bellve KD, Tuft RA, ZhuGe R, Walsh JV, De Crescenzo V. Suppression of Ca2+ syntillas increases spontaneous exocytosis in mouse adrenal chromaffin cells. ACTA ACUST UNITED AC 2010; 134:267-80. [PMID: 19786582 PMCID: PMC2757764 DOI: 10.1085/jgp.200910285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx elicits exocytosis. Here, we examine the effect on spontaneous exocytosis of a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca2+ syntillas. Ca2+ syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (scintilla, Latin for spark; found in nerve terminals, normally synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal chromaffin cells. Here, we examine the effect of Ca2+ syntillas on exocytosis in chromaffin cells. In such a study on elicited exocytosis, there are two sources of Ca2+: one due to influx from the cell exterior through voltage-gated Ca2+ channels, and that due to release from intracellular stores. To eliminate complications arising from Ca2+ influx, we have examined spontaneous exocytosis where influx is not activated. We report here that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case, release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine, after which syntillas were decreased. We conclude that Ca2+ syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas.
Collapse
Affiliation(s)
- Jason J Lefkowitz
- Department of Physiology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Individual calcium syntillas do not trigger spontaneous exocytosis from nerve terminals of the neurohypophysis. J Neurosci 2009; 29:14120-6. [PMID: 19906960 DOI: 10.1523/jneurosci.1726-09.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, highly localized Ca(2+) release events, similar to Ca(2+) sparks in muscle, have been observed in neuronal preparations. Specifically, in murine neurohypophysial terminals (NHT), these events, termed Ca(2+) syntillas, emanate from a ryanodine-sensitive intracellular Ca(2+) pool and increase in frequency with depolarization in the absence of Ca(2+) influx. Despite such knowledge of the nature of these Ca(2+) release events, their physiological role in this system has yet to be defined. Such localized Ca(2+) release events, if they occur in the precise location of the final exocytotic event(s), may directly trigger exocytosis. However, directly addressing this hypothesis has not been possible, since no method capable of visualizing individual release events in these CNS terminals has been available. Here, we have adapted an amperometric method for studying vesicle fusion to this system which relies on loading the secretory granules with the false transmitter dopamine, thus allowing, for the first time, the recording of individual exocytotic events from peptidergic NHT. Simultaneous use of this technique along with high-speed Ca(2+) imaging has enabled us to establish that spontaneous neuropeptide release and Ca(2+) syntillas do not display any observable temporal or spatial correlation, confirming similar findings in chromaffin cells. Although these results indicate that syntillas do not play a direct role in eliciting spontaneous release, they do not rule out indirect modulatory effects of syntillas on secretion.
Collapse
|
33
|
Marrero HG, Lemos JR. Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. J Physiol 2009; 588:287-300. [PMID: 19933755 DOI: 10.1113/jphysiol.2009.180778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptidergic nerve terminals of the neurohypophysis (NH) secrete both oxytocin and vasopressin upon stimulation with peptide-specific bursts of action potentials from magnocellular neurons. These bursts vary in both frequency and action potential duration and also induce in situ ionic changes both inside and outside the terminals in the NH. These temporary effects include the increase of external potassium and decrease of external calcium, as well as the increase in internal sodium and chloride concentrations. In order to determine any mechanism of action that these ionic changes might have on secretion, stimulus-induced capacitance recordings were performed on isolated terminals of the NH using action potential burst patterns of varying frequency and action potential width. The results indicate that in NH terminals: (1) increased internal chloride concentration improves the efficiency of action potential-induced capacitance changes, (2) increasing external potassium increases stimulus-induced capacitance changes, (3) decreasing external calcium decreases the capacitance induced by low frequency broadened action potentials, while no capacitance change is observed with high frequency un-broadened action potentials, and (4) increasing internal sodium increases the capacitance change induced by low frequency bursts of broadened action potentials, more than for high frequency bursts of narrow action potentials. These results are consistent with previous models of stimulus-induced secretion, where optimal secretory efficacy is determined by particular characteristics of action potentials within a burst. Our results suggest that positive effects of increased internal sodium and external potassium during a burst may serve as a compensatory mechanism for secretion, counterbalancing the negative effects of reduced external calcium. In this view, high frequency un-broadened action potentials (initial burst phase) would condition the terminals by increasing internal sodium for optimal secretion by the physiological later phase of broadened action potentials. Thus, ionic changes occurring during a burst may help to make such stimulation more efficient at inducing secretion. Furthermore, these effects are thought to occur within the initial few seconds of incoming burst activity at both oxytocin and vasopressin types of NH nerve terminals.
Collapse
Affiliation(s)
- Héctor G Marrero
- Physiology Department & Program in Neuroscience, University of Massachusetts, Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
34
|
Berrout J, Isokawa M. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices. Cell Calcium 2009; 46:30-8. [PMID: 19411104 DOI: 10.1016/j.ceca.2009.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 02/20/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
Abstract
Activity-dependent increase in cytosolic calcium ([Ca(2+)](i)) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca(2+) from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca(2+)-release is not completely understood. In the present study, we optically recorded [Ca(2+)](i) from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca(2+) activities and depolarization-induced Ca(2+) signals in order to determine the source(s) and properties of [Ca(2+)](i)-dynamics that could lead to a release of Ca(2+) from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca(2+) events were detected from a group of hippocampal neurons. This miniature Ca(2+) event persisted in the nominal Ca(2+)-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca(2+) channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca(2+) events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca(2+)](i) in the dendrosomal region. This [Ca(2+)](i)-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca(2+)](i)-transient was caused primarily by the LTCC-mediated Ca(2+)-influx and a release of Ca(2+) from RyR. We observed little contribution from N- or P/Q-type Ca(2+) channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca(2+)-release from RyR upon the opening of LTCC; and (3) the synchronized Ca(2+)-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca(2+)](i).
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Biological Sciences, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
| | | |
Collapse
|
35
|
Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol Appl Pharmacol 2009; 237:168-77. [PMID: 19289137 DOI: 10.1016/j.taap.2009.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope >200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX+PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached >250% of baseline period in the presence of PTX+100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca(2+)-dependence of [(3)H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca(2+) appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.
Collapse
|
36
|
Dunn T, Montgomery E, Syed N. An action potential-induced and ryanodine sensitive calcium transient dynamically regulates transmitter release at synapses betweenLymnaeaneurons. Synapse 2009; 63:61-8. [DOI: 10.1002/syn.20579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
38
|
Bao R, Lifshitz LM, Tuft RA, Bellvé K, Fogarty KE, ZhuGe R. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. ACTA ACUST UNITED AC 2008; 132:145-60. [PMID: 18591421 PMCID: PMC2442178 DOI: 10.1085/jgp.200709933] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ca2+ sparks are highly localized, transient releases of Ca2+ from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca2+ sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca2+-activated K+ channels, and also gate Ca2+-activated Cl− (Cl(Ca)) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca2+ sparks is well understood, little information is available on how Ca2+ sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl(Ca) channels in spark sites in airway myocytes from mouse. Ca2+ sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca2+ current underlying a Ca2+ spark (ICa(spark)), with an appropriate correction for endogenous fixed Ca2+ buffer, which was characterized by flash photolysis of NPEGTA. We found that ICa(spark) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca2+ sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the ICa(spark) by less than 3 ms, and its rising phase matches the duration of the ICa(spark). We further determined that Cl(Ca) channels on average are exposed to a [Ca2+] of 2.4 μM or greater during Ca2+ sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca2+] produced by a reaction-diffusion simulation with measured ICa(spark). Finally we estimated that the number of Cl(Ca) channels localized in Ca2+ spark sites could account for all the Cl(Ca) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl(Ca) channels in Ca2+ spark sites localize near to each other, and, moreover, Cl(Ca) channels concentrate in an area with a radius of ∼600 nm, where their density reaches as high as 300 channels/μm2. This model reveals that Cl(Ca) channels are tightly controlled by Ca2+ sparks via local Ca2+ signaling.
Collapse
Affiliation(s)
- Rongfeng Bao
- Biomedical Imaging Group and Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
39
|
Fricke O, Kow LM, Bogun M, Pfaff DW. Estrogen evokes a rapid effect on intracellular calcium in neurons characterized by calcium oscillations in the arcuate nucleus. Endocrine 2007; 31:279-88. [PMID: 17906376 DOI: 10.1007/s12020-007-0034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/11/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Rapid estrogen effects became an interesting topic to explain estrogen effects not associated with the classical nuclear pathway. The rapid estrogen effect on intracellular calcium oscillations was characterized in neurons of the arcuate nucleus. Ratiometric calcium imaging (fura-2AM) was used to measure intracellular calcium in brain slices of female Swiss Webster mice (median of age 27 days p.n.). Calcium oscillations were dependent on intracellular calcium and also on calcium influx from the extracellular space. The perfusion of slices with calcium-free solution inhibited spontaneous calcium oscillations. The metabotropic glutamate receptor agonist t-ACPD (5 microM) and low concentrated ryanodine (100 nM) induced intracellular calcium release when slices were perfused with calcium-free solution. 17beta-estradiol (10 nM) also induced intracellular calcium release in calcium-free ACSF. This effect was inhibited by the preceding administration of thapsigargin (2 microM) indicating the association of the rapid estrogen effect with intracellular calcium stores. The administration of the non-selective phospholipase C-inhibitor ET-18 (30 microM), but not U73122 (10 microM), and the inhibition of protein kinase A by H-89 (0.25 microM) suppressed the rapid estrogen effect. Analyses indicated a qualitative, but not quantitatively significant effect of 17beta-estradiol on calcium oscillations.
Collapse
Affiliation(s)
- Oliver Fricke
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
40
|
Kenet T, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc Natl Acad Sci U S A 2007; 104:7646-51. [PMID: 17460041 PMCID: PMC1855918 DOI: 10.1073/pnas.0701944104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Indexed: 12/21/2022] Open
Abstract
Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination.
Collapse
Affiliation(s)
- T. Kenet
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - R. C. Froemke
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - C. E. Schreiner
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - I. N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - M. M. Merzenich
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| |
Collapse
|
41
|
Ishibashi H, Jang IS, Nabekura J. High potassium-induced facilitation of glycine release from presynaptic terminals on mechanically dissociated rat spinal dorsal horn neurons in the absence of extracellular calcium. Neuroscience 2007; 146:190-201. [PMID: 17317016 DOI: 10.1016/j.neuroscience.2007.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/12/2007] [Accepted: 01/13/2007] [Indexed: 11/24/2022]
Abstract
The high potassium-induced potentiation of spontaneous glycine release in extracellular Ca2+-free conditions was studied in mechanically dissociated rat spinal dorsal horn neurons using whole-cell patch-clamp technique. Elevating extracellular K+ concentration reversibly increased the frequency of spontaneous glycinergic inhibitory postsynaptic currents (IPSCs) in the absence of extracellular Ca2+. Blocking voltage-dependent Na+ channels (tetrodotoxin) and Ca2+ channels (nifedipine and omega-grammotoxin-SIA) had no effect on this potassium-induced potentiation of glycine-release. The high potassium-induced increase in IPSC frequency was also observed in the absence of extracellular Na+, although the recovery back to baseline levels of release was prolonged under these conditions. The action of high potassium solution on glycine release was prevented by BAPTA-AM, by depletion of intracellular Ca2+ stores by thapsigargin and by the phospholipase C inhibitor U-73122. The results suggest that the elevated extracellular K+ concentration causes Ca2+ release from internal stores which is independent of extracellular Na+- and Ca2+-influx, and may reveal a novel mechanism by which the potassium-induced depolarization of presynaptic nerve terminals can regulate intracellular Ca2+ concentration and exocytosis.
Collapse
Affiliation(s)
- H Ishibashi
- Department of Bio-signaling Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
42
|
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:5235-40. [PMID: 17360329 PMCID: PMC1829292 DOI: 10.1073/pnas.0700748104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimuli are translated to intracellular calcium signals via opening of inositol trisphosphate receptor and ryanodine receptor (RyR) channels of the sarcoplasmic reticulum or endoplasmic reticulum. In cardiac and skeletal muscle of amphibians the stimulus is depolarization of the transverse tubular membrane, transduced by voltage sensors at tubular-sarcoplasmic reticulum junctions, and the unit signal is the Ca(2+) spark, caused by concerted opening of multiple RyR channels. Mammalian muscles instead lose postnatally the ability to produce sparks, and they also lose RyR3, an isoform abundant in spark-producing skeletal muscles. What does it take for cells to respond to membrane depolarization with Ca(2+) sparks? To answer this question we made skeletal muscles of adult mice expressing exogenous RyR3, demonstrated as immunoreactivity at triad junctions. These muscles showed abundant sparks upon depolarization. Sparks produced thusly were found to amplify the response to depolarization in a manner characteristic of Ca(2+)-induced Ca(2+) release processes. The amplification was particularly effective in responses to brief depolarizations, as in action potentials. We also induced expression of exogenous RyR1 or yellow fluorescent protein-tagged RyR1 in muscles of adult mice. In these, tag fluorescence was present at triad junctions. RyR1-transfected muscle lacked voltage-operated sparks. Therefore, the voltage-operated sparks phenotype is specific to the RyR3 isoform. Because RyR3 does not contact voltage sensors, their opening was probably activated by Ca(2+), secondarily to Ca(2+) release through junctional RyR1. Physiologically voltage-controlled Ca(2+) sparks thus require a voltage sensor, a master junctional RyR1 channel that provides trigger Ca(2+), and a slave parajunctional RyR3 cohort.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Leandro Royer
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Jianxun Yi
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, Uruguay; and
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Eduardo Ríos
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| | - Jingsong Zhou
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
43
|
Copello JA, Zima AV, Diaz-Sylvester PL, Fill M, Blatter LA. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes. Am J Physiol Cell Physiol 2007; 292:C2129-40. [PMID: 17314267 PMCID: PMC2094215 DOI: 10.1152/ajpcell.00437.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the cardiac action potential, Ca(2+) entry through dyhidropyridine receptor L-type Ca(2+) channels (DHPRs) activates ryanodine receptors (RyRs) Ca(2+)-release channels, resulting in massive Ca(2+) mobilization from the sarcoplasmic reticulum (SR). This global Ca(2+) release arises from spatiotemporal summation of many localized elementary Ca(2+)-release events, Ca(2+) sparks. We tested whether DHPRs modulate Ca(2+)sparks in a Ca(2+) entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca(2+) sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca(2+) (100 nM). Under these conditions, Ca(2+) sparks were detected with a stable frequency of 3-5 sparks.s(-1).100 microm(-1). The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca(2+) sparks. The DHPR modulators were also without effect on SR Ca(2+) load (caffeine-induced Ca(2+) transients) or sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity (Ca(2+) loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca(2+) entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca(2+)-release units in ventricular myocytes is modulated by Ca(2+) entry-independent conformational changes in neighboring DHPRs.
Collapse
Affiliation(s)
- Julio A Copello
- Dept. of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA.
| | | | | | | | | |
Collapse
|
44
|
Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 2007; 446:41-5. [PMID: 17287729 DOI: 10.1038/nature05526] [Citation(s) in RCA: 505] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 12/11/2006] [Indexed: 12/18/2022]
Abstract
CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Duo Jin
- Kanazawa University 21st Century COE Program on Innovative Brain Science on Development, Learning and Memory, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zissimopoulos S, West DJ, Williams AJ, Lai FA. Ryanodine receptor interaction with the SNARE-associated protein snapin. J Cell Sci 2007; 119:2386-97. [PMID: 16723744 DOI: 10.1242/jcs.02936] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ryanodine receptor (RyR) is a widely expressed intracellular calcium (Ca(2+))-release channel regulating processes such as muscle contraction and neurotransmission. Snapin, a ubiquitously expressed SNARE-associated protein, has been implicated in neurotransmission. Here, we report the identification of snapin as a novel RyR2-interacting protein. Snapin binds to a 170-residue predicted ryanodine receptor cytosolic loop (RyR2 residues 4596-4765), containing a hydrophobic segment required for snapin interaction. Ryanodine receptor binding of snapin is not isoform specific and is conserved in homologous RyR1 and RyR3 fragments. Consistent with peptide fragment studies, snapin interacts with the native ryanodine receptor from skeletal muscle, heart and brain. The snapin-RyR1 association appears to sensitise the channel to Ca(2+) activation in [(3)H]ryanodine-binding studies. Deletion analysis indicates that the ryanodine receptor interacts with the snapin C-terminus, the same region as the SNAP25-binding site. Competition experiments with native ryanodine receptor and SNAP25 suggest that these two proteins share an overlapping binding site on snapin. Thus, regulation of the association between ryanodine receptor and snapin might constitute part of the elusive molecular mechanism by which ryanodine-sensitive Ca(2+) stores modulate neurosecretion.
Collapse
Affiliation(s)
- Spyros Zissimopoulos
- Wales Heart Research Institute, Department of Cardiology, Cardiff University School of Medicine, Heath Park, UK.
| | | | | | | |
Collapse
|
46
|
Billups D, Billups B, Challiss RAJ, Nahorski SR. Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. J Neurosci 2006; 26:9983-95. [PMID: 17005862 PMCID: PMC2266565 DOI: 10.1523/jneurosci.2773-06.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gq-protein-coupled receptors (GqPCRs) are widely distributed in the CNS and play fundamental roles in a variety of neuronal processes. Their activation results in phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and Ca2+ release from intracellular stores via the phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3) signaling pathway. Because early GqPCR signaling events occur at the plasma membrane of neurons, they might be influenced by changes in membrane potential. In this study, we use combined patch-clamp and imaging methods to investigate whether membrane potential changes can modulate GqPCR signaling in neurons. Our results demonstrate that GqPCR signaling in the human neuronal cell line SH-SY5Y and in rat cerebellar granule neurons is directly sensitive to changes in membrane potential, even in the absence of extracellular Ca2+. Depolarization has a bidirectional effect on GqPCR signaling, potentiating thapsigargin-sensitive Ca2+ responses to muscarinic receptor activation but attenuating those mediated by bradykinin receptors. The depolarization-evoked potentiation of the muscarinic signaling is graded, bipolar, non-inactivating, and with no apparent upper limit, ruling out traditional voltage-gated ion channels as the primary voltage sensors. Flash photolysis of caged IP3/GPIP2 (glycerophosphoryl-myo-inositol 4,5-bisphosphate) places the voltage sensor before the level of the Ca2+ store, and measurements using the fluorescent bioprobe eGFP-PH(PLCdelta) (enhanced green fluorescent protein-pleckstrin homology domain-PLCdelta) directly demonstrate that voltage affects muscarinic signaling at the level of the IP3 production pathway. The sensitivity of GqPCR IP3 signaling in neurons to voltage itself may represent a fundamental mechanism by which ionotropic signals can shape metabotropic receptor activity in neurons and influence processes such as synaptic plasticity in which the detection of coincident signals is crucial.
Collapse
Affiliation(s)
- Daniela Billups
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Carrasco MA, Hidalgo C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 2006; 40:575-83. [PMID: 17034850 DOI: 10.1016/j.ceca.2006.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 01/14/2023]
Abstract
Neurons generate particular calcium microdomains in response to different stimuli. Calcium microdomains have a central role in a variety of neuronal functions. In particular, calcium microdomains participate in long-lasting synaptic plasticity--a neuronal response presumably correlated with cognitive brain functions that requires expression of new gene products. Stimulation of skeletal muscle generates - with few milliseconds delay - calcium microdomains that have a central role in the ensuing muscle contraction. In addition, recent evidence indicates that sustained stimulation of skeletal muscle cells in culture generates calcium microdomains, which stimulate gene expression but not muscle contraction. The mechanisms whereby calcium microdomains activate signaling cascades that lead to the transcription of genes known to participate in specific cellular responses are the central topic of this review. Thus, we will discuss here the signaling pathways and molecular mechanisms, which via activation of particular calcium-dependent transcription factors regulate the expression of specific genes or set of genes in neurons or skeletal muscle cells.
Collapse
Affiliation(s)
- M Angélica Carrasco
- Centro FONDAP de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
48
|
Abstract
Microdomains of Ca(2+), which are formed at sites where Ca(2+) enters the cytoplasm either at the cell surface or at the internal stores, are a key element of Ca(2+) signalling. The term microdomain includes the elementary events that are the basic building blocks of Ca(2+) signals. As Ca(2+) enters the cytoplasm, it produces a local plume of Ca(2+) that has been given different names (sparks, puffs, sparklets and syntillas). These elementary events can combine to produce larger microdomains. The significance of these localized domains of Ca(2+) is that they can regulate specific cellular processes in different regions of the cell. Such microdomains are particularly evident in neurons where both pre- and postsynaptic events are controlled by highly localized pulses of Ca(2+). The ability of single neurons to process enormous amounts of information depends upon such miniaturization of the Ca(2+) signalling system. Control of cardiac cell contraction and gene transcription provides another example of how the parallel processing of Ca(2+) signalling can occur through microdomains of intracellular Ca(2+).
Collapse
|
49
|
Tumelty J, Scholfield N, Stewart M, Curtis T, McGeown G. Ca2+-sparks constitute elementary building blocks for global Ca2+-signals in myocytes of retinal arterioles. Cell Calcium 2006; 41:451-66. [PMID: 17027081 PMCID: PMC2638024 DOI: 10.1016/j.ceca.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/21/2006] [Accepted: 08/26/2006] [Indexed: 11/04/2022]
Abstract
Spontaneous Ca2+-events were imaged in myocytes within intact retinal arterioles (diameter <40 μm) freshly isolated from rat eyes. Ca2+-sparks were often observed to spread across the width of these small cells, and could summate to produce prolonged Ca2+-oscillations and contraction. Application of cyclopiazonic acid (20 μM) transiently increased spark frequency and oscillation amplitude, but inhibited both sparks and oscillations within 60 s. Both ryanodine (100 μM) and tetracaine (100 μM) reduced the frequency of sparks and oscillations, while tetracaine also reduced oscillation amplitude. None of these interventions affected spark amplitude. Nifedipine, which blocks store filling independently of any action on L-type Ca2+-channels in these cells, reduced the frequency and amplitude of both sparks and oscillations. Removal of external [Ca2+] (1 mM EGTA) also reduced the frequency of sparks and oscillations but these reductions were slower in onset than those in the presence of tetracaine or cyclopiazonic acid. Cyclopiazonic acid, nifedipine and low external [Ca2+] all reduced SR loading, as indicated by the amplitude of caffeine evoked Ca2+-transients. This study demonstrates for the first time that spontaneous Ca2+-events in small arterioles of the eye result from activation of ryanodine receptors in the SR and suggests that this activation is not tightly coupled to Ca2+-influx. The data also supports a model in which Ca2+-sparks act as building blocks for more prolonged, global Ca2+-signals.
Collapse
Affiliation(s)
- James Tumelty
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Centre of Vision Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | - Norman Scholfield
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Michael Stewart
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Tim Curtis
- Centre of Vision Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | - Graham McGeown
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Corresponding author. Tel.: +44 28 90972090.
| |
Collapse
|
50
|
De Crescenzo V, Fogarty KE, ZhuGe R, Tuft RA, Lifshitz LM, Carmichael J, Bellvé KD, Baker SP, Zissimopoulos S, Lai FA, Lemos JR, Walsh JV. Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. J Neurosci 2006; 26:7565-74. [PMID: 16855084 PMCID: PMC6674279 DOI: 10.1523/jneurosci.1512-06.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+ stores were studied in a preparation of freshly dissociated terminals from hypothalamic magnocellular neurons. Depolarization from a holding level of -80 mV in the absence of extracellular Ca2+ elicited Ca2+ release from intraterminal stores, a ryanodine-sensitive process designated as voltage-induced Ca2+ release (VICaR). The release took one of two forms: an increase in the frequency but not the quantal size of Ca2+ syntillas, which are brief, focal Ca2+ transients, or an increase in global [Ca2+]. The present study provides evidence that the sensors of membrane potential for VICaR are dihydropyridine receptors (DHPRs). First, over the range of -80 to -60 mV, in which there was no detectable voltage-gated inward Ca2+ current, syntilla frequency was increased e-fold per 8.4 mV of depolarization, a value consistent with the voltage sensitivity of DHPR-mediated VICaR in skeletal muscle. Second, VICaR was blocked by the dihydropyridine antagonist nifedipine, which immobilizes the gating charge of DHPRs but not by Cd2+ or FPL 64176 (methyl 2,5 dimethyl-4[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate), a non-dihydropyridine agonist specific for L-type Ca2+ channels, having no effect on gating charge movement. At 0 mV, the IC50 for nifedipine blockade of VICaR in the form of syntillas was 214 nM in the absence of extracellular Ca2+. Third, type 1 ryanodine receptors, the type to which DHPRs are coupled in skeletal muscle, were detected immunohistochemically at the plasma membrane of the terminals. VICaR may constitute a new link between neuronal activity, as signaled by depolarization, and a rise in intraterminal Ca2+.
Collapse
|