1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Lemke MC, Avala NR, Rader MT, Hargett SR, Lank DS, Seltzer BD, Harris TE. MAST Kinases' Function and Regulation: Insights from Structural Modeling and Disease Mutations. Biomedicines 2025; 13:925. [PMID: 40299535 PMCID: PMC12024977 DOI: 10.3390/biomedicines13040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: The MAST kinases are ancient AGC kinases associated with many human diseases, such as cancer, diabetes, and neurodevelopmental disorders. We set out to describe the origins and diversification of MAST kinases from a structural and bioinformatic perspective to inform future research directions. Methods: We investigated MAST-lineage kinases using database and sequence analysis. We also estimate the functional consequences of disease point mutations on protein stability by integrating predictive algorithms and AlphaFold. Results: Higher-order organisms often have multiple MASTs and a single MASTL kinase. MAST proteins conserve an AGC kinase domain, a domain of unknown function 1908 (DUF), and a PDZ binding domain. D. discoideum contains MAST kinase-like proteins that exhibit a characteristic insertion within the T-loop but do not conserve DUF or PDZ domains. While the DUF domain is conserved in plants, the PDZ domain is not. The four mammalian MASTs demonstrate tissue expression heterogeneity by mRNA and protein. MAST1-4 are likely regulated by 14-3-3 proteins based on interactome data and in silico predictions. Comparative ΔΔG estimation identified that MAST1-L232P and G522E mutations are likely destabilizing. Conclusions: We conclude that MAST and MASTL kinases diverged from the primordial MAST, which likely operated in both biological niches. The number of MAST paralogs then expanded to the heterogeneous subfamily seen in mammals that are all likely regulated by 14-3-3 protein interaction. The reported pathogenic mutations in MASTs primarily represent alterations to post-translational modification topology in the DUF and kinase domains. Our report outlines a computational basis for future work in MAST kinase regulation and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; (M.C.L.)
| |
Collapse
|
3
|
Roumbo L, Ossareh-Nazari B, Vigneron S, Stefani I, Van Hove L, Legros V, Chevreux G, Lacroix B, Castro A, Joly N, Lorca T, Pintard L. The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans. EMBO J 2025; 44:1943-1974. [PMID: 39962268 PMCID: PMC11961639 DOI: 10.1038/s44318-025-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 04/03/2025] Open
Abstract
MAST-like, or Greatwall (Gwl), an atypical protein kinase related to the evolutionarily conserved MAST kinase family, is crucial for cell cycle control during mitotic entry. Mechanistically, Greatwall is activated by Cyclin B-Cdk1 phosphorylation of a 550 amino acids-long insertion in its atypical activation segment. Subsequently, Gwl phosphorylates Endosulfine and Arpp19 to convert them into inhibitors of PP2A-B55 phosphatase, thereby preventing early dephosphorylation of M-phase targets of Cyclin B-Cdk1. Here, searching for an elusive Gwl-like activity in C. elegans, we show that the single worm MAST kinase, KIN-4, fulfills this function in worms and can functionally replace Greatwall in the heterologous Xenopus system. Compared to Greatwall, the short activation segment of KIN-4 lacks a phosphorylation site, and KIN-4 is active even when produced in E. coli. We also show that a balance between Cyclin B-Cdk1 and PP2A-B55 activity, regulated by KIN-4, is essential to ensure asynchronous cell divisions in the early worm embryo. These findings resolve a long-standing puzzle related to the supposed absence of a Greatwall pathway in C. elegans, and highlight a novel aspect of PP2A-B55 regulation by MAST kinases.
Collapse
Affiliation(s)
- Ludivine Roumbo
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Ioanna Stefani
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
- Institute for Integrative Biology of the Cell, Commissariat à l'Énergie Atomique et Aux Énergies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Lucie Van Hove
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Véronique Legros
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Guillaume Chevreux
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Nicolas Joly
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Lionel Pintard
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
4
|
Meneau F, Lapébie P, Daldello EM, Le T, Chevalier S, Assaf S, Houliston E, Jessus C, Miot M. ARPP19 phosphorylation site evolution and the switch in cAMP control of oocyte maturation in vertebrates. Development 2024; 151:dev202655. [PMID: 39576213 DOI: 10.1242/dev.202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
cAMP-PKA signaling initiates the crucial process of oocyte meiotic maturation in many animals, but inhibits it in vertebrates. To address this 'cAMP paradox', we exchanged the key PKA substrate ARPP19 between representative species, the vertebrate Xenopus and the cnidarian Clytia, comparing its phosphorylation and function. We found that, as in Xenopus, Clytia maturing oocytes undergo ARPP19 phosphorylation on a highly conserved Gwl site, which inhibits PP2A and promotes M-phase entry. In contrast, despite a PKA phosphorylation signature motif recognizable across most animals, Clytia ARPP19 was only poorly phosphorylated by PKA in vitro and in vivo. Furthermore, unlike Xenopus ARPP19, exogenous Clytia ARPP19 did not delay Xenopus oocyte maturation. We conclude that, in Clytia, ARPP19 does not intervene in oocyte maturation initiation because of both poor recognition by PKA and the absence of effectors that mediate vertebrate oocyte prophase arrest. We propose that ancestral ARPP19 phosphorylated by Gwl has retained a key role in M-phase across eukaryotes and has acquired new functions during animal evolution mediated by enhanced PKA phosphorylation, allowing co-option into oocyte maturation regulation in the vertebrate lineage.
Collapse
Affiliation(s)
- Ferdinand Meneau
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Pascal Lapébie
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Sarah Assaf
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| |
Collapse
|
5
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
6
|
Rumpf M, Pautz S, Drebes B, Herberg FW, Müller HAJ. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. Int J Mol Sci 2023; 24:11913. [PMID: 37569286 PMCID: PMC10419289 DOI: 10.3390/ijms241511913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of the founding member, MAST2, in 1993, three additional family members have been identified in mammals and found to be broadly expressed across various tissues, including the brain, heart, lung, liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular basis of a wide range of different human diseases, including breast and liver cancer, myeloma, inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would explain their involvement in human diseases remain rather obscure. This review will summarize data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context of biomedical research as well as organismal model systems in order to provide a current profile of this field.
Collapse
Affiliation(s)
- Marie Rumpf
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Sabine Pautz
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Benedikt Drebes
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Hans-Arno J. Müller
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| |
Collapse
|
7
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
PP2A-B55: substrates and regulators in the control of cellular functions. Oncogene 2022; 41:1-14. [PMID: 34686773 DOI: 10.1038/s41388-021-02068-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.
Collapse
|
9
|
Spinelli E, Christensen KR, Bryant E, Schneider A, Rakotomamonjy J, Muir AM, Giannelli J, Littlejohn RO, Roeder ER, Schmidt B, Wilson WG, Marco EJ, Iwama K, Kumada S, Pisano T, Barba C, Vetro A, Brilstra EH, van Jaarsveld RH, Matsumoto N, Goldberg-Stern H, Carney P, Ian Andrews P, El Achkar CM, Berkovic S, Rodan LH, Undiagnosed Diseases Network (UDN), McWalter K, Guerrini R, Scheffer IE, Mefford HC, Mandelstam S, Laux L, Millichap JJ, Guemez-Gamboa A, Nairn AC, Carvill GL. Pathogenic MAST3 Variants in the STK Domain Are Associated with Epilepsy. Ann Neurol 2021; 90:274-284. [PMID: 34185323 PMCID: PMC8324566 DOI: 10.1002/ana.26147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.
Collapse
Affiliation(s)
- Egidio Spinelli
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kyle R Christensen
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Emily Bryant
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Division of Genetics, Birth Defects and Metabolism, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Amy Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Jennifer Rakotomamonjy
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica Giannelli
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Berkley Schmidt
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - William G Wilson
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elysa J Marco
- Department of Pediatrics, University of California, San Francisco, California, USA
- Research Division, Cortica Healthcare, San Rafael, California, USA
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tiziana Pisano
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Carmen Barba
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Annalisa Vetro
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Eva H Brilstra
- Genetics Department, University Medical Centre Utrecht, The Netherlands
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Patrick Carney
- Department of Neurology, Austin Health, Heidelberg, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children’s Hospital, Sydney, Australia
| | | | - Sam Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Lance H Rodan
- Department of Neurology and Division of Genetics and Genomics, Boston Children’s Hospital
| | | | | | - Renzo Guerrini
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Simone Mandelstam
- Department of Pediatrics and Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Imaging, Royal Children’s Hospital of Melbourne, Melbourne, Victoria, Australia
| | - Linda Laux
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John J Millichap
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Guemez-Gamboa
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Gemma L Carvill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Caubit X, Arbeille E, Chabbert D, Desprez F, Messak I, Fatmi A, Habermann B, Gubellini P, Fasano L. Camk2a-Cre and Tshz3 Expression in Mouse Striatal Cholinergic Interneurons: Implications for Autism Spectrum Disorder. Front Genet 2021; 12:683959. [PMID: 34349780 PMCID: PMC8328143 DOI: 10.3389/fgene.2021.683959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Camk2a-Cre mice have been widely used to study the postnatal function of several genes in forebrain projection neurons, including cortical projection neurons (CPNs) and striatal medium-sized spiny neurons (MSNs). We linked heterozygous deletion of TSHZ3/Tshz3 gene to autism spectrum disorder (ASD) and used Camk2a-Cre mice to investigate the postnatal function of Tshz3, which is expressed by CPNs but not MSNs. Recently, single-cell transcriptomics of the adult mouse striatum revealed the expression of Camk2a in interneurons and showed Tshz3 expression in striatal cholinergic interneurons (SCINs), which are attracting increasing interest in the field of ASD. These data and the phenotypic similarity between the mice with Tshz3 haploinsufficiency and Camk2a-Cre-dependent conditional deletion of Tshz3 (Camk2a-cKO) prompted us to better characterize the expression of Tshz3 and the activity of Camk2a-Cre transgene in the striatum. Here, we show that the great majority of Tshz3-expressing cells are SCINs and that all SCINs express Tshz3. Using lineage tracing, we demonstrate that the Camk2a-Cre transgene is expressed in the SCIN lineage where it can efficiently elicit the deletion of the Tshz3-floxed allele. Moreover, transcriptomic and bioinformatic analysis in Camk2a-cKO mice showed dysregulated striatal expression of a number of genes, including genes whose human orthologues are associated with ASD and synaptic signaling. These findings identifying the expression of the Camk2a-Cre transgene in SCINs lineage lead to a reappraisal of the interpretation of experiments using Camk2a-Cre-dependent gene manipulations. They are also useful to decipher the cellular and molecular substrates of the ASD-related behavioral abnormalities observed in Tshz3 mouse models.
Collapse
Affiliation(s)
- Xavier Caubit
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Elise Arbeille
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Dorian Chabbert
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Florence Desprez
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Imane Messak
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ahmed Fatmi
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Bianca Habermann
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Paolo Gubellini
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Laurent Fasano
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
11
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
12
|
Shang Q, Xiao J, Gao B, Liang M, Wang J, Qian H, Xi Z, Li T, Liu X. D1R/PP2A/p-CaMKIIα signaling in the caudate putamen is involved in acute methamphetamine-induced hyperlocomotion. Neurosci Lett 2021; 760:136102. [PMID: 34237414 DOI: 10.1016/j.neulet.2021.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Drug addiction is underscored by the transition from experimental use to dependent use of addictive drugs. Acute use of methamphetamine (METH) causes a range of clinical symptoms, including hyperlocomotion. Dopamine D1 receptor (D1R)-mediated negative regulation of phosphorylated calcium/calmodulin-dependent protein kinase IIα (p-CaMKIIα, threonine [Thr] 286) is involved in the acute effects induced by single METH administration. Protein phosphatase 2A (PP2A) is a potential bridge that links D1R and p-CaMKIIα (Thr 286) after acute METH administration. However, the mechanisms underlying hyperlocomotion induced by single METH administration remain unclear. In this study, SCH23390 (a D1R inhibitor) and LB100 (a PP2A inhibitor) were administered to examine the involvement of D1R and PP2A signaling in acute METH-induced hyperlocomotion in mice. The protein levels of methylated PP2A-C (m-PP2A-C, leucine [Leu] 309), phosphorylated PP2A-C (p-PP2A-C, tyrosine [Tyr] 307), PP2A-C, p-CaMKIIα (Thr 286), and CaMKIIα in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were measured. Administration of 0.5 mg/kg SCH23390 reversed the acute METH-induced increase in protein levels of m-PP2A-C (Leu 309) and the decrease in protein levels of p-PP2A-C (Tyr 307) in the CPu, but not in the PFC and NAc. Moreover, prior administration of 0.1 mg/kg LB100 attenuated hyperlocomotion induced by single METH administration and reversed the decrease in protein levels of p-CaMKII (Thr 286) in the PFC, NAc, and CPu. Collectively, these results indicate that the D1R/PP2A/p-CaMKIIα signaling cascade in the CPu may be involved in hyperlocomotion after a single administration of METH.
Collapse
Affiliation(s)
- Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Zhijia Xi
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| |
Collapse
|
13
|
Thapa C, Roivas P, Haataja T, Permi P, Pentikäinen U. The Interaction Mechanism of Intrinsically Disordered PP2A Inhibitor Proteins ARPP-16 and ARPP-19 With PP2A. Front Mol Biosci 2021; 8:650881. [PMID: 33842550 PMCID: PMC8032985 DOI: 10.3389/fmolb.2021.650881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/01/2022] Open
Abstract
Protein phosphatase 2A (PP2A) activity is critical for maintaining normal physiological cellular functions. PP2A is inhibited by endogenous inhibitor proteins in several pathological conditions including cancer. A PP2A inhibitor protein, ARPP-19, has recently been connected to several human cancer types. Accordingly, the knowledge about ARPP-19—PP2A inhibition mechanism is crucial for the understanding the disease development and the therapeutic targeting of ARPP-19—PP2A. Here, we show the first structural characterization of ARPP-19, and its splice variant ARPP-16 using NMR spectroscopy, and SAXS. The results reveal that both ARPP proteins are intrinsically disordered but contain transient secondary structure elements. The interaction mechanism of ARPP-16/19 with PP2A was investigated using microscale thermophoresis and NMR spectroscopy. Our results suggest that ARPP—PP2A A-subunit interaction is mediated by linear motif and has modest affinity whereas, the interaction of ARPPs with B56-subunit is weak and transient. Like many IDPs, ARPPs are promiscuous binders that transiently interact with PP2A A- and B56 subunits using multiple interaction motifs. In summary, our results provide a good starting point for future studies and development of therapeutics that block ARPP-PP2A interactions.
Collapse
Affiliation(s)
- Chandan Thapa
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Pekka Roivas
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Tatu Haataja
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Chemistry and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ulla Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Lemonnier T, Daldello EM, Poulhe R, Le T, Miot M, Lignières L, Jessus C, Dupré A. The M-phase regulatory phosphatase PP2A-B55δ opposes protein kinase A on Arpp19 to initiate meiotic division. Nat Commun 2021; 12:1837. [PMID: 33758202 PMCID: PMC7988065 DOI: 10.1038/s41467-021-22124-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.
Collapse
Affiliation(s)
- Tom Lemonnier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Robert Poulhe
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | | | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Aude Dupré
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France.
| |
Collapse
|
15
|
Christensen KR, Nairn AC. cAMP-regulated phosphoproteins DARPP-32, ARPP16/19, and RCS modulate striatal signal transduction through protein kinases and phosphatases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:39-65. [PMID: 33706938 DOI: 10.1016/bs.apha.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decades of research led by Paul Greengard identified protein phosphorylation as a ubiquitous and vital post-translational modification involved in many neuronal signaling pathways. In particular, his discovery that second messenger-regulated protein phosphorylation plays a central role in the propagation and transduction of signals in the nervous system has been essential in understanding the molecular mechanisms of neuronal communication. The establishment of dopamine (DA) as an essential neurotransmitter in the central nervous system, combined with observations that DA activates G-protein-coupled receptors to control the production of cyclic adenosine monophosphate (cAMP) in postsynaptic neurons, has provided fundamental insight into the regulation of neurotransmission. Notably, DA signaling in the striatum is involved in many neurological functions such as control of locomotion, reward, addiction, and learning, among others. This review focuses on the history, characterization, and function of cAMP-mediated regulation of serine/threonine protein phosphatases and their role in DA-mediated signaling in striatal neurons. Several small, heat- and acid-stable proteins, including DARPP-32, RCS, and ARPP-16/19, were discovered by the Greengard laboratory to be regulated by DA- and cAMP signaling, and found to undergo a complex but coordinated sequence of phosphorylation and dephosphorylation events. These studies have contributed significantly to the establishment of protein phosphorylation as a ubiquitous and vital process in signal propagation in neurons, paradigm shifting discoveries at the time. Understanding DA-mediated signaling in the context of signal propagation has led to numerous insights into human conditions and the development of treatments and therapies.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
16
|
Thapa CJ, Haataja T, Pentikäinen U, Permi P. 1H, 13C and 15N NMR chemical shift assignments of cAMP-regulated phosphoprotein-19 and -16 (ARPP-19 and ARPP-16). BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:227-231. [PMID: 32468417 PMCID: PMC7462833 DOI: 10.1007/s12104-020-09951-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 05/09/2023]
Abstract
Protein Phosphatase 2A, PP2A, the principal Serine/threonine phosphatase, has major roles in broad range of signaling pathways that include regulation of cell cycle, cell proliferation and neuronal signaling. The loss of function of PP2A is linked with many human diseases, like cancer and neurodegenerative disorders. Protein phosphatase 2A (PP2A) functions as tumor suppressor and its tumor suppressor activity is inhibited by the overexpression of PP2A inhibitor proteins in most of the cancers. ARPP-19/ARPP-16 has been identified as one of the potential PP2A inhibitor proteins. Here, we report the resonance assignment of backbone 1H, 13C and 15N atoms of human ARPP-19 and ARPP-16 proteins. These chemical shift values can provide valuable information for the further study of the dynamics and interaction of ARPP-proteins to PP2A using NMR spectroscopy.
Collapse
Affiliation(s)
- Chandan J Thapa
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi, Turku, Finland
| | - Tatu Haataja
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ulla Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi, Turku, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland.
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.
| |
Collapse
|
17
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
18
|
The Role of MYC and PP2A in the Initiation and Progression of Myeloid Leukemias. Cells 2020; 9:cells9030544. [PMID: 32110991 PMCID: PMC7140463 DOI: 10.3390/cells9030544] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The MYC transcription factor is one of the best characterized PP2A substrates. Deregulation of the MYC oncogene, along with inactivation of PP2A, are two frequent events in cancer. Both proteins are essential regulators of cell proliferation, apoptosis, and differentiation, and they, directly and indirectly, regulate each other’s activity. Studies in cancer suggest that targeting the MYC/PP2A network is an achievable strategy for the clinic. Here, we focus on and discuss the role of MYC and PP2A in myeloid leukemias.
Collapse
|
19
|
The Cell Cycle Checkpoint System MAST(L)-ENSA/ARPP19-PP2A is Targeted by cAMP/PKA and cGMP/PKG in Anucleate Human Platelets. Cells 2020; 9:cells9020472. [PMID: 32085646 PMCID: PMC7072724 DOI: 10.3390/cells9020472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19–S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)–ENSA/ARPP19–PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.
Collapse
|
20
|
Xu Q, Yin S, Yao Y, Li X, Song B, Yang Y, Liu Y, Chen R, Li J, Ma T, Meng X, Huang C, Li J. MAST3 modulates the inflammatory response and proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Int Immunopharmacol 2019; 77:105900. [PMID: 31644963 DOI: 10.1016/j.intimp.2019.105900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
Via promoting synovitis, pannus growth and cartilage/bone destruction, fibroblast-like synovial cells (FLSs) play a significant role in the pathogenesis of rheumatoid arthritis (RA). In our study, rats were induced with complete freund's adjuvant (CFA) to be animal models for studying the RA pathogenesis. Microtubule-associated Serine/Threonine-protein kinase 3 (MAST3) has been documented to play a critical role in regulating the immune response of IBD (Inflammatory bowel disease) and involved in the process of cytoskeleton organization, intracellular signal transduction and peptidyl-serine phosphorylation, but its role in the progression of RA remains unknown and is warranted for investigation. So, we tried our best to investigate the mechanism and signaling pathway of MAST3 in RA progression. In the synovial tissue and FLSs of AA rats, we have found that MAST3 was significantly up-regulated than normal. Furthermore, MAST3 overexpression could promote proliferation and inflammatory response of FLSs. In the aspect of mechanism, we discovered that the expression of MAST3 might involve in NF-κB signaling pathway in RA. On the whole, our results suggested that MAST3 might promote the proliferation and inflammation of FLSs by regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Suqin Yin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yao Yao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Biao Song
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yang Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yaru Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Ruonan Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Juanjuan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China.
| |
Collapse
|
21
|
An SWA, Choi E, Hwang W, Son HG, Yang J, Seo K, Nam H, Nguyen NTH, Kim EJE, Suh BK, Kim Y, Nakano S, Ryu Y, Man Ha C, Mori I, Park SK, Yoo J, Kim S, Lee SV. KIN-4/MAST kinase promotes PTEN-mediated longevity of Caenorhabditis elegans via binding through a PDZ domain. Aging Cell 2019; 18:e12906. [PMID: 30773781 PMCID: PMC6516182 DOI: 10.1111/acel.12906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 12/02/2018] [Indexed: 01/09/2023] Open
Abstract
PDZ domain‐containing proteins (PDZ proteins) act as scaffolds for protein–protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN‐4, a PDZ domain‐containing microtubule‐associated serine‐threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin‐4 is required for the long lifespan of daf‐2/insulin/IGF‐1 receptor mutants. We then show that neurons are crucial tissues for the longevity‐promoting role of kin‐4. We find that the PDZ domain of KIN‐4 binds PTEN, a key factor for the longevity of daf‐2 mutants. Moreover, the interaction between KIN‐4 and PTEN is essential for the extended lifespan of daf‐2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age‐related diseases in mammals through their interaction with PTEN.
Collapse
Affiliation(s)
- Seon Woo A. An
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Eun‐Seok Choi
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Wooseon Hwang
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Heehwa G. Son
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Jae‐Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Keunhee Seo
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Hyun‐Jun Nam
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Nhung T. H. Nguyen
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Eun Ji E. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Bo Kyoung Suh
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Youngran Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Shunji Nakano
- Neuroscience Institute, Graduate School of Science Nagoya University Nagoya Japan
| | - Youngjae Ryu
- Research Division Korea Brain Research Institute Daegu South Korea
| | - Chang Man Ha
- Research Division Korea Brain Research Institute Daegu South Korea
| | - Ikue Mori
- Neuroscience Institute, Graduate School of Science Nagoya University Nagoya Japan
| | - Sang Ki Park
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Joo‐Yeon Yoo
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Sanguk Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Seung‐Jae V. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| |
Collapse
|
22
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
23
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
24
|
Tripathy R, Leca I, van Dijk T, Weiss J, van Bon BW, Sergaki MC, Gstrein T, Breuss M, Tian G, Bahi-Buisson N, Paciorkowski AR, Pagnamenta AT, Wenninger-Weinzierl A, Martinez-Reza MF, Landler L, Lise S, Taylor JC, Terrone G, Vitiello G, Del Giudice E, Brunetti-Pierri N, D'Amico A, Reymond A, Voisin N, Bernstein JA, Farrelly E, Kini U, Leonard TA, Valence S, Burglen L, Armstrong L, Hiatt SM, Cooper GM, Aldinger KA, Dobyns WB, Mirzaa G, Pierson TM, Baas F, Chelly J, Cowan NJ, Keays DA. Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron 2018; 100:1354-1368.e5. [PMID: 30449657 PMCID: PMC6436622 DOI: 10.1016/j.neuron.2018.10.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/03/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Abstract
Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ratna Tripathy
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Janneke Weiss
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Maria Christina Sergaki
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Thomas Gstrein
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Martin Breuss
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guoling Tian
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Nadia Bahi-Buisson
- Université Paris Descartes, Institut Cochin Hôpital Cochin, 75014 Paris, France
| | | | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Wenninger-Weinzierl
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Maria Fernanda Martinez-Reza
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Stefano Lise
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Giuseppina Vitiello
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Usha Kini
- Department of Clinical Genetics, Oxford Regional Genetics Service, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Thomas A Leonard
- Center for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stéphanie Valence
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Linlea Armstrong
- Provincial Medical Genetics Programme, BCWH and Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Ghayda Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology & the Board of Governors Regenerative Medicine, Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Nicholas J Cowan
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David Anthony Keays
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria.
| |
Collapse
|
25
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
26
|
Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. J Biol Chem 2018; 293:11179-11194. [PMID: 29802198 DOI: 10.1074/jbc.ra117.001519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/06/2018] [Indexed: 01/09/2023] Open
Abstract
Striatin-1, a subunit of the serine/threonine phosphatase PP2A, is preferentially expressed in neurons in the striatum. As a member of the striatin family of B subunits, striatin-1 is a core component together with PP2A of a multiprotein complex called STRIPAK, the striatin-interacting phosphatase and kinase complex. Little is known about the function of striatin-1 or the STRIPAK complex in the mammalian striatum. Here, we identify a selective role for striatin-1 in striatal neuron maturation. Using a small hairpin RNA (shRNA) knockdown approach in primary striatal neuronal cultures, we determined that reduced expression of striatin-1 results in increased dendritic complexity and an increased density of dendritic spines, classified as stubby spines. The dendritic phenotype was rescued by co-expression of a striatin-1 mutant construct insensitive to the knockdown shRNA but was not rescued by co-expression of PP2A- or Mob3-binding deficient striatin-1 constructs. Reduction of striatin-1 did not result in deficits in neuronal connectivity in this knockdown model, as we observed no abnormalities in synapse formation or in spontaneous excitatory postsynaptic currents. Thus, this study suggests that striatin-1 is a regulator of neuronal development in striatal neurons.
Collapse
Affiliation(s)
- Daniel Li
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Veronica Musante
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Wenliang Zhou
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Marina R Picciotto
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Angus C Nairn
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
27
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
28
|
Chiba K, Chien KY, Sobu Y, Hata S, Kato S, Nakaya T, Okada Y, Nairn AC, Kinjo M, Taru H, Wang R, Suzuki T. Phosphorylation of KLC1 modifies interaction with JIP1 and abolishes the enhanced fast velocity of APP transport by kinesin-1. Mol Biol Cell 2017; 28:3857-3869. [PMID: 29093025 PMCID: PMC5739300 DOI: 10.1091/mbc.e17-05-0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
ETOC: Phosphorylation of KLC1 at Thr466 in kinesin-1 regulates the interaction with APP mediated by JIP1b. Substitution of Glu for Thr466 abolished this interaction and impaired the enhanced fast velocity of APP anterograde transport. This phosphorylation of KLC1 increased in aged brains, suggesting deficient APP transport in neurons after aging. In neurons, amyloid β-protein precursor (APP) is transported by binding to kinesin-1, mediated by JNK-interacting protein 1b (JIP1b), which generates the enhanced fast velocity (EFV) and efficient high frequency (EHF) of APP anterograde transport. Previously, we showed that EFV requires conventional interaction between the JIP1b C-terminal region and the kinesin light chain 1 (KLC1) tetratricopeptide repeat, whereas EHF requires a novel interaction between the central region of JIP1b and the coiled-coil domain of KLC1. We found that phosphorylatable Thr466 of KLC1 regulates the conventional interaction with JIP1b. Substitution of Glu for Thr466 abolished this interaction and EFV, but did not impair the novel interaction responsible for EHF. Phosphorylation of KLC1 at Thr466 increased in aged brains, and JIP1 binding to kinesin-1 decreased, suggesting that APP transport is impaired by aging. We conclude that phosphorylation of KLC1 at Thr466 regulates the velocity of transport of APP by kinesin-1 by modulating its interaction with JIP1b.
Collapse
Affiliation(s)
- Kyoko Chiba
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ko-Yi Chien
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shun Kato
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Quantitative Biology Center, Suita 565-0874, Japan.,Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
29
|
Dupré AI, Haccard O, Jessus C. The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. Cell Cycle 2017; 16:1440-1452. [PMID: 28722544 DOI: 10.1080/15384101.2017.1338985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.
Collapse
Affiliation(s)
- Aude-Isabelle Dupré
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Olivier Haccard
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Catherine Jessus
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| |
Collapse
|
30
|
Musante V, Li L, Kanyo J, Lam TT, Colangelo CM, Cheng SK, Brody AH, Greengard P, Le Novère N, Nairn AC. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. eLife 2017; 6. [PMID: 28613156 PMCID: PMC5515580 DOI: 10.7554/elife.24998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI:http://dx.doi.org/10.7554/eLife.24998.001
Collapse
Affiliation(s)
- Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Lu Li
- The Babraham Institute, Cambridge, United Kingdom
| | - Jean Kanyo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Tukiet T Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Christopher M Colangelo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Shuk Kei Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - A Harrison Brody
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
31
|
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8:53791-53803. [PMID: 28881851 PMCID: PMC5581150 DOI: 10.18632/oncotarget.17339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|