1
|
Hoh JE, Semrau JA. The Role of Sensory Impairments on Recovery and Rehabilitation After Stroke. Curr Neurol Neurosci Rep 2025; 25:22. [PMID: 40047982 PMCID: PMC11885399 DOI: 10.1007/s11910-025-01407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE OF REVIEW The current review aims to address critical gaps in the field of stroke rehabilitation related to sensory impairment. Here, we examine the role and importance of sensation throughout recovery of neural injury, potential clinical and experimental approaches for improving sensory function, and mechanism-based theories that may facilitate the design of sensory-based approaches for the rehabilitation of somatosensation. RECENT FINDINGS Recently, the field of neurorehabilitation has shifted to using more quantitative and sensitive measures to more accurately capture sensory function in stroke and other neurological populations. These approaches have laid the groundwork for understanding how sensory impairments impact overall function after stroke. However, there is less consensus on which interventions are effective for remediating sensory function, with approaches that vary from clinical re-training, robotics, and sensory stimulation interventions. Current evidence has found that sensory and motor systems are interdependent, but commonly have independent recovery trajectories after stroke. Therefore, it is imperative to assess somatosensory function in order to guide rehabilitation outcomes and trajectory. Overall, considerable work in the field still remains, as there is limited evidence for purported mechanisms of sensory recovery, promising early-stage work that focuses on sensory training, and a considerable evidence-practice gap related to clinical sensory rehabilitation.
Collapse
Affiliation(s)
- Joanna E Hoh
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| | - Jennifer A Semrau
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Furuya S, Oku T, Nishioka H, Hirano M. Surmounting the ceiling effect of motor expertise by novel sensory experience with a hand exoskeleton. Sci Robot 2025; 10:eadn3802. [PMID: 39813311 DOI: 10.1126/scirobotics.adn3802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently. Although the skill of moving the fingers quickly plateaued through weeks of piano practice, passive exposure to otherwise impossible complex finger movements generated by the exoskeleton robot at a speed faster than the pianists' fastest one enabled them to play faster. Neither a training for fast but simple finger movements nor one for slow but complex movements with the exoskeleton enhanced the overtrained motor skill. The exoskeleton training with one hand also improved the motor skill of the untrained contralateral hand, demonstrating the intermanual transfer effect. The training altered patterns of coordinated activities across multiple finger muscles during piano playing but not in general motor and somatosensory functions or in anatomical characteristics of the hand (range of motion). Patterns of the multifinger movements evoked by transcranial magnetic stimulation over the left motor cortex were also changed through passive exposure to fast and complex finger movements, which accompanied increased involvement of constituent movement elements characterizing the individuated finger movements. The results demonstrate evidence that somatosensory exposure to an unexperienced motor skill allows surmounting of the ceiling effect in a task-specific but effector-independent manner.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| | - Takanori Oku
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| | - Hayato Nishioka
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| | - Masato Hirano
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| |
Collapse
|
3
|
Tabrik S, Dinse HR, Tegenthoff M, Behroozi M. Resting-State Network Plasticity Following Category Learning Depends on Sensory Modality. Hum Brain Mapp 2024; 45:e70111. [PMID: 39720915 PMCID: PMC11669188 DOI: 10.1002/hbm.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024] Open
Abstract
Learning new categories is fundamental to cognition, occurring in daily life through various sensory modalities. However, it is not well known how acquiring new categories can modulate the brain networks. Resting-state functional connectivity is an effective method for detecting short-term brain alterations induced by various modality-based learning experiences. Using fMRI, our study investigated the intricate link between novel category learning and brain network reorganization. Eighty-four adults participated in an object categorization experiment utilizing visual (n = 41, with 20 females and a mean age of 23.91 ± 3.11 years) or tactile (n = 43, with 21 females and a mean age of 24.57 ± 2.58 years) modalities. Resting-state networks (RSNs) were identified using independent component analysis across the group of participants, and their correlation with individual differences in object category learning across modalities was examined using dual regression. Our results reveal an increased functional connectivity of the frontoparietal network with the left superior frontal gyrus in visual category learning task and with the right superior occipital gyrus and the left middle temporal gyrus after tactile category learning. Moreover, the somatomotor network demonstrated an increased functional connectivity with the left parahippocampus exclusively after tactile category learning. These findings illuminate the neural mechanisms of novel category learning, emphasizing distinct brain networks' roles in diverse modalities. The dynamic nature of RSNs emphasizes the ongoing adaptability of the brain, which is essential for efficient novel object category learning. This research provides valuable insights into the dynamic interplay between sensory learning, brain plasticity, and network reorganization, advancing our understanding of cognitive processes across different modalities.
Collapse
Affiliation(s)
- Sepideh Tabrik
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Hubert R. Dinse
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Martin Tegenthoff
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
4
|
Ebrahimi S, van der Voort B, Ostry DJ. The Consolidation of Newly Learned Movements Depends upon the Somatosensory Cortex in Humans. J Neurosci 2024; 44:e0629242024. [PMID: 38871461 PMCID: PMC11308319 DOI: 10.1523/jneurosci.0629-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Studies using magnetic brain stimulation indicate the involvement of somatosensory regions in the acquisition and retention of newly learned movements. Recent work found an impairment in motor memory when retention was tested shortly after the application of continuous theta-burst stimulation (cTBS) to the primary somatosensory cortex, compared with stimulation of the primary motor cortex or a control zone. This finding that the somatosensory cortex is involved in motor memory retention whereas the motor cortex is not, if confirmed, could alter our understanding of human motor learning. It would indicate that plasticity in sensory systems underlies newly learned movements, which is different than the commonly held view that adaptation learning involves updates to a motor controller. Here we test this idea. Participants were trained in a visuomotor adaptation task, with visual feedback gradually shifted. Following adaptation, cTBS was applied either to M1, S1, or an occipital cortex control area. Participants were tested for retention 24 h later. It was observed that S1 stimulation led to reduced retention of prior learning, compared with stimulation of M1 or the control area (with no significant difference between M1 and control). In a further control, cTBS was applied to S1 following training with unrotated feedback, in which no learning occurred. This had no effect on movement in the retention test indicating the effects of S1 stimulation on movement are learning specific. The findings are consistent with the S1 participation in the encoding of learning-related changes to movements and in the retention of human motor memory.
Collapse
Affiliation(s)
- Shahryar Ebrahimi
- Department of Psychology, McGill University, Montreal, Quebec H3A1G1, Canada
| | - Bram van der Voort
- Department of Psychology and Educational Sciences, KU Leuven, Leuven, Flemish Brabant 3000, Belgium
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec H3A1G1, Canada
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06511
| |
Collapse
|
5
|
Jacobsen NA, Ferris DP. Exploring Electrocortical Signatures of Gait Adaptation: Differential Neural Dynamics in Slow and Fast Gait Adapters. eNeuro 2024; 11:ENEURO.0515-23.2024. [PMID: 38871456 PMCID: PMC11242882 DOI: 10.1523/eneuro.0515-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Individuals exhibit significant variability in their ability to adapt locomotor skills, with some adapting quickly and others more slowly. Differences in brain activity likely contribute to this variability, but direct neural evidence is lacking. We investigated individual differences in electrocortical activity that led to faster locomotor adaptation rates. We recorded high-density electroencephalography while young, neurotypical adults adapted their walking on a split-belt treadmill and grouped them based on how quickly they restored their gait symmetry. Results revealed unique spectral signatures within the posterior parietal, bilateral sensorimotor, and right visual cortices that differ between fast and slow adapters. Specifically, fast adapters exhibited lower alpha power in the posterior parietal and right visual cortices during early adaptation, associated with quicker attainment of steady-state step length symmetry. Decreased posterior parietal alpha may reflect enhanced spatial attention, sensory integration, and movement planning to facilitate faster locomotor adaptation. Conversely, slow adapters displayed greater alpha and beta power in the right visual cortex during late adaptation, suggesting potential differences in visuospatial processing. Additionally, fast adapters demonstrated reduced spectral power in the bilateral sensorimotor cortices compared with slow adapters, particularly in the theta band, which may suggest variations in perception of the split-belt perturbation. These findings suggest that alpha and beta oscillations in the posterior parietal and visual cortices and theta oscillations in the sensorimotor cortex are related to the rate of gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| |
Collapse
|
6
|
Yu Y, Zhang X, Nitsche MA, Vicario CM, Qi F. Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review. Front Physiol 2024; 15:1365530. [PMID: 38962069 PMCID: PMC11220198 DOI: 10.3389/fphys.2024.1365530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Xinbi Zhang
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Carmelo M. Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Vahdat S, Landelle C, Lungu O, De Leener B, Doyon J, Baniasad F. FASB: an integrated processing pipeline for Functional Analysis of simultaneous Spinal cord-Brain fMRI. RESEARCH SQUARE 2024:rs.3.rs-3889284. [PMID: 38352433 PMCID: PMC10862948 DOI: 10.21203/rs.3.rs-3889284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Simultaneous functional magnetic resonance imaging (fMRI) of the spinal cord and brain represents a powerful method for examining both ascending sensory and descending motor pathways in humans in vivo . However, its image acquisition protocols, and processing pipeline are less well established. This limitation is mainly due to technical difficulties related to spinal cord fMRI, and problems with the logistics stemming from a large field of view covering both brain and cervical cord. Here, we propose an acquisition protocol optimized for both anatomical and functional images, as well as an optimized integrated image processing pipeline, which consists of a novel approach for automatic modeling and mitigating the negative impact of spinal voxels with low temporal signal to noise ratio (tSNR). We validate our integrated pipeline, named FASB, using simultaneous fMRI data acquired during the performance of a motor task, as well as during resting-state conditions. We demonstrate that FASB outperforms the current spinal fMRI processing methods in three domains, including motion correction, registration to the spinal cord template, and improved detection power of the group-level analysis by removing the effects of participant-specific low tSNR voxels, typically observed at the disk level. Using FASB, we identify significant task-based activations in the expected sensorimotor network associated with a unilateral handgrip force production task across the entire central nervous system, including the contralateral sensorimotor cortex, thalamus, striatum, cerebellum, brainstem, as well as ipsilateral ventral horn at C5-C8 cervical levels. Additionally, our results show significant task-based functional connectivity between the key sensory and motor brain areas and the dorsal and ventral horns of the cervical cord. Overall, our proposed acquisition protocol and processing pipeline provide a robust method for characterizing the activation and functional connectivity of distinct cortical, subcortical, brainstem and spinal cord regions in humans.
Collapse
|
8
|
Hirano M, Furuya S. Active perceptual learning involves motor exploration and adaptation of predictive sensory integration. iScience 2024; 27:108604. [PMID: 38155781 PMCID: PMC10753069 DOI: 10.1016/j.isci.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Our ability to perceive both externally generated and self-generated sensory stimuli can be enhanced through training, known as passive and active perceptual learning (APL). Here, we sought to explore the mechanisms underlying APL by using active haptic training (AHT), which has been demonstrated to enhance the somatosensory perception of a finger in a trained motor skill. In total 120 pianists participated in this study. First, AHT reorganized the muscular coordination during the piano keystroke. Second, AHT increased the relative reliance on afferent sensory information relative to predicted one, in contrast to no increment of overall perceptual sensitivity. Finally, AHT improved feedback movement control of keystrokes. These results suggest that APL involves active exploration and adaptation of predictive sensory integration, which underlies the co-enhancement of active perception and feedback control of movements of well-trained individuals.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories, Inc Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| |
Collapse
|
9
|
Kamel RM, Khaireldin A, Gad Allah MA, Bakhoom RYF, Abdelhakiem NM, Mehrem ES. Efficacy of balance exercises intervention on postural control-related impairment in children with sensorineural hearing loss. NeuroRehabilitation 2024; 54:349-358. [PMID: 38277310 DOI: 10.3233/nre-230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Sensorineural hearing loss is the most common type of permanent hearing impairment and results in postural control and motor deficits in children that may affect or delay all developmental indicators. OBJECTIVE The purpose of the study was to investigate the efficacy of balance exercises intervention on postural control-related impairment in children with sensorineural hearing loss. METHODS Forty students of both genders, ages ranging from 10 to 16 years, diagnosed with severe to profound sensorineural hearing loss, were selected from the Public School for the Deaf and Hard of Hearing in El-Minia district, Minia governorate, Egypt. They divided randomly into two groups, 20 (study group), received balance exercises in addition to their ordinary daily living activities. Meanwhile, the control group of 20 children practiced only the ordinary daily living activities. The outcome was assessed pre-treatment and post-treatment by Humac Balance System and Bruininks-Oseretsky Test (BOT-2) subtest (5) for balance. RESULTS Regarding the Humac balance system and subtest (5) of BOT-2, there was a statistically significant difference between pre-treatment data and post-treatment data of the study group with a p value equal to 0.036 or less. However, no statistically significant difference was observed in the control group with a p value equal to 0.096 or more. Finally, there was a statistically significant difference between the groups with respect to the post-treatment data, where the p value was 0.014 or less. CONCLUSION Postural control of children with sensorineural hearing loss has been improved by balance exercises.
Collapse
Affiliation(s)
- Roshdy M Kamel
- Basic Sciences Department, Faculty of Physical Therapy, Benha University, Qalyubia, Egypt
| | - Alaaeldin Khaireldin
- Orthopedic Department, Faculty of Physical Therapy, Deraya University, Minia, Egypt
- Department of Physical Therapy, Benha University Hospital, Benha, Qalyubia, Egypt
| | - Mohamed A Gad Allah
- Department of Physical Therapy for Internal Medicine, Faculty of Physical Therapy, Deraya University, Minia, Egypt
| | - Ramez Yousry Fawzy Bakhoom
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Deraya University, Minia, Egypt
| | - Nadia Mohamed Abdelhakiem
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Deraya University, Minia, Egypt
| | - Elsayed S Mehrem
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Deraya University, Minia, Egypt
| |
Collapse
|
10
|
Darainy M, Manning TF, Ostry DJ. Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 2023; 130:1521-1528. [PMID: 37964765 DOI: 10.1152/jn.00231.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
This study tests for a function of the somatosensory cortex, that, in addition to its role in processing somatic afferent information, somatosensory cortex contributes both to motor learning and the stabilization of motor memory. Continuous theta-burst magnetic stimulation (cTBS) was applied, before force-field training to disrupt activity in either the primary somatosensory cortex, primary motor cortex, or a control zone over the occipital lobe. Tests for retention and relearning were conducted after a 24 h delay. Analysis of movement kinematic measures and force-channel trials found that cTBS to somatosensory cortex disrupted both learning and subsequent retention, whereas cTBS to motor cortex had little effect on learning but possibly impaired retention. Basic movement variables are unaffected by cTBS suggesting that the stimulation does not interfere with movement but instead disrupts changes in the cortex that are necessary for learning. In all experimental conditions, relearning in an abruptly introduced force field, which followed retention testing, showed extensive savings, which is consistent with previous work suggesting that more cognitive aspects of learning and retention are not dependent on either of the cortical zones under test. Taken together, the findings are consistent with the idea that motor learning is dependent on learning-related activity in the somatosensory cortex.NEW & NOTEWORTHY This study uses noninvasive transcranial magnetic stimulation to test the contribution of somatosensory and motor cortex to human motor learning and retention. Continuous theta-burst stimulation is applied before learning; participants return 24 h later to assess retention. Disruption of the somatosensory cortex is found to impair both learning and retention, whereas disruption of the motor cortex has no effect on learning. The findings are consistent with the idea that motor learning is dependent upon learning-related plasticity in somatosensory cortex.
Collapse
Affiliation(s)
- Mohammad Darainy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Timothy F Manning
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Martin-Harris B, Kantarcigil C, Reedy EL, McFarland DH. Cross-System Integration of Respiration and Deglutition: Function, Treatment, and Future Directions. Dysphagia 2023; 38:1049-1058. [PMID: 36378345 PMCID: PMC10266896 DOI: 10.1007/s00455-022-10538-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Swallowing occurs preferentially in the expiratory phase of the quiet breathing cycle and at mid-to-low tidal volume. This coordinative pattern imparts important biomechanical advantages to swallowing and airway protection and facilitate laryngeal elevation, laryngeal vestibular and vocal fold closure, and cricopharyngeal sphincter opening. This preferred coordinative relationship between breathing and swallowing is impaired in a variety of patient populations, including head and neck cancer survivors with dysphagia. We developed a training protocol to re-establish more optimal phasing of swallowing with breathing in these patients with striking outcomes, including reduced swallowing physiological impairments and improved airway protection. This motivated us to continue to refine and expand this training protocol and develop new assistive technologies for swallowing monitoring outside of the lab. In this review, we highlight the origins of our optimal respiratory-swallowing coordination hypothesis, describe the biomechanical advantages it provides, carefully describe our training protocol and findings, and chart a course for the next phase of this work. Our overall goal is to harness technology combined with carefully constructed learning paradigms to improve the lives of patients with impaired respiratory-swallowing coordination consequent to a variety of pathologies including head and neck cancer and degenerative neurological conditions such as Parkinson's disease.
Collapse
Affiliation(s)
- Bonnie Martin-Harris
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA.
- Otolaryngology - Head & Neck Surgery, Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Veterans Affairs Medical Center, Edward J. Hines, Jr., Hines, IL, USA.
| | - Cagla Kantarcigil
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA
| | - Erin L Reedy
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA
- Veterans Affairs Medical Center, Edward J. Hines, Jr., Hines, IL, USA
| | - David H McFarland
- Faculties of Medicine, Université de Montréal and McGill University, Montreal, CA, USA
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, CA, USA
| |
Collapse
|
12
|
Anoushiravani S, Alizadehgoradel J, Iranpour A, Yousefi Bilehsavar O, Pouresmali A, Nitsche MA, Salehinejad MA, Mosayebi-Samani M, Zoghi M. The impact of bilateral anodal transcranial direct current stimulation of the premotor and cerebellar cortices on physiological and performance parameters of gymnastic athletes: a randomized, cross-over, sham-controlled study. Sci Rep 2023; 13:10611. [PMID: 37391555 PMCID: PMC10313825 DOI: 10.1038/s41598-023-37843-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Professional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.
Collapse
Affiliation(s)
- Sajjad Anoushiravani
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jaber Alizadehgoradel
- Department of Psychology, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
| | - Asgar Iranpour
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Omid Yousefi Bilehsavar
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Pouresmali
- Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Victoria, Australia
| |
Collapse
|
13
|
Farrens AJ, Vahdat S, Sergi F. Changes in Resting State Functional Connectivity Associated with Dynamic Adaptation of Wrist Movements. J Neurosci 2023; 43:3520-3537. [PMID: 36977577 PMCID: PMC10184736 DOI: 10.1523/jneurosci.1916-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC). For dynamic adaptation, rsFC has not been quantified on this timescale, nor has its relationship to adaptative behavior been established. We used a functional magnetic resonance imaging (fMRI)-compatible robot, the MR-SoftWrist (Erwin et al., 2017), to quantify rsFC specific to dynamic adaptation of wrist movements and subsequent memory formation in a mixed-sex cohort of human participants. We acquired fMRI during a motor execution and a dynamic adaptation task to localize brain networks of interest, and quantified rsFC within these networks in three 10-min windows occurring immediately before and after each task. The next day, we assessed behavioral retention. We used a mixed model of rsFC measured in each time window to identify changes in rsFC with task performance, and linear regression to identify the relationship between rsFC and behavior. Following the dynamic adaptation task, rsFC increased within the cortico-cerebellar network and decreased interhemispherically within the cortical sensorimotor network. Increases within the cortico-cerebellar network were specific to dynamic adaptation, as they were associated with behavioral measures of adaptation and retention, indicating that this network has a functional role in consolidation. Instead, decreases in rsFC within the cortical sensorimotor network were associated with motor control processes independent from adaptation and retention.SIGNIFICANCE STATEMENT Motor memory consolidation processes have been studied via functional magnetic resonance imaging (fMRI) by analyzing changes in resting state functional connectivity (rsFC) occurring more than 30 min after adaptation. However, it is unknown whether consolidation processes are detectable immediately (<15 min) following dynamic adaptation. We used an fMRI-compatible wrist robot to localize brain regions involved in dynamic adaptation in the cortico-thalamic-cerebellar (CTC) and cortical sensorimotor networks and quantified changes in rsFC within each network immediately after adaptation. Different patterns of change in rsFC were observed compared with studies conducted at longer latencies. Increases in rsFC in the cortico-cerebellar network were specific to adaptation and retention, while interhemispheric decreases in the cortical sensorimotor network were associated with alternate motor control processes but not with memory formation.
Collapse
Affiliation(s)
- Andria J Farrens
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| | - Shahabeddin Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| |
Collapse
|
14
|
Wang X, Zwosta K, Wolfensteller U, Ruge H. Changes in global functional network properties predict individual differences in habit formation. Hum Brain Mapp 2023; 44:1565-1578. [PMID: 36413054 PMCID: PMC9921330 DOI: 10.1002/hbm.26158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Prior evidence suggests that sensorimotor regions play a crucial role in habit formation. Yet, whether and how their global functional network properties might contribute to a more comprehensive characterization of habit formation still remains unclear. Capitalizing on advances in Elastic Net regression and predictive modeling, we examined whether learning-related functional connectivity alterations distributed across the whole brain could predict individual habit strength. Using the leave-one-subject-out cross-validation strategy, we found that the habit strength score of the novel unseen subjects could be successfully predicted. We further characterized the contribution of both, individual large-scale networks and individual brain regions by calculating their predictive weights. This highlighted the pivotal role of functional connectivity changes involving the sensorimotor network and the cingulo-opercular network in subject-specific habit strength prediction. These results contribute to the understanding the neural basis of human habit formation by demonstrating the importance of global functional network properties especially also for predicting the observable behavioral expression of habits.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Table Tennis, as a Method of Sensorimotor Training, Induces Haptic and Motor Gains in Children With a Probable Developmental Coordination Disorder. Motor Control 2023:1-18. [PMID: 36669507 DOI: 10.1123/mc.2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 01/22/2023]
Abstract
This study examined whether table tennis as a method of sensorimotor training improves haptic and motor function and to what extent haptic function gain correlates with changes in motor ability in children with probable developmental coordination disorder (pDCD). Children with pDCD were randomly assigned to the table tennis and nontraining control groups. The children in the table tennis group received 36 sessions of table tennis training, including ball balancing, hitting the ball against the wall, strokes, and serving. Haptic sensitivity, acuity, and motor function domains were measured. The results showed a 41.5% improvement in haptic sensitivity in children exposed to table tennis training compared with 2.8% in those without training. This improved haptic sensitivity significantly correlated with motor function gain, suggesting that somatosensory gains occur simultaneously with changes in motor function in children with pDCD. This novel upper limb motor training approach may be an interesting method of sensorimotor training in neurological rehabilitation in children with pDCD.
Collapse
|
16
|
Furuya S, Tanibuchi R, Nishioka H, Kimoto Y, Hirano M, Oku T. Passive somatosensory training enhances piano skill in adolescent and adult pianists: A preliminary study. Ann N Y Acad Sci 2023; 1519:167-172. [PMID: 36398868 DOI: 10.1111/nyas.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensory afferent information, such as auditory and somatosensory feedback while moving, plays a crucial role in both control and learning of motor performance across the lifespan. Music performance requires skillful integration of multimodal sensory information for the production of dexterous movements. However, it has not been understood what roles somatosensory afferent information plays in the acquisition and sophistication of specialized motor skills of musicians across different stages of development. In the present preliminary study, we addressed this issue by using a novel technique with a hand exoskeleton robot that can externally move the fingers of pianists. Short-term exposure to fast and complex finger movements generated by the exoskeleton (i.e., passive movements) increased the maximum rate of repetitive piano keystrokes by the pianists. This indicates that somatosensory inputs derived from the externally generated motions enhanced the quickness of the sequential finger movements in piano performance, even though the pianists did not voluntarily move the fingers. The enhancement of motor skill through passive somatosensory training using the exoskeleton was more pronounced in adolescent pianists than adult pianists. These preliminary results implicate a sensitive period of neuroplasticity of the somatosensory-motor system of trained pianists, which emphasizes the importance of somatosensory-motor training in professional music education during adolescence.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,NeuroPiano Institute, Kyoto, Japan.,Sophia University, Tokyo, Japan
| | - Ryuya Tanibuchi
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,Sophia University, Tokyo, Japan
| | - Hayato Nishioka
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,NeuroPiano Institute, Kyoto, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,Sophia University, Tokyo, Japan
| | - Masato Hirano
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,NeuroPiano Institute, Kyoto, Japan
| | - Takanori Oku
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,NeuroPiano Institute, Kyoto, Japan.,Sophia University, Tokyo, Japan
| |
Collapse
|
17
|
Resting-state fMRI functional connectivity of the left temporal parietal junction is associated with visual temporal order threshold. Sci Rep 2022; 12:15933. [PMID: 36153359 PMCID: PMC9509386 DOI: 10.1038/s41598-022-20309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
The study aimed to determine the relationship between the millisecond timing, measured by visual temporal order threshold (TOT), i.e. a minimum gap between two successive stimuli necessary to judge a before-after relation, and resting-state fMRI functional connectivity (rsFC). We assume that the TOT reflects a relatively stable feature of local internal state networks and is associated with rsFC of the temporal parietal junction (TPJ). Sixty five healthy young adults underwent the visual TOT, fluid intelligence (Gf) and an eyes-open resting-state fMRI examination. After controlling for the influence of gender, the higher the TOT, the stronger was the left TPJ’s rsFC with the left postcentral and the right precentral gyri, bilateral putamen and the right supplementary motor area. When the effects of Gf and TOT × Gf interaction were additionally controlled, the TOT—left TPJ’s rsFC relationship survived for almost all above regions with the exception of the left and right putamen. This is the first study demonstrating that visual TOT is associated with rsFC between the areas involved both in sub-second timing and motor control. Current outcomes indicate that the local neural networks are prepared to process brief, rapidly presented, consecutive events, even in the absence of such stimulation.
Collapse
|
18
|
Decarie A, Cressman EK. Improved proprioception does not benefit visuomotor adaptation. Exp Brain Res 2022; 240:1499-1514. [PMID: 35366069 PMCID: PMC8975733 DOI: 10.1007/s00221-022-06352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
Visuomotor adaptation arises when reaching in an altered visual environment, where one's seen hand position does not match their felt (i.e., proprioceptive) hand position in space. Here, we asked if proprioceptive training benefits visuomotor adaptation, and if these benefits arise due to implicit (unconscious) or explicit (conscious strategy) processes. Seventy-two participants were divided equally into 3 groups: proprioceptive training with feedback (PTWF), proprioceptive training no feedback (PTNF), and Control (CTRL). The PTWF and PTNF groups completed passive proprioceptive training, where a participant's hand was moved to an unknown reference location and they judged the felt position of their unseen hand relative to their body midline on every trial. The PTWF group received verbal feedback with respect to their response accuracy on the middle 60% of trials, whereas the PTNF did not receive any feedback during training. The CTRL group did not complete proprioceptive training and instead sat quietly during this time. Following proprioceptive training or time delay, all three groups reached when seeing a cursor that was rotated 30° clockwise relative to their hand motion. The experiment ended with participants completing a series of no-cursor reaches to assess implicit and explicit adaptation. Results indicated that the PTWF group improved the accuracy of their sense of felt hand position following proprioceptive training. However, this improved proprioceptive acuity (i.e., the accuracy of their sense of felt hand) did not benefit visuomotor adaptation, as all three groups showed similar visuomotor adaptation across rotated reach training trials. Visuomotor adaptation arose implicitly, with minimal explicit contribution for all three groups. Together, these results suggest that passive proprioceptive training does not benefit, nor hinder, the extent of implicit visuomotor adaptation established immediately following reach training with a 30° cursor rotation.
Collapse
Affiliation(s)
- Amelia Decarie
- School of Human Kinetics, University of Ottawa, Ottawa, Canada.
| | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
19
|
Ossmy O, Mansano L, Frenkel-Toledo S, Kagan E, Koren S, Gilron R, Reznik D, Soroker N, Mukamel R. Motor learning in hemi-Parkinson using VR-manipulated sensory feedback. Disabil Rehabil Assist Technol 2022; 17:349-361. [PMID: 32657187 DOI: 10.1080/17483107.2020.1785561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
AIMS Modalities for rehabilitation of the neurologically affected upper-limb (UL) are generally of limited benefit. The majority of patients seriously affected by UL paresis remain with severe motor disability, despite all rehabilitation efforts. Consequently, extensive clinical research is dedicated to develop novel strategies aimed to improve the functional outcome of the affected UL. We have developed a novel virtual-reality training tool that exploits the voluntary control of one hand and provides real-time movement-based manipulated sensory feedback as if the other hand is the one that moves. The aim of this study was to expand our previous results, obtained in healthy subjects, to examine the utility of this training setup in the context of neuro-rehabilitation. METHODS We tested the training setup in patient LA, a young man with significant unilateral UL dysfunction stemming from hemi-parkinsonism. LA underwent daily intervention in which he intensively trained the non-affected upper limb, while receiving online sensory feedback that created an illusory perception of control over the affected limb. Neural changes were assessed using functional magnetic resonance imaging (fMRI) scans before and after training. RESULTS Training-induced behavioral gains were accompanied by enhanced activation in the pre-frontal cortex and a widespread increase in resting-state functional connectivity. DISCUSSION Our combination of cutting edge technologies, insights gained from basic motor neuroscience in healthy subjects and well-known clinical treatments, hold promise for the pursuit of finding novel and more efficient rehabilitation schemes for patients suffering from hemiplegia.Implications for rehabilitationAssistive devices used in hospitals to support patients with hemiparesis require expensive equipment and trained personnel - constraining the amount of training that a given patient can receive. The setup we describe is simple and can be easily used at home with the assistance of an untrained caregiver/family member. Once installed at the patient's home, the setup is lightweight, mobile, and can be used with minimal maintenance . Building on advances in machine learning, our software can be adapted to personal use at homes. Our findings can be translated into practice with relatively few adjustments, and our experimental design may be used as an important adjuvant to standard clinical care for upper limb hemiparesis.
Collapse
Affiliation(s)
- Ori Ossmy
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lihi Mansano
- Department of Neurological Rehabilitation, Loewenstein Hospital, Ra'anana, Israel
| | - Silvi Frenkel-Toledo
- Department of Physiotherapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Evgeny Kagan
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Shiri Koren
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Gilron
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel Reznik
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Hospital, Ra'anana, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Roy Mukamel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Chen L, Chen Y, Fu WB, Huang DF, Lo WLA. The Effect of Virtual Reality on Motor Anticipation and Hand Function in Patients with Subacute Stroke: A Randomized Trial on Movement-Related Potential. Neural Plast 2022; 2022:7399995. [PMID: 35111219 PMCID: PMC8803454 DOI: 10.1155/2022/7399995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cognitive ability to anticipate the required control for an upcoming task in patients with stroke may affect rehabilitation outcome. The cortical excitability of task-related motor anticipation for upper limb movement induced by virtual reality (VR) training remains unclear. Aims To investigate the effect of VR training on the cortical excitability of motor anticipation when executing upper limb movement in patients with subacute stroke. Methods A total of thirty-six stroke survivors with upper limb hemiparesis resulting from the first occurrence of stroke within 1 to 3 months were recruited. Participants were randomly allocated to the VR intervention group or conventional therapy group. Event-related potentials (ERPs) and electromyography (EMG) were used to simultaneously record the cortical excitability and muscle activities during palmar grasp motion. Outcome measures of the contingent negative variation (CNV) latency and amplitude, EMG reaction time, Upper Limb Fugl-Meyer Assessment (UL-FMA), Action Research Arm Test (ARAT), and National Institutes of Health Stroke Scale (NIHSS) were recorded pre- and postintervention. The between-group difference was analysed by mixed model ANOVA. Results The EMG onset time of the paretic hand in the VR group was earlier than that observed in the control group (t = 2.174, p = 0.039) postintervention. CNV latency reduction postintervention was larger in the VR group than in the control group (t = 2.411, p = 0.021) during paretic hand movement. The reduction in CNV amplitude in the VR group was larger in the VR group than in the control group (p < 0.001 for all electrodes except for C3) when executing paretic hand movement. ARAT and UL-FMA scores were significantly higher in the VR group than in the control group (p = 0.019 and p = 0.037, respectively) postintervention. No significant difference in the reduction in NIHSS was found between the VR and control groups (p = 0.072). Conclusions VR intervention is superior to conventional therapy to improve the cognitive neural process of motor anticipation and reduce the excessive compensatory activation of the contralesional hemisphere. The improvements observed in the cognitive neural process corroborated with the improvements in hand function.
Collapse
Affiliation(s)
- Ling Chen
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Bin Fu
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Feng Huang
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Passive Proprioceptive Training Alters the Sensitivity of Muscle Spindles to Imposed Movements. eNeuro 2022; 9:ENEURO.0249-21.2021. [PMID: 35022185 PMCID: PMC8805769 DOI: 10.1523/eneuro.0249-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Humans rely on precise proprioceptive feedback from our muscles, which is important in both the acquisition and execution of movements, to perform daily activities. Somatosensory input from the body shapes motor learning through central processes, as demonstrated for tasks using the arm, under active (self-generated) and passive conditions. Presently, we investigated whether passive movement training of the ankle increased proprioceptive acuity (psychophysical experiment) and whether it changed the peripheral proprioceptive afferent signal (microneurography experiment). In the psychophysical experiment, the ankle of 32 healthy human participants was moved passively using pairs of ramp-and-hold movements in different directions. In a pretraining test, participants made judgements about the movement direction in a two-alternative forced choice paradigm. Participants then underwent passive movement training, but only half were cued for learning, where a reference position was signaled by a sound and the participant had to learn to recognize this position; they then completed a post-training test. In a paradigm using the same setup, nine healthy participants underwent microneurography recordings of Ia muscle afferents from the peroneal nerve, where all were cued during training. In the psychophysical experiment, proprioceptive acuity improved with training only in the cued group. In the microneurography experiment, we found that muscle afferent firing was modulated, via an increase in the dynamic index, after training. We suggest that changes in muscle afferent input from the periphery can contribute to and support central perceptual and motor learning, as shown under passive conditions using ankle movements, which may be exploited for movement rehabilitation.
Collapse
|
22
|
Mehrem ES, Fergany LA, Mohamed SA, Fares HM, Kamel RM. Efficacy of fine motor and balance exercises on fine motor skills in children with sensorineural hearing loss. Restor Neurol Neurosci 2021; 40:43-52. [PMID: 34974444 DOI: 10.3233/rnn-211156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Childhood hearing impairment is a major disability associated with delayed motor development. The affected Fine motor performance in children with sensorineural hearing loss (SNHL) could be due to dynamic balance deficits and visual-motor incoordination. OBJECTIVE This study was designed to investigate the effects of fine motor exercises with or without balancing exercises on fine motor skills in children with SNHL. METHODS One hundred and eighty (180) children their age ranged from 8 to 18 years old diagnosed with SNHL were selected. They were divided into three groups, 60 children (control group) practiced only their ordinary activities of daily living, 60 children (fine motor exercises group) practiced fine motor exercises, and 60 children (fine motor and balance exercise) group practiced fine motor and balance exercises. The outcomes were assessed by the Bruininks Oseretsky Test of the motor proficiency second edition scale (BOT-2). RESULTS Generally, there was a statistically significant difference between control group and fine motor exercises group where (p < 0.05), besides, there was a statistically significant difference between control group and fine motor and balance exercises group where (p < 0.05). But, there was no statistically significant difference between fine motor exercises group and fine motor and balance exercises group where (p > 0.05). CONCLUSIONS The Fine Motor performance of children with SNHL has been improved by Fine motor with or without balancing exercises according to (BOT-2).
Collapse
Affiliation(s)
- Elsayed S Mehrem
- Department of Pediatrics Physical Therapy, Faculty of Physical Therapy, Deraya University, Egypt
| | - Lamyaa A Fergany
- Department of Neurological and Neurosurgical, Faculty of Physical Therapy, Deraya University, Egypt
| | - Said A Mohamed
- Woman Health Department, Faculty of Physical Therapy, Deraya University, Egypt
| | - Hany M Fares
- Department of Physical Therapy for Internal Medicine and surgery, Faculty of Physical Therapy, Ahram Canadian University, Egypt
| | - Roshdy M Kamel
- Basic Science Department, Faculty of Physical Therapy, Benha University, Egypt
| |
Collapse
|
23
|
Moore RT, Cluff T. Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Front Hum Neurosci 2021; 15:692181. [PMID: 34916916 PMCID: PMC8669441 DOI: 10.3389/fnhum.2021.692181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor adaptation enables the nervous system to modify actions for different conditions and environments. Many studies have investigated factors that influence adaptation at the group level. There is growing recognition that individuals vary in their ability to adapt motor skills and that a better understanding of individual differences in adaptation may inform how motor skills are taught and rehabilitated. Here we examined individual differences in the adaptation of upper-limb reaching movements. We quantified the extent to which participants adapted their movements to a velocity-dependent force field during an initial session, at 24 h, and again 1-week later. Participants (n = 28) displayed savings, which was expressed as greater initial adaptation when re-exposed to the force field. Individual differences in adaptation across various stages of the experiment displayed weak-strong reliability, such that individuals who adapted to a greater extent in the initial session tended to do so when re-exposed to the force field. Our second experiment investigated if individual differences in adaptation are also present when participants adapt to different force fields or a force field and visuomotor rotation. Separate groups of participants adapted to position- and velocity-dependent force fields (Experiment 2a; n = 20) or a velocity-dependent force field and visuomotor rotation in a single session (Experiment 2b; n = 20). Participants who adapted to a greater extent to velocity-dependent forces tended to show a greater extent of adaptation when exposed to position-dependent forces. In contrast, correlations were weak between various stages of adaptation to the force-field and visuomotor rotation. Collectively, our study reveals individual differences in adaptation that are reliable across repeated exposure to the same force field and present when adapting to different force fields.
Collapse
Affiliation(s)
- Robert T Moore
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Raichin A, Shkedy Rabani A, Shmuelof L. Motor skill training without online visual feedback enhances feedforward control. J Neurophysiol 2021; 126:1604-1613. [PMID: 34525324 DOI: 10.1152/jn.00145.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor skill learning involves improvement in feedforward control, the ability to execute a motor plan more reliably, and feedback control, the ability to adjust the motor plan on the fly. The dependence between these control components and the association between training conditions and their improvement have not been directly examined. This study characterizes the contribution of feedforward and feedback control components to motor skill learning using the arc-pointing task (APT), a drawing task that requires high motor acuity. In experiment 1, the performance of three groups of subjects was tested before and after training with online visual feedback (OF group), with knowledge of performance feedback that was presented after movement completion (KP group), and with both online and KP feedback (KP + OF group). Although the improvement of the OF group was not different from the improvement of the KP + OF group, comparison of the KP and KP + OF groups revealed an advantage to the KP group in the fast test speed, suggesting that training without online feedback leads to a greater improvement in feedforward control. In experiment 2, subject's improvement was examined using test probes for estimating feedback and feedforward control. Both KP + OF and KP groups showed improvement in feedforward and feedback conditions with a trend toward a greater improvement of the KP group. Our results suggest that online visual feedback suppresses improvement in feedforward control during motor skill learning.NEW & NOTEWORTHY Becoming a skillful player requires both executing reliable movements and being able to efficiently control them online. We study here how training with and without online visual feedback affects feedforward and feedback control improvement in a drawing task that requires high precision. We show that training with online feedback suppresses improvement in feedforward control and leads to inferior performance in fast movements.
Collapse
Affiliation(s)
- Adi Raichin
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shkedy Rabani
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Shmuelof
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Mirdamadi JL, Seigel CR, Husch SD, Block HJ. Somatotopic Specificity of Perceptual and Neurophysiological Changes Associated with Visuo-proprioceptive Realignment. Cereb Cortex 2021; 32:1184-1199. [PMID: 34424950 DOI: 10.1093/cercor/bhab280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
When visual and proprioceptive estimates of hand position disagree (e.g., viewing the hand underwater), the brain realigns them to reduce mismatch. This perceptual change is reflected in primary motor cortex (M1) excitability, suggesting potential relevance for hand movement. Here, we asked whether fingertip visuo-proprioceptive misalignment affects only the brain's representation of that finger (somatotopically focal), or extends to other parts of the limb that would be needed to move the misaligned finger (somatotopically broad). In Experiments 1 and 2, before and after misaligned or veridical visuo-proprioceptive training at the index finger, we used transcranial magnetic stimulation to assess M1 representation of five hand and arm muscles. The index finger representation showed an association between M1 excitability and visuo-proprioceptive realignment, as did the pinkie finger representation to a lesser extent. Forearm flexors, forearm extensors, and biceps did not show any such relationship. In Experiment 3, participants indicated their proprioceptive estimate of the fingertip, knuckle, wrist, and elbow, before and after misalignment at the fingertip. Proprioceptive realignment at the knuckle, but not the wrist or elbow, was correlated with realignment at the fingertip. These results suggest the effects of visuo-proprioceptive mismatch are somatotopically focal in both sensory and motor domains.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Courtney R Seigel
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Stephen D Husch
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Hannah J Block
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
26
|
Neural Substrates of Muscle Co-contraction during Dynamic Motor Adaptation. J Neurosci 2021; 41:5667-5676. [PMID: 34088798 DOI: 10.1523/jneurosci.2924-19.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
As we learn to perform a motor task with novel dynamics, the central nervous system must adapt motor commands and modify sensorimotor transformations. The objective of the current research is to identify the neural mechanisms underlying the adaptive process. It has been shown previously that an increase in muscle co-contraction is frequently associated with the initial phase of adaptation and that co-contraction is gradually reduced as performance improves. Our investigation focused on the neural substrates of muscle co-contraction during the course of motor adaptation using a resting-state fMRI approach in healthy human subjects of both genders. We analyzed the functional connectivity in resting-state networks during three phases of adaptation, corresponding to different muscle co-contraction levels and found that change in the strength of functional connectivity in one brain network was correlated with a metric of co-contraction, and in another with a metric of motor learning. We identified the cerebellum as the key component for regulating muscle co-contraction, especially its connection to the inferior parietal lobule, which was particularly prominent in early stage adaptation. A neural link between cerebellum, superior frontal gyrus and motor cortical regions was associated with reduction of co-contraction during later stages of adaptation. We also found reliable changes in the functional connectivity of a network involving primary motor cortex, superior parietal lobule and cerebellum that were specifically related to the motor learning.SIGNIFICANCE STATEMENT It is well known that co-contracting muscles is an effective strategy for providing postural stability by modulating mechanical impedance and thereby allowing the central nervous system to compensate for unfamiliar or unexpected physical conditions until motor commands can be appropriately adapted. The present study elucidates the neural substrates underlying the ability to modulate the mechanical impedance of a limb as we learn during motor adaptation. Using resting-state fMRI analysis we demonstrate that a distributed cerebellar-parietal-frontal network functions to regulate muscle co-contraction with the cerebellum as its key component.
Collapse
|
27
|
Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. J Neuroeng Rehabil 2021; 18:77. [PMID: 33971912 PMCID: PMC8112068 DOI: 10.1186/s12984-021-00871-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background Proprioceptive deficits after stroke are associated with poor upper limb function, slower motor recovery, and decreased self-care ability. Improving proprioception should enhance motor control in stroke survivors, but current evidence is inconclusive. Thus, this study examined whether a robot-aided somatosensory-based training requiring increasingly accurate active wrist movements improves proprioceptive acuity as well as motor performance in chronic stroke. Methods Twelve adults with chronic stroke completed a 2-day training (age range: 42–74 years; median time-after-stroke: 12 months; median Fugl–Meyer UE: 65). Retention was assessed at Day 5. Grasping the handle of a wrist-robotic exoskeleton, participants trained to roll a virtual ball to a target through continuous wrist adduction/abduction movements. During training vision was occluded, but participants received real-time, vibro-tactile feedback on their forearm about ball position and speed. Primary outcome was the just-noticeable-difference (JND) wrist position sense threshold as a measure of proprioceptive acuity. Secondary outcomes were spatial error in an untrained wrist tracing task and somatosensory-evoked potentials (SEP) as a neural correlate of proprioceptive function. Ten neurologically-intact adults were recruited to serve as non-stroke controls for matched age, gender and hand dominance (age range: 44 to 79 years; 6 women, 4 men). Results Participants significantly reduced JND thresholds at posttest and retention (Stroke group: pretest: mean: 1.77° [SD: 0.54°] to posttest mean: 1.38° [0.34°]; Control group: 1.50° [0.46°] to posttest mean: 1.45° [SD: 0.54°]; F[2,37] = 4.54, p = 0.017, ηp2 = 0.20) in both groups. A higher pretest JND threshold was associated with a higher threshold reduction at posttest and retention (r = − 0.86, − 0.90, p ≤ 0.001) among the stroke participants. Error in the untrained tracing task was reduced by 22 % at posttest, yielding an effect size of w = 0.13. Stroke participants exhibited significantly reduced P27-N30 peak-to-peak SEP amplitude at pretest (U = 11, p = 0.03) compared to the non-stroke group. SEP measures did not change systematically with training. Conclusions This study provides proof-of-concept that non-visual, proprioceptive training can induce fast, measurable improvements in proprioceptive function in chronic stroke survivors. There is encouraging but inconclusive evidence that such somatosensory learning transfers to untrained motor tasks. Trial registration Clinicaltrials.gov; Registration ID: NCT02565407; Date of registration: 01/10/2015; URL: https://clinicaltrials.gov/ct2/show/NCT02565407.
Collapse
|
28
|
Muscle proprioceptive feedback can be adapted to the behavioral and emotional context in humans. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Tzvi E, Koeth F, Karabanov AN, Siebner HR, Krämer UM. Cerebellar – Premotor cortex interactions underlying visuomotor adaptation. Neuroimage 2020; 220:117142. [DOI: 10.1016/j.neuroimage.2020.117142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 01/13/2023] Open
|
30
|
Chiyohara S, Furukawa JI, Noda T, Morimoto J, Imamizu H. Passive training with upper extremity exoskeleton robot affects proprioceptive acuity and performance of motor learning. Sci Rep 2020; 10:11820. [PMID: 32678206 PMCID: PMC7366915 DOI: 10.1038/s41598-020-68711-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Sports trainers often grasp and move trainees' limbs to give instructions on desired movements, and a merit of this passive training is the transferring of instructions via proprioceptive information. However, it remains unclear how passive training affects the proprioceptive system and improves learning. This study examined changes in proprioceptive acuity due to passive training to understand the underlying mechanisms of upper extremity training. Participants passively learned a trajectory of elbow-joint movement as per the instructions of a single-arm upper extremity exoskeleton robot, and the performance of the target movement and proprioceptive acuity were assessed before and after the training. We found that passive training improved both the reproduction performance and proprioceptive acuity. We did not identify a significant transfer of the training effect across arms, suggesting that the learning effect is specific to the joint space. Furthermore, we found a significant improvement in learning performance in another type of movement involving the trained elbow joint. These results suggest that participants form a representation of the target movement in the joint space during the passive training, and intensive use of proprioception improves proprioceptive acuity.
Collapse
Affiliation(s)
- Shinya Chiyohara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun-Ichiro Furukawa
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Tomoyuki Noda
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan.
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan.,Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Hongo 7-3-1, Bunkyo, 113-0033, Japan.,Research Into Artifacts, Center for Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo, 113-8656, Japan
| |
Collapse
|
31
|
Vahdat S, Khatibi A, Lungu O, Finsterbusch J, Büchel C, Cohen-Adad J, Marchand-Pauvert V, Doyon J. Resting-state brain and spinal cord networks in humans are functionally integrated. PLoS Biol 2020; 18:e3000789. [PMID: 32614823 PMCID: PMC7363111 DOI: 10.1371/journal.pbio.3000789] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/15/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
In the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans. We show that the brain and spinal cord activities are strongly correlated during rest periods, and specific spinal cord regions are functionally linked to consistently reported brain sensorimotor RSNs. The functional organisation of these networks follows well-established anatomical principles, including the contralateral correspondence between the spinal hemicords and brain hemispheres as well as sensory versus motor segregation of neural pathways along the brain–spinal cord axis. Thus, our findings reveal a unified functional organisation of sensorimotor networks in the entire central nervous system (CNS) at rest. This neuroimaging study reveals novel insights into the functional organization of resting-state networks in the brain and spinal cord, such as the contralateral correspondence between the two halves of the brain and spinal cord, and segregation of sensory versus motor neural pathways along this axis.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Ali Khatibi
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, United Kingdom
| | - Ovidiu Lungu
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julien Cohen-Adad
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Julien Doyon
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
33
|
"Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements. Eur J Appl Physiol 2020; 120:1027-1039. [PMID: 32172292 DOI: 10.1007/s00421-020-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to determine the time course of the trade-off between speed and accuracy, intraindividual variability, and movement transfer and retention (4 weeks after learning) of speed-accuracy tasks. METHODS The participants in this study were healthy adults randomly divided into three groups (control versus constant versus variable). They were aged 19-24 years, and 30 (15 men and 15 women) were in each group. Participants had to perform various tasks with the right dominant hand: (a) simple reaction test; (b) maximal velocity measurement; and (c) a speed-accuracy task. RESULTS During constant and variable learning, the trade-off in a speed-accuracy task in specific situations shifted toward improved motor planning and motor execution speed, and to reduced intraindividual variability. However, during variable learning, the maximal velocity and variability of motor planning time did not change. Constant learning effectively transferred into variable tasks in terms of reaction time, average velocity and maximal velocity, and these effects were greater than those associated with variable learning. However, the effects of constant learning did not transfer fully into the performance variability of variable movements. Variable learning effectively transferred into constant tasks for the coefficient of variation of the path of movement, average velocity, maximal velocity and reaction time. The retention effect depended neither on learning nor task specificity (constant versus variable tasks). CONCLUSION Constant learning speeds up but does not stabilize speed-accuracy movements in variable tasks; whereas, variable learning stabilizes but does not speed up speed-accuracy movements in constant tasks.
Collapse
|
34
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
35
|
Sexton BM, Liu Y, Block HJ. Increase in weighting of vision vs. proprioception associated with force field adaptation. Sci Rep 2019; 9:10167. [PMID: 31308399 PMCID: PMC6629615 DOI: 10.1038/s41598-019-46625-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022] Open
Abstract
Hand position can be estimated by vision and proprioception (position sense). The brain is thought to weight and integrate these percepts to form a multisensory estimate of hand position with which to guide movement. Force field adaptation, a type of cerebellum-dependent motor learning, is associated with both motor and proprioceptive changes. The cerebellum has connections with multisensory parietal regions; however, it is unknown if force adaptation is associated with changes in multisensory perception. If force adaptation affects all relevant sensory modalities similarly, the brain’s weighting of vision vs. proprioception should be maintained. Alternatively, if force perturbation is interpreted as somatosensory unreliability, vision may be up-weighted relative to proprioception. We assessed visuo-proprioceptive weighting with a perceptual estimation task before and after subjects performed straight-ahead reaches grasping a robotic manipulandum. Each subject performed one session with a clockwise or counter-clockwise velocity-dependent force field, and one session in a null field. Subjects increased their weight of vision vs. proprioception in the force field session relative to the null session, regardless of force field direction, in the straight-ahead dimension (F1,44 = 5.13, p = 0.029). This suggests that force field adaptation is associated with an increase in the brain’s weighting of vision vs. proprioception.
Collapse
Affiliation(s)
- Brandon M Sexton
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA
| | - Yang Liu
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA
| | - Hannah J Block
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA.
| |
Collapse
|
36
|
Darainy M, Vahdat S, Ostry DJ. Neural Basis of Sensorimotor Plasticity in Speech Motor Adaptation. Cereb Cortex 2019; 29:2876-2889. [PMID: 29982495 DOI: 10.1093/cercor/bhy153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/07/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023] Open
Abstract
When we speak, we get correlated sensory feedback from speech sounds and from the muscles and soft tissues of the vocal tract. Here we dissociate the contributions of auditory and somatosensory feedback to identify brain networks that underlie the somatic contribution to speech motor learning. The technique uses a robotic device that selectively alters somatosensory inputs in combination with resting-state fMRI scans that reveal learning-related changes in functional connectivity. A partial correlation analysis is used to identify connectivity changes that are not explained by the time course of activity in any other learning-related areas. This analysis revealed changes related to behavioral improvements in movement and separately, to changes in auditory perception: Speech motor adaptation itself was associated with connectivity changes that were primarily in non-motor areas of brain, specifically, to a strengthening of connectivity between auditory and somatosensory cortex and between presupplementary motor area and the inferior parietal lobule. In contrast, connectively changes associated with alterations to auditory perception were restricted to speech motor areas, specifically, primary motor cortex and inferior frontal gyrus. Overall, our findings show that during adaptation, somatosensory inputs result in a broad range of changes in connectivity in areas associated with speech motor control and learning.
Collapse
Affiliation(s)
- Mohammad Darainy
- Department of Psychology, McGill University, Montreal, 2001 McGill College Avenue, Montreal, Quebec, Canada
| | - Shahabeddin Vahdat
- Department of Psychology, McGill University, Montreal, 2001 McGill College Avenue, Montreal, Quebec, Canada.,Centre de recherche, Institut universitaire de gériatrie de Montréal, 4545 Queen Mary, Montréal Québec, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, 2001 McGill College Avenue, Montreal, Quebec, Canada.,Haskins Laboratories, 300 George Street, New Haven, CT, USA
| |
Collapse
|
37
|
Disorders of fine motor skills after a stroke: the processes of neuroplasticity and sensorimotor integration. КЛИНИЧЕСКАЯ ПРАКТИКА 2019. [DOI: 10.17816/clinpract10116-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background. Impairment of fine motor skills in the hand is one of the most frequent causes of the persistent loss of professional skills, social maladjustment, and the impossibility of self-care in patients after a stroke, which ultimately leads to a significant reduction in the quality of their life. The article discusses the features of the fine motor skills’ impairment in the hand in patients after a stroke, in the context of a lateralized hemispheric lesion.
Methods. We have studied 26 patients after a primary ischemic stroke in the pool of middle cerebral artery of the right (n=12) or left (n=14) brain hemisphere. The average age of patients was 55.7±7.3 years. Patients with a right-sided ischemic stroke were comparable to those with a left-sided stroke in their age, disease duration, size of the lesion and the gender ratio.
Results. All the patients after an ischemic stroke had motor impairment in the form of a hemiparesis of a mild or moderate degree.
Discussion. We suggest the existence of differentiated mechanisms for the development of fine and highly coordinated voluntary movements in the hand of patients after an ischemic stroke, depending on the lateralization of the supratentorial lesion: diffuse deficit of the afferent support in a right-sided ischemic stroke vs. bilateral efferent deficit for a left hemisphere lesion.
Conclusion. The obtained data on the differentiated mechanisms for the development of fine and highly coordinated voluntary movements in the hand of patients after an ischemic stroke warrant the necessity of a further, more targeted research on those disorders in the post-stroke period, on order to optimize the existing rehabilitation approaches and improve the functional potential and quality of life of such patients.
Collapse
|
38
|
A Tablet-Based Tool for Accurate Measurement of Hand Proprioception After Stroke. J Neurol Phys Ther 2019; 43:106-116. [DOI: 10.1097/npt.0000000000000259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ohashi H, Valle-Mena R, Gribble PL, Ostry DJ. Movements following force-field adaptation are aligned with altered sense of limb position. Exp Brain Res 2019; 237:1303-1313. [PMID: 30863880 DOI: 10.1007/s00221-019-05509-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Previous work has shown that motor learning is associated with changes to both movements and to the somatosensory perception of limb position. In an earlier study that motivates the current work, it appeared that following washout trials, movements did not return to baseline but rather were aligned with associated changes to sensed limb position. Here, we provide a systematic test of this relationship, examining the idea that adaptation-related changes to sensed limb position and to the path of the limb are linked, not only after washout trials but at all stages of the adaptation process. We used a force-field adaptation paradigm followed by washout trials in which subjects performed movements without visual feedback of the limb. Tests of sensed limb position were conducted at each phase of adaptation, specifically before and after baseline movements in a null field, after force-field adaptation, and following washout trials in a null field. As in previous work, sensed limb position changed in association with force-field adaptation. At each stage of adaptation, we observed a correlation between the sensed limb position and associated path of the limb. At a group level, there were differences between the clockwise and counter-clockwise conditions. However, whenever there were changes in sensed limb position, movements following washout did not return to baseline. This suggests that adaptation in sensory and motor systems is not independent processes but rather sensorimotor adaptation is linked to sensory change. Sensory change and limb movement remain in alignment throughout adaptation such that the path of the limb is aligned with the altered sense of limb position.
Collapse
Affiliation(s)
| | | | - Paul L Gribble
- Haskins Laboratories, New Haven, CT, USA.,Western University, London, ON, Canada
| | - David J Ostry
- Haskins Laboratories, New Haven, CT, USA. .,Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
40
|
Vahdat S, Darainy M, Thiel A, Ostry DJ. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Neurorehabil Neural Repair 2018; 33:70-81. [PMID: 30595082 DOI: 10.1177/1545968318818902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Passive robot-generated arm movements in conjunction with proprioceptive decision making and feedback modulate functional connectivity (FC) in sensory motor networks and improve sensorimotor adaptation in normal individuals. This proof-of-principle study investigates whether these effects can be observed in stroke patients. METHODS A total of 10 chronic stroke patients with a range of stable motor and sensory deficits (Fugl-Meyer Arm score [FMA] 0-65, Nottingham Sensory Assessment [NSA] 10-40) underwent resting-state functional magnetic resonance imaging before and after a single session of robot-controlled proprioceptive training with feedback. Changes in FC were identified in each patient using independent component analysis as well as a seed region-based approach. FC changes were related to impairment and changes in task performance were assessed. RESULTS A single training session improved average arm reaching accuracy in 6 and proprioception in 8 patients. Two networks showing training-associated FC change were identified. Network C1 was present in all patients and network C2 only in patients with FM scores >7. Relatively larger C1 volume in the ipsilesional hemisphere was associated with less impairment ( r = 0.83 for NSA, r = 0.73 for FMA). This association was driven by specific regions in the contralesional hemisphere and their functional connections (supramarginal gyrus with FM scores r = 0.82, S1 with NSA scores r = 0.70, and cerebellum with NSA score r = -0.82). CONCLUSION A single session of robot-controlled proprioceptive training with feedback improved movement accuracy and induced FC changes in sensory motor networks of chronic stroke patients. FC changes are related to functional impairment and comprise bilateral sensory and motor network nodes.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- 1 McGill University, Montréal, QC, Canada
- 2 University of Montréal, Montréal, QC, Canada
| | | | - Alexander Thiel
- 1 McGill University, Montréal, QC, Canada
- 3 Jewish General Hospital and Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - David J Ostry
- 1 McGill University, Montréal, QC, Canada
- 4 Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
41
|
Vecchio F, Miraglia F, Quaranta D, Lacidogna G, Marra C, Rossini PM. Learning Processes and Brain Connectivity in A Cognitive-Motor Task in Neurodegeneration: Evidence from EEG Network Analysis. J Alzheimers Dis 2018; 66:471-481. [DOI: 10.3233/jad-180342] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italia
| | - Davide Quaranta
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Area di Neuroscienze, Roma, Italia
| | - Giordano Lacidogna
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Area di Neuroscienze, Roma, Italia
| | - Camillo Marra
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Area di Neuroscienze, Roma, Italia
| | - Paolo Maria Rossini
- Università Cattolica del Sacro Cuore, Istituto di Neurologia, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Area di Neuroscienze, Roma, Italia
| |
Collapse
|
42
|
McGregor HR, Cashaback JGA, Gribble PL. Somatosensory perceptual training enhances motor learning by observing. J Neurophysiol 2018; 120:3017-3025. [PMID: 30230990 DOI: 10.1152/jn.00313.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.
Collapse
Affiliation(s)
- Heather R McGregor
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Graduate Program in Neuroscience, The University of Western Ontario , London, Ontario , Canada
| | - Joshua G A Cashaback
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada
| | - Paul L Gribble
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario , London, Ontario , Canada.,Haskins Laboratories , New Haven, Connecticut
| |
Collapse
|
43
|
Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging 2018; 71:189-222. [PMID: 30172220 DOI: 10.1016/j.neurobiolaging.2018.07.023] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Abstract
Demonstrations that grip strength has predictive power in relation to a range of health conditions-even when these are assessed decades later-has motivated claims that hand-grip dynamometry has the potential to serve as a "vital sign" for middle-aged and older adults. Central to this belief has been the assumption that grip strength is a simple measure of physical performance that provides a marker of muscle status in general, and sarcopenia in particular. It is now evident that while differences in grip strength between individuals are influenced by musculoskeletal factors, "lifespan" changes in grip strength within individuals are exquisitely sensitive to integrity of neural systems that mediate the control of coordinated movement. The close and pervasive relationships between age-related declines in maximum grip strength and expressions of cognitive dysfunction can therefore be understood in terms of the convergent functional and structural mediation of cognitive and motor processes by the human brain. In the context of aging, maximum grip strength is a discriminating measure of neurological function and brain health.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.
| |
Collapse
|
44
|
Behroozmand R, Sangtian S. Neural bases of sensorimotor adaptation in the vocal motor system. Exp Brain Res 2018; 236:1881-1895. [DOI: 10.1007/s00221-018-5272-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
|
45
|
Michielsen M, Vaughan-Graham J, Holland A, Magri A, Suzuki M. The Bobath concept - a model to illustrate clinical practice. Disabil Rehabil 2017; 41:2080-2092. [PMID: 29250987 DOI: 10.1080/09638288.2017.1417496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and purpose: The model of Bobath clinical practice provides a framework identifying the unique aspects of the Bobath concept in terms of contemporary neurological rehabilitation. The utilisation of a framework to illustrate the clinical application of the Bobath concept provides the basis for a common understanding with respect to Bobath clinical practice, education, and research. The development process culminating in the model of Bobath clinical practice is described. Case description: The use of the model in clinical practice is illustrated using two cases: a client with a chronic incomplete spinal cord injury and a client with a stroke. Discussion: This article describes the clinical application of the Bobath concept in terms of the integration of posture and movement with respect to the quality of task performance, applying the Model of Bobath Clinical Practice. Facilitation, a key aspect of Bobath clinical practice, was utilised to positively affect motor control and perception in two clients with impairment-related movement problems due to neurological pathology and associated activity limitations and participation restrictions - the outcome measures used to reflect the individual clinical presentation. Implications for Rehabilitation The model of Bobath clinical practice provides a framework identifying the unique aspects of the Bobath-concept. The model of Bobath clinical practice provides the basis for a common understanding with respect to Bobath clinical practice, education, and research. The clinical application of the Bobath-concept highlights the integration of posture and movement with respect to the quality of task performance. Facilitation, a key aspect of Bobath clinical practice, positively affects motor control, and perception.
Collapse
Affiliation(s)
| | | | - Ann Holland
- c Neurorehabilitation and Therapy Services , University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| | - Alba Magri
- d Studio Erre - Physiotherapy Clinic , Brescia , Italy
| | - Mitsuo Suzuki
- e Department of Rehabilitation , Bobath Memorial Hospital , Osaka , Japan
| |
Collapse
|
46
|
Lam TK, Dawson DR, Honjo K, Ross B, Binns MA, Stuss DT, Black SE, Chen JJ, Levine BT, Fujioka T, Chen JL. Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. J Neurol Sci 2017; 384:21-29. [PMID: 29249372 DOI: 10.1016/j.jns.2017.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 01/17/2023]
Abstract
Movement is traditionally viewed as a process that involves motor brain regions. However, movement also implicates non-motor regions such as prefrontal and parietal cortex, regions whose integrity may thus be important for motor recovery after stroke. Importantly, focal brain damage can affect neural functioning within and between distinct brain networks implicated in the damage. The aim of this study is to investigate how resting state connectivity (rs-connectivity) within and between motor and frontoparietal networks are affected post-stroke in correlation with motor outcome. Twenty-seven participants with chronic stroke with unilateral upper limb deficits underwent motor assessments and magnetic resonance imaging. Participants completed the Chedoke-McMaster Stroke Assessment as a measure of arm (CMSA-Arm) and hand (CMSA-Hand) impairment and the Action Research Arm Test (ARAT) as a measure of motor function. We used a seed-based rs-connectivity approach defining the motor (seed=contralesional primary motor cortex (M1)) and frontoparietal (seed=contralesional dorsolateral prefrontal cortex (DLPFC)) networks. We analyzed the rs-connectivity within each network (intra-network connectivity) and between both networks (inter-network connectivity), and performed correlations between: a) intra-network connectivity and motor assessment scores; b) inter-network connectivity and motor assessment scores. We found: a) Participants with high rs-connectivity within the motor network (between M1 and supplementary motor area) have higher CMSA-Hand stage (z=3.62, p=0.003) and higher ARAT score (z=3.41, p=0.02). Rs-connectivity within the motor network was not significantly correlated with CMSA-Arm stage (z=1.83, p>0.05); b) Participants with high rs-connectivity within the frontoparietal network (between DLPFC and mid-ventrolateral prefrontal cortex) have higher CMSA-Hand stage (z=3.64, p=0.01). Rs-connectivity within the frontoparietal network was not significantly correlated with CMSA-Arm stage (z=0.93, p=0.03) or ARAT score (z=2.53, p=0.05); and c) Participants with high rs-connectivity between motor and frontoparietal networks have higher CMSA-Hand stage (rs=0.54, p=0.01) and higher ARAT score (rs=0.54, p=0.009). Rs-connectivity between the motor and frontoparietal networks was not significantly correlated with CMSA-Arm stage (rs=0.34, p=0.13). Taken together, the connectivity within and between the motor and frontoparietal networks correlate with motor outcome post-stroke. The integrity of these regions may be important for an individual's motor outcome. Motor-frontoparietal connectivity may be a potential biomarker of motor recovery post-stroke.
Collapse
Affiliation(s)
- Timothy K Lam
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Deirdre R Dawson
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON, Canada
| | - Kie Honjo
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Donald T Stuss
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian T Levine
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Takako Fujioka
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Center for Computer Research in Music and Acoustics, Department of Music, Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Joyce L Chen
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Department of Physical Therapy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Ludolph N, Plöger J, Giese MA, Ilg W. Motor expertise facilitates the accuracy of state extrapolation in perception. PLoS One 2017; 12:e0187666. [PMID: 29107970 PMCID: PMC5673241 DOI: 10.1371/journal.pone.0187666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Predicting the behavior of objects in the environment is an important requirement to overcome latencies in the sensorimotor system and realize precise actions in rapid situations. Internal forward models that were acquired during motor training might not only be used for efficiently controlling fast motor behavior but also to facilitate extrapolation performance in purely perceptual tasks. In this study, we investigated whether preceding virtual cart-pole balancing training facilitates the ability to extrapolate the virtual pole motion. Specifically, subjects had to report the expected pole orientation after an occlusion of the pole of 900ms duration. We compared a group of 10 subjects, proficient in performing the virtual cart-pole balancing task, to 10 naïve subjects without motor experience in cart-pole balancing task. Our results demonstrate that preceding motor training increases the accuracy of pole movement extrapolation, although extrapolation is not trained explicitly. Additionally, we modelled subjects' behaviors and show that the difference in extrapolation performance can be explained by individual differences in the accuracy of internal forward models. When subjects are provided with feedback about the true orientation of the pole after the occlusion in a second phase of the experiment, both groups improve rapidly. The results indicate that the perceptual capability to extrapolate the state of the cart-pole system accurately is implicitly trained during motor learning. We discuss these results in the context of shared representations and action-perception transfer.
Collapse
Affiliation(s)
- Nicolas Ludolph
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
- International Max-Planck Research School for Cognitive and Systems Neuroscience, Tübingen, Baden-Wuerttemberg, Germany
- * E-mail:
| | - Jannis Plöger
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| | - Martin A. Giese
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| | - Winfried Ilg
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
48
|
Ossmy O, Mukamel R. Using Virtual Reality to Transfer Motor Skill Knowledge from One Hand to Another. J Vis Exp 2017. [PMID: 28994768 PMCID: PMC5752261 DOI: 10.3791/55965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As far as acquiring motor skills is concerned, training by voluntary physical movement is superior to all other forms of training (e.g. training by observation or passive movement of trainee's hands by a robotic device). This obviously presents a major challenge in the rehabilitation of a paretic limb since voluntary control of physical movement is limited. Here, we describe a novel training scheme we have developed that has the potential to circumvent this major challenge. We exploited the voluntary control of one hand and provided real-time movement-based manipulated sensory feedback as if the other hand is moving. Visual manipulation through virtual reality (VR) was combined with a device that yokes left-hand fingers to passively follow right-hand voluntary finger movements. In healthy subjects, we demonstrate enhanced within-session performance gains of a limb in the absence of voluntary physical training. Results in healthy subjects suggest that training with the unique VR setup might also be beneficial for patients with upper limb hemiparesis by exploiting the voluntary control of their healthy hand to improve rehabilitation of their affected hand.
Collapse
Affiliation(s)
- Ori Ossmy
- Sagol School of Neuroscience, Tel-Aviv University; School of Psychological Sciences, Tel-Aviv University
| | - Roy Mukamel
- Sagol School of Neuroscience, Tel-Aviv University; School of Psychological Sciences, Tel-Aviv University;
| |
Collapse
|
49
|
Vahdat S, Fogel S, Benali H, Doyon J. Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI. eLife 2017; 6. [PMID: 28892464 PMCID: PMC5593513 DOI: 10.7554/elife.24987] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022] Open
Abstract
Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time. We provide direct evidence for transient reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern formed during learning, as well as gradual reorganization of this representation toward a subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep. Importantly, the putamen functional connectivity within the consolidated network during NREM sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is necessary for two complementary processes: the restoration and reorganization of newly-learned information during sleep, which underlie human motor memory consolidation. DOI:http://dx.doi.org/10.7554/eLife.24987.001 The idea that, while you sleep, you could be honing skills such as the ability to play a musical instrument may sound like science fiction. But studies have shown that sleep, in addition to being beneficial for physical and mental health, also enhances memories laid down during the day. The process by which the brain strengthens these memories is called consolidation, but exactly how this process works is unclear. Memories are thought to persist as altered connections between neurons, often referred to as memory traces. When we practice a skill, we activate the neurons encoding that skill over and over again, strengthening the connections between them. However, if this process were to continue unchecked, eventually the connections would become saturated and no further increases in strength could occur. One possible solution to this problem is that sleep enhances skill learning by downscaling connections across the brain as a whole, thereby freeing up capacity for further learning. Alternatively, sleep may reorganize an initially unstable memory trace into a more robust form with the potential to last a lifetime. To test these possibilities, Vahdat et al. asked healthy volunteers to practice a finger-tapping task while lying inside a brain scanner, and then to sleep inside that scanner for 2–3 hours. When the volunteers returned to the scanner the next morning and attempted the task again, they performed better than they had the previous night. Their brains also showed a different pattern of activity when performing the task after a night’s sleep. So what had happened overnight? As the volunteers lay awake inside the scanner, their brains reactivated the memory trace formed during learning. However, as they entered a stage of non-dreaming sleep called non-REM sleep, this activity became weaker. At the same time, a new pattern of activity – the one that would dominate the scan the next morning – began to emerge. Whereas the post-learning activity was mainly in the brain’s outer layer, the cortex, the new pattern included other areas that are deeper within the brain. The activity of one deeper region in particular, the putamen, predicted how well the volunteers would perform the task the next day. Non-REM sleep thus strengthens memories via two complementary processes. It suppresses the initial memory trace formed during learning, and reorganizes the newly-learned information into a more stable state. These results might explain why people who are sleep-deprived often have impaired motor skills and memories. The findings also open up the possibility of enhancing newly learned skills by manipulating brain circuits during non-REM sleep. DOI:http://dx.doi.org/10.7554/eLife.24987.002
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- Functional Neuroimaging Unit, Cenre de recherche, Institut universitaire de gériatrie de Montréal, Université de Montreal, Québec, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ontario, Canada
| | - Habib Benali
- PERFORM Centre, University of Concordia, Montreal, Quebec, Canada.,INSERM/UPMC, Pitié-Salpêtrière Hospital, Paris, France
| | - Julien Doyon
- Functional Neuroimaging Unit, Cenre de recherche, Institut universitaire de gériatrie de Montréal, Université de Montreal, Québec, Canada
| |
Collapse
|
50
|
Brain motor functional changes after somatosensory discrimination training. Brain Imaging Behav 2017; 12:1011-1021. [DOI: 10.1007/s11682-017-9763-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|