1
|
Deininger S, Schumacher J, Blechschmidt A, Song J, Klugmann C, Antoniadis G, Pedro M, Knöll B, Meyer Zu Reckendorf S. Nerve injury converts Schwann cells in a long-term repair-like state in human neuroma tissue. Exp Neurol 2024; 382:114981. [PMID: 39362479 DOI: 10.1016/j.expneurol.2024.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Peripheral nerve injury (PNI) induces neuroma formation at the severed nerve stump resulting in impaired nerve regeneration and functional recovery in patients. So far, molecular mechanisms and cell types present in the neuroma impeding on regeneration have only sparsely been analyzed. Herein we compare resected human neuroma tissue with intact donor nerves from the same patient. Neuroma from several post-injury timepoints (1-13 months) were included, thereby allowing for temporal correlation with molecular and cellular processes. We observed reduced axonal area and percentage of myelin producing Schwann cells (SCs) compared to intact nerves. However, total SOX10 positive SC numbers were comparable. Notably, markers for SCs in a repair mode including c-JUN, the low-affinity neurotrophin receptor (NTR) p75, SHH (sonic hedgehog) and SC proliferation (phospho-histone H3) were upregulated in neuroma, suggesting presence of SCs in repair status. In agreement, in neuroma, pro-regenerative markers such as phosphorylated i.e. activated CREB (pCREB), ATF3, GAP43 and SCG10 were upregulated. In addition, neuroma tissue was infiltrated by several types of macrophages. Finally, when taken in culture, neuroma SCs were indistinguishable from controls SCs with regard to proliferation and morphology. However, cultured neuroma SCs retained a different molecular signature from control SCs including increased inflammation and reduced gene expression for differentiation markers such as myelin genes. In summary, human neuroma tissue consists of SCs with a repair status and is infiltrated strongly by several types of macrophages.
Collapse
Affiliation(s)
- Stefanie Deininger
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Jakob Schumacher
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Blechschmidt
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jialei Song
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Claudia Klugmann
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Maria Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
2
|
Raasveld FV, Liu WC, Mayrhofer-Schmid M, Wainger BJ, Valerio IL, Renthal W, Eberlin KR. Neuroma Analysis in Humans: Standardizing Sample Collection and Documentation. J Surg Res 2024; 298:185-192. [PMID: 38626715 PMCID: PMC11178259 DOI: 10.1016/j.jss.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION The biology of symptomatic neuromas is poorly understood, particularly the factors causing pain in human neuromas. Pain presence varies among and within individuals, with some having painful and nonpainful neuromas. To bridge these knowledge gaps, our group developed a protocol for assessing neuroma pain and collecting tissue for molecular analysis. This manuscript outlines our workflow and challenges and aims to inspire other centers to share their experiences with these tissues. METHODS For every included patient and collected nerve or bone tissue specimens, we perform a detailed chart review and a multifaceted analysis of pain and pain perception immediately before surgery. We collect patient-reported outcome measures (PROMs) on pain, function, and mental well-being outcomes at preoperative assessment and at the 6-month follow-up postoperatively. Before surgery, the patient is assessed once again to obtain an immediate preoperative pain status and identify potential differences in pain intensity of different neuromas. Intraoperatively, specimens are obtained and their gross anatomical features are recorded, after which they are stored in paraformaldehyde or frozen for later sample analyses. Postoperatively, patients are contacted to obtain additional postoperative PROMs. RESULTS A total of 220 specimens of nerve tissue have been successfully obtained from 83 limbs, comprising 95 specimens of neuromas and 125 specimens of nerves located proximal to the neuromas or from controls. CONCLUSIONS Our approach outlines the methods combining specimen collection and examination, including both macroscopic and molecular biological features, with PROMs, encompassing physical and psychological aspects, along with clinical metadata obtained through clinical teams and chart review.
Collapse
Affiliation(s)
- Floris V Raasveld
- Department of Orthopaedic Surgery, Hand and Arm Center, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Wen-Chih Liu
- Department of Orthopaedic Surgery, Hand and Arm Center, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts; Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Maximilian Mayrhofer-Schmid
- Department of Orthopaedic Surgery, Hand and Arm Center, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts; Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Department of Hand- and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ian L Valerio
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts.
| |
Collapse
|
3
|
Characterization of a Novel Aspect of Tissue Scarring Following Experimental Spinal Cord Injury and the Implantation of Bioengineered Type-I Collagen Scaffolds in the Adult Rat: Involvement of Perineurial-like Cells? Int J Mol Sci 2022; 23:ijms23063221. [PMID: 35328642 PMCID: PMC8954100 DOI: 10.3390/ijms23063221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous intervention strategies have been developed to promote functional tissue repair following experimental spinal cord injury (SCI), including the bridging of lesion-induced cystic cavities with bioengineered scaffolds. Integration between such implanted scaffolds and the lesioned host spinal cord is critical for supporting regenerative growth, but only moderate-to-low degrees of success have been reported. Light and electron microscopy were employed to better characterise the fibroadhesive scarring process taking place after implantation of a longitudinally microstructured type-I collagen scaffold into unilateral mid-cervical resection injuries of the adult rat spinal cord. At long survival times (10 weeks post-surgery), sheets of tightly packed cells (of uniform morphology) could be seen lining the inner surface of the repaired dura mater of lesion-only control animals, as well as forming a barrier along the implant–host interface of the scaffold-implanted animals. The highly uniform ultrastructural features of these scarring cells and their anatomical continuity with the local, reactive spinal nerve roots strongly suggest their identity to be perineurial-like cells. This novel aspect of the cellular composition of reactive spinal cord tissue highlights the increasingly complex nature of fibroadhesive scarring involved in traumatic injury, and particularly in response to the implantation of bioengineered collagen scaffolds.
Collapse
|
4
|
Klimovich P, Rubina K, Sysoeva V, Semina E. New Frontiers in Peripheral Nerve Regeneration: Concerns and Remedies. Int J Mol Sci 2021; 22:13380. [PMID: 34948176 PMCID: PMC8703705 DOI: 10.3390/ijms222413380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Topical advances in studying molecular and cellular mechanisms responsible for regeneration in the peripheral nervous system have highlighted the ability of the nervous system to repair itself. Still, serious injuries represent a challenge for the morphological and functional regeneration of peripheral nerves, calling for new treatment strategies that maximize nerve regeneration and recovery. This review presents the canonical view of the basic mechanisms of nerve regeneration and novel data on the role of exosomes and their transferred microRNAs in intracellular communication, regulation of axonal growth, Schwann cell migration and proliferation, and stromal cell functioning. An integrated comprehensive understanding of the current mechanistic underpinnings will open the venue for developing new clinical strategies to ensure full regeneration in the peripheral nervous system.
Collapse
Affiliation(s)
- Polina Klimovich
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ekaterina Semina
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res 2020; 7:30. [PMID: 32527334 PMCID: PMC7288425 DOI: 10.1186/s40779-020-00259-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neuronal networks, especially those in the central nervous system (CNS), evolved to support extensive functional capabilities while ensuring stability. Several physiological "brakes" that maintain the stability of the neuronal networks in a healthy state quickly become a hinderance postinjury. These "brakes" include inhibition from the extracellular environment, intrinsic factors of neurons and the control of neuronal plasticity. There are distinct differences between the neuronal networks in the peripheral nervous system (PNS) and the CNS. Underpinning these differences is the trade-off between reduced functional capabilities with increased adaptability through the formation of new connections and new neurons. The PNS has "facilitators" that stimulate neuroregeneration and plasticity, while the CNS has "brakes" that limit them. By studying how these "facilitators" and "brakes" work and identifying the key processes and molecules involved, we can attempt to apply these theories to the neuronal networks of the CNS to increase its adaptability. The difference in adaptability between the CNS and PNS leads to a difference in neuroregenerative properties and plasticity. Plasticity ensures quick functional recovery of abilities in the short and medium term. Neuroregeneration involves synthesizing new neurons and connections, providing extra resources in the long term to replace those damaged by the injury, and achieving a lasting functional recovery. Therefore, by understanding the factors that affect neuroregeneration and plasticity, we can combine their advantages and develop rehabilitation techniques. Rehabilitation training methods, coordinated with pharmacological interventions and/or electrical stimulation, contributes to a precise, holistic treatment plan that achieves functional recovery from nervous system injuries. Furthermore, these techniques are not limited to limb movement, as other functions lost as a result of brain injury, such as speech, can also be recovered with an appropriate training program.
Collapse
Affiliation(s)
| | - Hong Chen
- Shengli Clinical College of Fujian Medical University; Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
6
|
Mahan MA, Abou-Al-Shaar H, Karsy M, Warner W, Yeoh S, Palmer CA. Pathologic remodeling in human neuromas: insights from clinical specimens. Acta Neurochir (Wien) 2019; 161:2453-2466. [PMID: 31612277 DOI: 10.1007/s00701-019-04052-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neuroma pathology is commonly described as lacking a clear internal structure, but we observed evidence that there are consistent architectural elements. Using human neuroma samples, we sought to identify molecular features that characterize neuroma pathophysiology. METHODS Thirty specimens-12 neuromas-in-continuity (NICs), 11 stump neuromas, two brachial plexus avulsions, and five controls-were immunohistochemically analyzed with antibodies against various components of normal nerve substructures. RESULTS There were no substantial histopathologic differences between stump neuromas and NICs, except that NICs had intact fascicle(s) in the specimen. These intact fascicles showed evidence of injury and fibrosis. On immunohistochemical analysis of the neuromas, laminin demonstrated a consistent double-lumen configuration. The outer lumen stained with GLUT1 antibodies, consistent with perineurium and microfascicle formation. Antibodies to NF200 revealed small clusters of small-diameter axons within the inner lumen, and the anti-S100 antibody showed a relatively regular pattern of non-myelinating Schwann cells. CD68+ cells were only seen in a limited temporal window after injury. T-cells were seen in neuroma specimens, with both a temporal evolution as well as persistence long after injury. Avulsion injury specimens had similar architecture to control nerves. Seven pediatric specimens were not qualitatively different from adult specimens. NICs demonstrated intact but abnormal fascicles that may account for the neurologically impoverished outcomes from untreated NICs. CONCLUSIONS We propose that there is consistent pathophysiologic remodeling after fascicle disruption. Particular features, such as predominance of small caliber axons and persistence of numerous T-cells long after injury, suggest a potential role in chronic pain associated with neuromas.
Collapse
Affiliation(s)
- Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA.
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Wesley Warner
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Cheryl A Palmer
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Semaphorin 3A Inhibits Nerve Regeneration During Early Stage after Inferior Alveolar Nerve Transection. Sci Rep 2019; 9:4245. [PMID: 30862799 PMCID: PMC6414535 DOI: 10.1038/s41598-018-37819-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
Neuroma formation at sites of injury can impair peripheral nerve regeneration. Although the involvement of semaphorin 3A has been suggested in neuroma formation, this detailed process after injury is not fully understood. This study was therefore undertaken to examine the effects of semaphorin 3A on peripheral nerve regeneration during the early stage after injury. Immunohistochemistry for semaphorin 3A and PGP9.5, a general neuronal marker, was carried out for clarify chronological changes in their expressions after transection of the mouse inferior alveolar nerve thorough postoperative days 1 to 7. At postoperative day 1, the proximal stump of the damaged IAN exhibited semaphorin 3A, while the distal stump lacked any immunoreactivity. From this day on, its expression lessened, ultimately disappearing completely in all regions of the transected inferior alveolar nerve. A local administration of an antibody to semaphorin 3A into the nerve transection site at postoperative day 3 inhibited axon sprouting at the injury site. This antibody injection increased the number of trigeminal ganglion neurons labeled with DiI (paired t-test, p < 0.05). Immunoreactivity of the semaphorin 3A receptor, neuropilin-1, was also detected at the proximal stump at postoperative day 1. These results suggest that nerve injury initiates semaphorin 3A production in ganglion neurons, which is then delivered through the nerve fibers to the proximal end, thereby contributes to the inhibition of axonal sprouting from the proximal region of injured nerves in the distal direction. To our knowledge, this is the first report to reveal the involvement of Sema3A in the nerve regeneration process at its early stage.
Collapse
|
8
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
9
|
Analysis of regeneration- and myelination-associated proteins in human neuroma in continuity and discontinuity. Acta Neurochir (Wien) 2018; 160:1269-1281. [PMID: 29656327 DOI: 10.1007/s00701-018-3544-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Neuromas are pathologic nerve distensions caused by a nerve's response to trauma, resulting in a dysfunctional to non-functional nerve. Depending on the severance of the affected nerve, the resulting neuroma can be differentiated into continuous and stump neuroma. While neuroma formation has been investigated in animal models with enormous regenerative capacity, the search for differences in human response to nerve trauma on a molecular level ultimately seeks to identify reasons for functionally successful versus unsuccessful regeneration after peripheral nerve trauma in man. METHODS In the present study, the regenerative potential of axons and the capability of Schwann cells (SC) to remyelinate regenerating axons was quantitatively and segmentally analyzed and compared within human neuroma in-continuity and discontinuity. RESULTS For the stump neuroma and the neuroma in-continuity, there was a significant reduction of the total number of axons (86% stump neuroma and 91% neuroma in-continuity) from the proximal to the distal part of the neuroma, while the amount of fibrotic tissue increased, respectively. Labeling the myelin sheath of regenerating axons revealed a remyelination of regenerating axons by SCs in both neuroma types. The segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma. CONCLUSIONS The quantitative and segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma, while the extensive expression of Gap43 in up to 55% of the human neuroma axons underlines their regenerative capacity independent of whether the neuroma is in continuity or discontinuity. Remyelination of Gap43-positive axons suggests that the capability of SCs to remyelinate regenerating axons is preserved in neuroma tissue.
Collapse
|
10
|
Chen YJ, Chang WA, Huang MS, Chen CH, Wang KY, Hsu YL, Kuo PL. Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics. Oncotarget 2017; 8:113598-113613. [PMID: 29371932 PMCID: PMC5768349 DOI: 10.18632/oncotarget.22748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR-204-5p was validated in an array of osteoporotic hip fracture in the Gene Expression Omnibus database (GSE74209). The putative targets for miR-204-5p were Kruppel-like factor 7 (KLF7) and SRY-box 11 (SOX11). Ingenuity Pathway Analysis identified SOX11, involved in osteoarthritis pathway and differentiation of osteoblasts, together with miR-204-5p, a potential upstream regulator, suggesting the critical role of miR-204-5p-SOX11 regulation in the aging process of human bones. In addition, as semaphorin 3A (SEMA3A) and ephrin type-A receptor 5 (EPHA5) were involved in nervous system related biological functions, we postulated a potential linkage between SEMA3A, EPHA5 and development of neurogenic heterotopic ossification. Our findings implicate new candidate genes in the diagnosis of geriatric musculoskeletal disorders, and provide novel insights that may contribute to the elaboration of new biomarkers for neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Yuan Wang
- Division of Geriatrics and Gerontology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Vliet ACV, Tannemaat MR, Duinen SGV, Verhaagen J, Malessy MJ, Winter FD. Human Neuroma-in-Continuity Contains Focal Deficits in Myelination. J Neuropathol Exp Neurol 2015. [DOI: 10.1097/nen.0000000000000229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
12
|
Niapour N, Niapour A, Sheikhkanloui Milan H, Amani M, Salehi H, Najafzadeh N, Gholami MR. All trans retinoic acid modulates peripheral nerve fibroblasts viability and apoptosis. Tissue Cell 2015; 47:61-65. [PMID: 25532484 DOI: 10.1016/j.tice.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/02/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Following peripheral nerve injury, residing fibroblasts start to proliferate and accumulate at the injury site and may participate in neuroma tissue evolution. Retinoic acid has been shown to regulate many cellular processes and to display anti-proliferative and anti-fibrotic properties. The aim of this study was to investigate the impact of all trans retinoic acid (ATRA) on rat peripheral nerve fibroblasts. MATERIALS AND METHODS Peripheral nerve fibroblasts and C166 cells were treated with increasing doses of ATRA (0.05 nM to 1 μM). The viability of cells was determined with 3-(4,5-dimethlthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the number of peripheral nerve fibroblasts was counted after two days of ATRA treatment and alternatively up to the end of next week. Acridine orange/ethidium bromide double staining was implemented to morphologically visualize the possible mechanism of cell death. For apoptosis, caspase 3/7 activity was measured using Caspase-Glo 3/7 assay kit. RESULTS MTT assay revealed that 0.05-1 nM of ATRA reduces fibroblasts viabilities. Then, almost a plateau state was observed from 1 nM to 1 μM of ATRA exposure. Additionally, a deceleration in peripheral nerve fibroblasts growth was confirmed via cell counting. Quantification of acridine orange/ethidium bromide staining displayed highly increased number of early apoptotic cells following ATRA administration. Amplified activation of caspase 3/7 was in favor of apoptosis in ATRA treated peripheral nerve fibroblasts. CONCLUSION The data from the present study demonstrate that ATRA could interfere in peripheral nerve fibroblasts viabilities and induce apoptosis. Although more investigations are needed to be implemented, our in vitro results indicate that retinoic acid can probably help the regeneration of injured axon via reducing of fibroblasts growth.
Collapse
Affiliation(s)
- Nazila Niapour
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nowrouz Najafzadeh
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Gholami
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Anguelova GV, Malessy MJA, van Zwet EW, van Dijk JG. Extensive motor axonal misrouting after conservative treatment of obstetric brachial plexus lesions. Dev Med Child Neurol 2014; 56:984-9. [PMID: 24815007 DOI: 10.1111/dmcn.12490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 11/27/2022]
Abstract
AIM The aim of this cross-sectional study was to assess systematically motor function and motor misrouting in adults with conservatively treated obstetric brachial plexus lesion (OBPL). METHOD Seventeen adults with OBPL (median age 38y; five males, 12 females) and 16 comparison participants (median age 26y; eight males, eight females) were investigated. Motor function in the group with OBPL was assessed through passive and active motion, muscle strength of the deltoid, biceps, and triceps muscles, and Mallet aggregate score and five subscores. Motor misrouting was quantified by electrically stimulating each of 10 arm muscles and recording activity from the other nine in response to this. Motor function and motor misrouting were statistically analysed using the Mann-Whitney U test and Spearman's correlation coefficient. RESULTS Motor function testing showed excellent strength but poor functional Mallet scores. Participants with OBPL had significantly more motor misrouting than comparison participants (Mann-Whitney U=31.5 [df=28], p<0.001, median difference=-4.00, 95% confidence interval [CI]=-7.00 to -1.00). Most misrouting was observed when stimulating the biceps (Mann-Whitney U=38.5 [df=31], p<0.001, median difference=-3.00, 95% CI -3.00 to -1.00), deltoid (Mann-Whitney U=68.5 [df=31], p=0.003, median difference=-1.0, 95% CI=-4.00 to 0.00 <0.001) and brachioradialis muscles (Mann-Whitney U=72.0 [df=31], p=0.002, median difference <0.001, 95% CI=-3.00 to 0.00 <0.001). There were no significant correlations between the presence of motor misrouting and impairment of motor function. INTERPRETATION There is extensive motor misrouting in conservatively treated OBPL. The presence of this, in addition to motor functional impairment, suggests that motor misrouting should be further studied in OBPL.
Collapse
Affiliation(s)
- Galia V Anguelova
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Neurosurgery, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Willem Pondaag
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Van Heest AE, Andrisevic E, Agel J. Neurolysis and upper trunk brachial plexus birth palsy. Response. J Neurosurg Pediatr 2014; 14:324-7. [PMID: 25133490 DOI: 10.3171/2014.3.peds14163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Pondaag W, Malessy MJA. Letters to the editor: Neurolysis and upper trunk brachial plexus birth palsy. J Neurosurg Pediatr 2014:1-3. [PMID: 24995820 DOI: 10.3171/ped.2014.0.0.peds14163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Willem Pondaag
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
17
|
de Ruiter GCW, Spinner RJ, Verhaagen J, Malessy MJA. Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg 2014; 120:493-501. [DOI: 10.3171/2013.8.jns122300] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin, and vice versa—that is, sensory axons projecting toward muscle. In the repair of motor nerves innervating different distal targets, misdirection may result in reinnervation of the wrong target muscle, which might function antagonistically. In sensory nerve repair, misdirection might give an increased perceptual territory. After median nerve repair, for example, this might lead to a dysfunctional hand.
Different factors may be involved in the misdirection of regenerating axons, and there may be various mechanisms that can later correct for misdirection. In this review the authors discuss these different factors and mechanisms that act along the pathway of the regenerating axon. The authors review recently developed evaluation methods that can be used to investigate the accuracy of regeneration after nerve injury and repair (including the use of transgenic fluorescent mice, retrograde tracing techniques, and motion analysis). In addition, the authors discuss new strategies that can improve in vivo guidance of regenerating axons (including physical guidance with multichannel nerve tubes and biological guidance accomplished using gene therapy).
Collapse
Affiliation(s)
| | | | - Joost Verhaagen
- 3Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam
- 4Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, The Netherlands; and
| | - Martijn J. A. Malessy
- 1Department of Neurosurgery, Leiden University Medical Center, Leiden
- 3Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam
| |
Collapse
|
18
|
van Neerven S, Pannaye P, Bozkurt A, Van Nieuwenhoven F, Joosten E, Hermans E, Taccola G, Deumens R. Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts. Neuroscience 2013; 252:144-53. [DOI: 10.1016/j.neuroscience.2013.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
19
|
Shi F, Edge ASB. Prospects for replacement of auditory neurons by stem cells. Hear Res 2013; 297:106-12. [PMID: 23370457 DOI: 10.1016/j.heares.2013.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
20
|
van Alfen N, Malessy MJA. Diagnosis of brachial and lumbosacral plexus lesions. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:293-310. [PMID: 23931788 DOI: 10.1016/b978-0-444-52902-2.00018-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To most doctors, brachial and lumbosacral plexopathies are known as difficult disorders, because of their complicated anatomy and relatively rare occurrence. Both the brachial, lumbar, and sacral plexuses are extensive PNS structures stretching from the neck to axillary region and running in the paraspinal lumbar and pelvic region, containing 100000-200000 axons with 12-15 major terminal branches supplying almost 50 muscles in each limb. The most difficult part in diagnosing a plexopathy is probably that it requires an adequate amount of clinical suspicion combined with a thorough anatomical knowledge of the PNS and a meticulous clinical examination. Once a set of symptoms is recognized as a plexopathy the patients' history and course of the disorder will often greatly limit the differential diagnosis. The most common cause of brachial plexopathy is probably neuralgic amyotrophy and the most common cause of lumbosacral plexopathy is diabetic amyotrophy. Traumatic and malignant lesions are fortunately rarer but just as devastating. This chapter provides an overview of both common and rarer brachial and lumbosacral plexus disorders, focusing on clinical examination, the use of additional investigative techniques, prognosis, and treatment.
Collapse
Affiliation(s)
- Nens van Alfen
- Department of Neurology and Clinical Neurophysiology, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | |
Collapse
|
21
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
22
|
Nakamura Y, Nakamichi N, Takarada T, Ogita K, Yoneda Y. Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells. Neurochem Int 2011; 60:448-57. [PMID: 22019713 DOI: 10.1016/j.neuint.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/16/2022]
Abstract
Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells. Marked mRNA expression was seen for various iron-related genes such as TfR1 in cultured mouse neocortical neurons, while TfR1 mRNA levels were more than doubled during culture from 3 to 6days. In mouse embryonal carcinoma P19 cells endowed to differentiate into neuronal and astroglial lineages, a transient increase was seen in both mRNA and corresponding protein for TfR1 in association with neuronal marker expression during culture with all-trans retinoic acid (ATRA). In neuronal Neuro2A cells cultured with ATRA, moreover, neurite was elongated together with increased expression of both mRNA and protein for TfR1. Overexpression of TfR1 significantly decreased the length of neurite elongated, however, while significant promotion was invariably seen in the neurite elongation in Neuro2A cells transfected with TfR1 siRNA as well as in Neuro2A cells cultured with an iron chelator. These results suggest that TfR1 would be highly expressed by neurons rather than astroglia to play a negative role in the neurite outgrowth after the incorporation of circulating transferrin in the brain.
Collapse
Affiliation(s)
- Yukary Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
23
|
Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:40-50. [PMID: 21812591 DOI: 10.1089/ten.teb.2011.0240] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Currently, surgical treatments for peripheral nerve injury are less than satisfactory. The gold standard of treatment for peripheral nerve gaps >5 mm is the autologous nerve graft; however, this treatment is associated with a variety of clinical complications, such as donor site morbidity, limited availability, nerve site mismatch, and the formation of neuromas. Despite many recent advances in the field, clinical studies implementing the use of artificial nerve guides have yielded results that are yet to surpass those of autografts. Thus, the development of a nerve guidance conduit, which could match the effectiveness of the autologous nerve graft, would be beneficial to the field of peripheral nerve surgery. Design strategies to improve surgical outcomes have included the development of biopolymers and synthetic polymers as primary scaffolds with tailored mechanical and physical properties, luminal "fillers" such as laminin and fibronectin as secondary internal scaffolds, surface micropatterning, stem cell inclusion, and controlled release of neurotrophic factors. The current article highlights approaches to peripheral nerve repair through a channel or conduit, implementing chemical and physical growth and guidance cues to direct that repair process.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
24
|
Michikawa Y, Suga T, Ishikawa A, Hayashi H, Oka A, Inoko H, Iwakawa M, Imai T. Genome wide screen identifies microsatellite markers associated with acute adverse effects following radiotherapy in cancer patients. BMC MEDICAL GENETICS 2010; 11:123. [PMID: 20701746 PMCID: PMC2928773 DOI: 10.1186/1471-2350-11-123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 08/11/2010] [Indexed: 01/24/2023]
Abstract
Background The response of normal tissues in cancer patients undergoing radiotherapy varies, possibly due to genetic differences underlying variation in radiosensitivity. Methods Cancer patients (n = 360) were selected retrospectively from the RadGenomics project. Adverse effects within 3 months of radiotherapy completion were graded using the National Cancer Institute Common Toxicity Criteria; high grade group were grade 3 or more (n = 180), low grade group were grade 1 or less (n = 180). Pooled genomic DNA (gDNA) (n = 90 from each group) was screened using 23,244 microsatellites. Markers with different inter-group frequencies (Fisher exact test P < 0.05) were analyzed using the remaining pooled gDNA. Silencing RNA treatment was performed in cultured normal human skin fibroblasts. Results Forty-seven markers had positive association values; including one in the SEMA3A promoter region (P = 1.24 × 10-5). SEMA3A knockdown enhanced radiation resistance. Conclusions This study identified 47 putative radiosensitivity markers, and suggested a role for SEMA3A in radiosensitivity.
Collapse
Affiliation(s)
- Yuichi Michikawa
- RadGenomics Project, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pasterkamp RJ, Giger RJ. Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 2009; 19:263-74. [PMID: 19541473 PMCID: PMC2730419 DOI: 10.1016/j.conb.2009.06.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 12/28/2022]
Abstract
The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.
Collapse
Affiliation(s)
- R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Roman J. Giger
- Department of Cell & Developmental Biology, University of Michigan School of Medicine, 109 Zina Pitcher Place, 3065 BSRB, Ann Arbor, MI 48109-2200
- Department of Neurology, University of Michigan School of Medicine, 109 Zina Pitcher Place, 3065 BSRB, Ann Arbor, MI 48109-2200
- Multiple Sclerosis Center, University of Michigan School of Medicine, 109 Zina Pitcher Place, 3065 BSRB, Ann Arbor, MI 48109-2200
| |
Collapse
|
26
|
Tannemaat MR, Boer GJ, Eggers R, Malessy MJ, Verhaagen J. From microsurgery to nanosurgery: how viral vectors may help repair the peripheral nerve. PROGRESS IN BRAIN RESEARCH 2009; 175:173-86. [DOI: 10.1016/s0079-6123(09)17512-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Piaton G, Williams A, Seilhean D, Lubetzki C. Remyelination in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2009; 175:453-64. [PMID: 19660673 DOI: 10.1016/s0079-6123(09)17530-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Remyelination in multiple sclerosis is in most cases insufficient, leading to irreversible disability. Different and nonexclusive factors account for this repair deficit. Local inhibitors of the differentiation of oligodendrocyte progenitor cells (OPCs) might play a role, as well as axonal factors impairing the wrapping process. Alternatively, a defect in the recruitment of OPCs toward the demyelinated area may be involved in lesions with oligodendroglial depopulation. Deciphering the mechanisms underlying myelin repair success or failure should open new avenues for designing strategies aimed at favoring endogenous remyelination.
Collapse
|
28
|
Bannerman P, Ara J, Hahn A, Hong L, McCauley E, Friesen K, Pleasure D. Peripheral nerve regeneration is delayed in neuropilin 2-deficient mice. J Neurosci Res 2008; 86:3163-9. [PMID: 18615644 PMCID: PMC2574585 DOI: 10.1002/jnr.21766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Jahan Ara
- Dep’t of Pediatrics, Drexel University College of Medicine, Philadelphia PA
| | | | - Lindy Hong
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Erica McCauley
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Katie Friesen
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| |
Collapse
|
29
|
Zhou Y, Gunput RAF, Pasterkamp RJ. Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 2008; 33:161-70. [PMID: 18374575 DOI: 10.1016/j.tibs.2008.01.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 12/31/2022]
Abstract
Semaphorins were initially characterized according to their role in repulsive axon guidance but are now recognized as crucial regulators of morphogenesis and homeostasis over a wide range of organ systems. The pleiotropic nature of semaphorin signaling and its implication in human disease has triggered an enormous interest in the receptor and intracellular signaling mechanisms that direct the cell-type-specific and diverse biological effects of semaphorins. Recent breakthroughs in our understanding of semaphorin signaling link integrin and semaphorin signaling pathways, identify novel ligand-receptor interactions and provide insight into the cellular and molecular bases of bifunctional and reverse signaling events. These discoveries could lead to therapeutic advances in axonal regeneration, cancer and other diseases.
Collapse
Affiliation(s)
- Yeping Zhou
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | | | | |
Collapse
|