1
|
Aathira NS, Kaur A, Kumar A, Dar GM, Nimisha, Sharma AK, Bera P, Mahajan B, Chatterjee A, Saluja SS. The genetic risk factors, molecular pathways, microRNAs, and the gut microbiome in Alzheimer's disease. Neuroscience 2025; 577:217-227. [PMID: 40374065 DOI: 10.1016/j.neuroscience.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. It is a multifaceted condition resulting from interplay of genetic mutations (e.g., APP, PSEN1, PSEN2) that account for less than 5% of cases, several genetic risk variants such as APOE4, TREM2, CD33, CLU, SORL1, and CR1 contribute to disease susceptibility and epigenetic factors, which may mediate the influence of environmental and lifestyle factors over time. Other critical contributors such as aging, protein misfolding and aggregation (amyloid-β and tau), molecular and transcriptomic dysregulation affecting neuronal function, and modifiable lifestyle factors like diet, physical activity, and environmental exposures presents challenges in accurate diagnosis and management. Research has predominantly focused on the diverse molecular pathways in the pathogenesis of AD, with particular attention given to the amyloidogenic pathways, tau pathology, calcium signalling, endolysosomal pathways, and others, whether they are directly or indirectly involved. Apart from these known molecular pathways, miRNAs are gaining attention as important regulators, which have been implicated in moderating the expression of mRNA targets involved in various processes associated with the clearance of pathogenic β-amyloid proteins. A mounting body of research suggests the possible role of gut microbiota in AD which regulates inflammation, neurotransmitters, and the blood-brain barrier. Gut dysbiosis can trigger neuroinflammation and amyloid-beta aggregation, making microbiome composition a potential early AD biomarker. This review aims to explore briefly the diverse risk encompassing genetic polymorphisms, altered molecular pathways implicated in AD pathogenesis, miRNA regulatory mechanisms, and the potential impact of gut microbiota on AD risk.
Collapse
Affiliation(s)
- N S Aathira
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Amanpreet Kaur
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Pinki Bera
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Atri Chatterjee
- Department of Neurology, VMMC and Safdarjung Hospital, New Delhi, India.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
2
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
3
|
Moradi Vastegani S, Alani B, Kharazmi K, Ardjmand A. MiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with the µ Opioid Receptor. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 11:150-167. [PMID: 37091037 PMCID: PMC10116354 DOI: 10.22088/ijmcm.bums.11.2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 04/25/2023]
Abstract
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, the hippocampal miR-33-5p gene and pCREB/CREB protein expression profiles were evaluated using quantitative real-time PCR and western blotting, respectively. We found that while post-training morphine and morphine StD memory respectively up- and down-regulate the miR-33-5p expression profile in the hippocampus, the reverse results are true for the expression of pCREB/CREB. Pre-test naloxone antagonized the response. Overall, our findings suggest that the expression levels of miR-33-5p in the hippocampus set the basis for morphine StD memory with low miR-33-5p enabling state dependency. The mechanism is mediated via miR33-5p and CREB signaling with the interaction of the µ opioid receptor. This finding may be used as a potential strategy for ameliorating morphine-induced memory-related disorders.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Behrang Alani
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Khatereh Kharazmi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Ardjmand
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
5
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
6
|
Zhang R, Zhang Y, Guo F, Li S, Cui H. RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Front Cell Neurosci 2022; 16:820378. [PMID: 35401117 PMCID: PMC8989074 DOI: 10.3389/fncel.2022.820378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of epitranscriptomics in regulating gene expression has received widespread attention. Recently, RNA methylation modifications, particularly N6-methyladenosine (m6A), have received marked attention. m6A, the most common and abundant type of eukaryotic methylation modification in RNAs, is a dynamic reversible modification that regulates nuclear splicing, stability, translation, and subcellular localization of RNAs. These processes are involved in the occurrence and development of many diseases. An increasing number of studies have focused on the role of m6A modification in Alzheimer's disease, which is the most common neurodegenerative disease. This review focuses on the general features, mechanisms, and functions of m6A methylation modification and its role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
7
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
8
|
Peña-Bautista C, Álvarez-Sánchez L, Cañada-Martínez AJ, Baquero M, Cháfer-Pericás C. Epigenomics and Lipidomics Integration in Alzheimer Disease: Pathways Involved in Early Stages. Biomedicines 2021; 9:1812. [PMID: 34944628 PMCID: PMC8698767 DOI: 10.3390/biomedicines9121812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Alzheimer Disease (AD) is the most prevalent dementia. However, the physiopathological mechanisms involved in its development are unclear. In this sense, a multi-omics approach could provide some progress. METHODS Epigenomic and lipidomic analysis were carried out in plasma samples from patients with mild cognitive impairment (MCI) due to AD (n = 22), and healthy controls (n = 5). Then, omics integration between microRNAs (miRNAs) and lipids was performed by Sparse Partial Least Squares (s-PLS) regression and target genes for the selected miRNAs were identified. RESULTS 25 miRNAs and 25 lipids with higher loadings in the sPLS regression were selected. Lipids from phosphatidylethanolamines (PE), lysophosphatidylcholines (LPC), ceramides, phosphatidylcholines (PC), triglycerides (TG) and several long chain fatty acids families were identified as differentially expressed in AD. Among them, several fatty acids showed strong positive correlations with miRNAs studied. In fact, these miRNAs regulated genes implied in fatty acids metabolism, as elongation of very long-chain fatty acids (ELOVL), and fatty acid desaturases (FADs). CONCLUSIONS The lipidomic-epigenomic integration showed that several lipids and miRNAs were differentially expressed in AD, being the fatty acids mechanisms potentially involved in the disease development. However, further work about targeted analysis should be carried out in a larger cohort, in order to validate these preliminary results and study the proposed pathways in detail.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (M.B.)
| | - Lourdes Álvarez-Sánchez
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (M.B.)
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Miguel Baquero
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (M.B.)
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (M.B.)
| |
Collapse
|
9
|
Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders. Front Mol Neurosci 2021; 14:756499. [PMID: 34690698 PMCID: PMC8529023 DOI: 10.3389/fnmol.2021.756499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a progressive increase in the prevalence of obesity and its comorbidities such as type 2 diabetes and cardiovascular diseases worldwide. Recent studies have suggested that the crosstalk between adipose tissue and central nervous system (CNS), through cellular mediators and signaling pathways, may causally link obesity with cognitive decline and give rise to neurodegenerative disorders. Several mechanisms have been proposed in obesity, including inflammation, oxidative stress, insulin resistance, altered lipid and cholesterol homeostasis, which may result in neuroinflammation, altered brain insulin signaling, amyloid-beta (Aβ) deposition and neuronal cell death. Since obesity is associated with functional and morphological alterations in the adipose tissues, the resulting peripheral immune response augments the development and progression of cognitive decline and increases susceptibility of neurodegenerative disorders, such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Studies have also elucidated an important role of high fat diet in the exacerbation of these clinical conditions. However, the underlying factors that propel and sustain this obesity associated cognitive decline and neurodegeneration, remains highly elusive. Moreover, the mechanisms linking these phenomena are not well-understood. The cumulative line of evidence have demonstrated an important role of microRNAs (miRNAs), a class of small non-coding RNAs that regulate gene expression and transcriptional changes, as biomarkers of pathophysiological conditions. Despite the lack of utility in current clinical practices, miRNAs have been shown to be highly specific and sensitive to the clinical condition being studied. Based on these observations, this review aims to assess the role of several miRNAs and aim to elucidate underlying mechanisms that link obesity with cognitive decline and neurodegenerative disorders. Furthermore, this review will also provide evidence for the effect of dietary modulation which can potentially ameliorate cognitive decline and neurodegenerative diseases associated with obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Komal Sodhi
- Department of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
10
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
11
|
Dong LH, Sun L, Zhang WJ, Wang XY, Li JM. Reduced serum miR-202 may promote the progression of Alzheimer's disease patients via targeting amyloid precursor protein. Kaohsiung J Med Sci 2021; 37:730-738. [PMID: 34042273 DOI: 10.1002/kjm2.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022] Open
Abstract
The current study investigated whether the expression of miR-202 was abnormal in the serum of patients with Alzheimer's disease (AD) and evaluated the potential clinical significance, thereby shedding light on the diagnosis of AD. Here, our data showed that the level of miR-202 decreased significantly in the serum of AD patients (n = 121) compared with that of healthy controls (n = 86). Further analysis showed that the level of serum miR-202 was gradually decreased in the mild AD group (n = 31), moderate AD group (n = 52) and severe AD group (n = 38) compared with the healthy control group. Receiver operating characteristic (ROC) curve analysis demonstrated that serum miR-202 could differentiate AD patients from healthy controls, with an AUC of 0.892. Spearman correlation analysis showed that serum miR-202 was positively correlated with the Mini-Mental State Examination (MMSE). Based on TargetScan, a conserved binding site was identified in the 3'UTR of amyloid precursor protein (APP). The dual luciferase assay showed that miR-202 suppressed the relative luciferase activity of pmirGLO-APP-3'UTR. Western blot assays indicated that overexpression of miR-202 suppressed the expression of APP, while the expression of APP was enhanced after inhibition of miR-202 in PC12 cells, indicating that APP was a possible target gene of miR-202. Moreover, the cell apoptosis induced by transfection of miR-202 inhibitor was abolished by silencing APP. In summary, we showed novel data that downregulation of serum miR-202 may be used as a potential biomarker for AD and may promote the development of AD by targeting APP.
Collapse
Affiliation(s)
- Li-Hua Dong
- Department of Neurology, Rizhao People's Hospital, Rizhao City, Shandong Province, China
| | - Lei Sun
- Department of Neurology, Rizhao People's Hospital, Rizhao City, Shandong Province, China
| | - Wen-Jing Zhang
- Department of Neurology, Rizhao People's Hospital, Rizhao City, Shandong Province, China
| | - Xiao-Yan Wang
- Department of Neurology, Rizhao People's Hospital, Rizhao City, Shandong Province, China
| | - Jia-Mei Li
- Department of Neurology, Rizhao People's Hospital, Rizhao City, Shandong Province, China
| |
Collapse
|
12
|
Samant NP, Gupta GL. Novel therapeutic strategies for Alzheimer's disease targeting brain cholesterol homeostasis. Eur J Neurosci 2020; 53:673-686. [PMID: 32852876 DOI: 10.1111/ejn.14949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Aβ plaques and tauopathy are two major concerns associated with AD. Moreover, excessive Aβ accumulation can lead to other nonspecific metabolic brain abnormalities. There are various genetic, environmental, and other risk factors associated with AD. Identification of risk factors and its mechanisms by which these factors impart role in AD pathology would be helpful for the prevention of AD progression. Altered cholesterol homeostasis could be considered as a risk factor for AD progression. Brain cholesterol dysmetabolism is recognized as one of the crucial attributes for AD that affect major hallmarks of AD including neurodegeneration. To fill the gap between altered cholesterol levels in the brain and AD, the researchers started focusing on statins as re-purposing drugs for AD treatment. The various other hypothesis has been suggested due to a lack of beneficial results of statins in clinical trials, such as reduced brain cholesterol could underlie poor cognition. Unfortunately, it is still unclear, whether an increase or decrease in brain cholesterol levels responsible for Alzheimer's disease or not. Presently, scientists believed that managing the level of cholesterol in the brain may help as an alternative treatment strategy for AD. In this review, we focused on the therapeutic strategies for AD by targeting brain cholesterol levels.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
13
|
Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol 2018; 56:4820-4837. [PMID: 30402708 PMCID: PMC6647400 DOI: 10.1007/s12035-018-1401-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The UV absorber benzophenone-3 (BP-3) is the most extensively used chemical substance in various personal care products. Despite that BP-3 exposure is widespread, knowledge about the impact of BP-3 on the brain development is negligible. The present study aimed to explore the mechanisms of prenatal exposure to BP-3 in neuronal cells, with particular emphasis on autophagy and nuclear receptors signaling as well as the epigenetic and post-translational modifications occurring in response to BP-3. To observe the impact of prenatal exposure to BP-3, we administered BP-3 to pregnant mice, and next, we isolated brain tissue from pretreated embryos for primary cell neocortical culture. Our study revealed that prenatal exposure to BP-3 (used in environmentally relevant doses) impairs autophagy in terms of BECLIN-1, MAP1LC3B, autophagosomes, and autophagy-related factors; disrupts the levels of retinoid X receptors (RXRs) and peroxisome proliferator-activated receptor gamma (PPARγ); alters epigenetic status (i.e., attenuates HDAC and sirtuin activities); inhibits post-translational modifications in terms of global sumoylation; and dysregulates expression of neurogenesis- and neurotransmitter-related genes as well as miRNAs involved in pathologies of the nervous system. Our study also showed that BP-3 has good permeability through the BBB. We strongly suggest that BP-3-evoked effects may substantiate a fetal basis of the adult onset of neurological diseases, particularly schizophrenia and Alzheimer’s disease.
Collapse
|
14
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
15
|
The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. Neuroscience 2018; 390:160-173. [DOI: 10.1016/j.neuroscience.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
|
16
|
Chen JJ, Zhao B, Zhao J, Li S. Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease. Neural Plast 2017; 2017:7027380. [PMID: 28770113 PMCID: PMC5523215 DOI: 10.1155/2017/7027380] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are bilipid layer-enclosed vesicles derived from endosomes and are released from neural cells. They contain a diversity of proteins, mRNAs, and microRNAs (miRNAs) that are delivered to neighboring cells and/or are transported to distant sites. miRNAs released from exosomes appear to be associated with multiple neurodegenerative conditions linking to Alzheimer's disease (AD) which is marked by hyperphosphorylated tau proteins and accumulation of Aβ plaques. Exciting findings reveal that miRNAs released from exosomes modulate the expression and function of amyloid precursor proteins (APP) and tau proteins. These open up the possibility that dysfunctional exosomal miRNAs may influence AD progression. In addition, it has been confirmed that the interaction between miRNAs released by exosomes and Toll-like receptors (TLR) initiates inflammation. In exosome support-deprived neurons, exosomal miRNAs may regulate neuroplasticity to relieve neurological damage. In this review, we summarize the literature on the function of exosomal miRNAs in AD pathology, the potential of these miRNAs as diagnostic biomarkers in AD, and the use of exosomes in the delivery of miRNAs which may lead to major advances in the field of macromolecular drug delivery.
Collapse
Affiliation(s)
- Jian-jiao Chen
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Department of General Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou City, Jiangsu Province 225000, China
| | - Bin Zhao
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| |
Collapse
|
17
|
|