1
|
Sugata H, Iwane F, Hayward W, Azzollini V, Dash D, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Cingulate and striatal hubs are linked to early skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624544. [PMID: 39803559 PMCID: PMC11722315 DOI: 10.1101/2024.11.20.624544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Early skill learning develops in the context of activity changes in distributed cortico-subcortical regions. Here, we investigated network hubs-centers of information integration and transmission-within the brain network supporting early skill learning. We recorded magnetoencephalographic (MEG) brain activity in healthy human subjects who learned a moderately difficult sequence skill with their non-dominant left hand. We then computed network hub strength by summing top 10% functional connectivity over 86 parcellated brain regions (AAL3 atlas) and five brain oscillatory frequency bands (alpha, low-, high-beta, low- and high-gamma). Virtually all skill gains developed during rest intervals of early learning (micro-offline gains). MEG hub strength in the alpha band (8-13Hz) in bilateral anterior cingulate (ACC) and caudate and in the low-beta band (13-16Hz) in bilateral caudate and right putamen correlated with micro-offline gains. These regions linked strongly with the hippocampus, parahippocampal cortex, and lingual and fusiform gyri. Thus, alpha and low-beta brain oscillatory activity in cingulate and striatal regions appear to contribute as hubs of information integration and transmission during early skill learning.
Collapse
Affiliation(s)
- Hisato Sugata
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- Equal Contribution
- Lead Contact
| | - Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Equal Contribution
| | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Valentina Azzollini
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Lead Contact
| |
Collapse
|
2
|
Pacheco-Estefan D, Fellner MC, Kunz L, Zhang H, Reinacher P, Roy C, Brandt A, Schulze-Bonhage A, Yang L, Wang S, Liu J, Xue G, Axmacher N. Maintenance and transformation of representational formats during working memory prioritization. Nat Commun 2024; 15:8234. [PMID: 39300141 DOI: 10.1038/s41467-024-52541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Visual working memory depends on both material-specific brain areas in the ventral visual stream (VVS) that support the maintenance of stimulus representations and on regions in the prefrontal cortex (PFC) that control these representations. How executive control prioritizes working memory contents and whether this affects their representational formats remains an open question, however. Here, we analyzed intracranial EEG (iEEG) recordings in epilepsy patients with electrodes in VVS and PFC who performed a multi-item working memory task involving a retro-cue. We employed Representational Similarity Analysis (RSA) with various Deep Neural Network (DNN) architectures to investigate the representational format of prioritized VWM content. While recurrent DNN representations matched PFC representations in the beta band (15-29 Hz) following the retro-cue, they corresponded to VVS representations in a lower frequency range (3-14 Hz) towards the end of the maintenance period. Our findings highlight the distinct coding schemes and representational formats of prioritized content in VVS and PFC.
Collapse
Affiliation(s)
- Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany.
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Peter Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Charlotte Roy
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linglin Yang
- Department of Psychiatry, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy center, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
3
|
Kang H, Auksztulewicz R, Chan CH, Cappotto D, Rajendran VG, Schnupp JWH. Cross-modal implicit learning of random time patterns. Hear Res 2023; 438:108857. [PMID: 37639922 DOI: 10.1016/j.heares.2023.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Perception is sensitive to statistical regularities in the environment, including temporal characteristics of sensory inputs. Interestingly, implicit learning of temporal patterns in one modality can also improve their processing in another modality. However, it is unclear how cross-modal learning transfer affects neural responses to sensory stimuli. Here, we recorded neural activity of human volunteers using electroencephalography (EEG), while participants were exposed to brief sequences of randomly timed auditory or visual pulses. Some trials consisted of a repetition of the temporal pattern within the sequence, and subjects were tasked with detecting these trials. Unknown to the participants, some trials reappeared throughout the experiment across both modalities (Transfer) or only within a modality (Control), enabling implicit learning in one modality and its transfer. Using a novel method of analysis of single-trial EEG responses, we showed that learning temporal structures within and across modalities is reflected in neural learning curves. These putative neural correlates of learning transfer were similar both when temporal information learned in audition was transferred to visual stimuli and vice versa. The modality-specific mechanisms for learning of temporal information and general mechanisms which mediate learning transfer across modalities had distinct physiological signatures: temporal learning within modalities relied on modality-specific brain regions while learning transfer affected beta-band activity in frontal regions.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryszard Auksztulewicz
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Center for Cognitive Neuroscience Berlin, Free University Berlin, Berlin, Germany
| | - Chi Hong Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R
| | - Drew Cappotto
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; UCL Ear Institute, University College London, London, United Kingdom
| | - Vani G Rajendran
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, NM
| | - Jan W H Schnupp
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R.
| |
Collapse
|
4
|
Appelhoff S, Hertwig R, Spitzer B. EEG-representational geometries and psychometric distortions in approximate numerical judgment. PLoS Comput Biol 2022; 18:e1010747. [PMID: 36469506 PMCID: PMC9754589 DOI: 10.1371/journal.pcbi.1010747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or underweight extreme sample values, depending on task context. In a context of overweighting, recent work has shown that extreme sample values were overly represented also in neural signals, in terms of an anti-compressed geometry of number samples in multivariate electroencephalography (EEG) patterns. Here, we asked whether neural representational geometries may also reflect a relative underweighting of extreme values (i.e., compression) which has been observed behaviorally in a great variety of tasks. We used a simple experimental manipulation (instructions to average a single-stream or to compare dual-streams of samples) to induce compression or anti-compression in behavior when participants judged rapid number sequences. Model-based representational similarity analysis (RSA) replicated the previous finding of neural anti-compression in the dual-stream task, but failed to provide evidence for neural compression in the single-stream task, despite the evidence for compression in behavior. Instead, the results indicated enhanced neural processing of extreme values in either task, regardless of whether extremes were over- or underweighted in subsequent behavioral choice. We further observed more general differences in the neural representation of the sample information between the two tasks. Together, our results indicate a mismatch between sample-level EEG geometries and behavior, which raises new questions about the origin of common psychometric distortions, such as diminishing sensitivity for larger values.
Collapse
Affiliation(s)
- Stefan Appelhoff
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition, Max Planck Institute for Human Development, Berlin, Germany
| | - Ralph Hertwig
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Bernhard Spitzer
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
5
|
Lim SJ, Thiel C, Sehm B, Deserno L, Lepsien J, Obleser J. Distributed networks for auditory memory differentially contribute to recall precision. Neuroimage 2022; 256:119227. [PMID: 35452804 DOI: 10.1016/j.neuroimage.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022] Open
Abstract
Re-directing attention to objects in working memory can enhance their representational fidelity. However, how this attentional enhancement of memory representations is implemented across distinct, sensory and cognitive-control brain network is unspecified. The present fMRI experiment leverages psychophysical modelling and multivariate auditory-pattern decoding as behavioral and neural proxies of mnemonic fidelity. Listeners performed an auditory syllable pitch-discrimination task and received retro-active cues to selectively attend to a to-be-probed syllable in memory. Accompanied by increased neural activation in fronto-parietal and cingulo-opercular networks, valid retro-cues yielded faster and more perceptually sensitive responses in recalling acoustic detail of memorized syllables. Information about the cued auditory object was decodable from hemodynamic response patterns in superior temporal sulcus (STS), fronto-parietal, and sensorimotor regions. However, among these regions retaining auditory memory objects, neural fidelity in the left STS and its enhancement through attention-to-memory best predicted individuals' gain in auditory memory recall precision. Our results demonstrate how functionally discrete brain regions differentially contribute to the attentional enhancement of memory representations.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Department of Psychology, Binghamton University, State University of New York, 4400 Vestal Parkway E, Vestal, Binghamton, NY 13902, USA; Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA.
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lorenz Deserno
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany.
| |
Collapse
|
6
|
Alavash M, Tune S, Obleser J. Dynamic large-scale connectivity of intrinsic cortical oscillations supports adaptive listening in challenging conditions. PLoS Biol 2021; 19:e3001410. [PMID: 34634031 PMCID: PMC8530332 DOI: 10.1371/journal.pbio.3001410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/21/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
In multi-talker situations, individuals adapt behaviorally to this listening challenge mostly with ease, but how do brain neural networks shape this adaptation? We here establish a long-sought link between large-scale neural communications in electrophysiology and behavioral success in the control of attention in difficult listening situations. In an age-varying sample of N = 154 individuals, we find that connectivity between intrinsic neural oscillations extracted from source-reconstructed electroencephalography is regulated according to the listener's goal during a challenging dual-talker task. These dynamics occur as spatially organized modulations in power-envelope correlations of alpha and low-beta neural oscillations during approximately 2-s intervals most critical for listening behavior relative to resting-state baseline. First, left frontoparietal low-beta connectivity (16 to 24 Hz) increased during anticipation and processing of a spatial-attention cue before speech presentation. Second, posterior alpha connectivity (7 to 11 Hz) decreased during comprehension of competing speech, particularly around target-word presentation. Connectivity dynamics of these networks were predictive of individual differences in the speed and accuracy of target-word identification, respectively, but proved unconfounded by changes in neural oscillatory activity strength. Successful adaptation to a listening challenge thus latches onto two distinct yet complementary neural systems: a beta-tuned frontoparietal network enabling the flexible adaptation to attentive listening state and an alpha-tuned posterior network supporting attention to speech.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- * E-mail: (MA); (JO)
| | - Sarah Tune
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- * E-mail: (MA); (JO)
| |
Collapse
|
7
|
Pennock IML, Schmidt TT, Zorbek D, Blankenburg F. Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Hum Brain Mapp 2021; 42:2778-2789. [PMID: 33694232 PMCID: PMC8127141 DOI: 10.1002/hbm.25402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/21/2023] Open
Abstract
Both animal and human studies on numerosity have shown the importance of the parietal cortex for numerosity processing. However, most studies have focused on the perceptual processing of numerosity. Still, it is unclear how and where numerosity information is coded when this information is retained during a working memory delay phase. Such temporal storage could be realized by the same structures as perceptual processes, or be transformed to a more abstract representation, potentially involving prefrontal regions. FMRI decoding studies allow the identification of brain areas that exhibit multi‐voxel activation patterns specific to the content of working memory. Here, we used an assumption‐free searchlight‐decoding approach to test where numerosity‐specific codes can be found during a 12 s retention period. Participants (n = 24) performed a retro‐cue delayed match‐to‐sample task, in which numerosity information was presented as visual dot arrays. We found mnemonic numerosity‐specific activation in the right lateral portion of the intraparietal sulcus; an area well‐known for perceptual processing of numerosity. The applied retro‐cue design dissociated working memory delay activity from perceptual processes and showed that the intraparietal sulcus also maintained working memory representation independent of perception.
Collapse
Affiliation(s)
- Ian Morgan Leo Pennock
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Dilara Zorbek
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Kang Z, Spitzer B. Concurrent visual working memory bias in sequential integration of approximate number. Sci Rep 2021; 11:5348. [PMID: 33674642 PMCID: PMC7935854 DOI: 10.1038/s41598-021-84232-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Previous work has shown bidirectional crosstalk between Working Memory (WM) and perception such that the contents of WM can alter concurrent percepts and vice versa. Here, we examine WM-perception interactions in a new task setting. Participants judged the proportion of colored dots in a stream of visual displays while concurrently holding location- and color information in memory. Spatiotemporally resolved psychometrics disclosed a modulation of perceptual sensitivity consistent with a bias of visual spatial attention towards the memorized location. However, this effect was short-lived, suggesting that the visuospatial WM information was rapidly deprioritized during processing of new perceptual information. Independently, we observed robust bidirectional biases of categorical color judgments, in that perceptual decisions and mnemonic reports were attracted to each other. These biases occurred without reductions in overall perceptual sensitivity compared to control conditions without a concurrent WM load. The results conceptually replicate and extend previous findings in visual search and suggest that crosstalk between WM and perception can arise at multiple levels, from sensory-perceptual to decisional processing.
Collapse
Affiliation(s)
- Zhiqi Kang
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Bernhard Spitzer
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| |
Collapse
|
9
|
Wöstmann M, Maess B, Obleser J. Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering. Neuroimage 2020; 228:117711. [PMID: 33385562 PMCID: PMC7903158 DOI: 10.1016/j.neuroimage.2020.117711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The deployment of neural alpha (8–12 Hz) lateralization in service of spatial attention is well-established: Alpha power increases in the cortical hemisphere ipsilateral to the attended hemifield, and decreases in the contralateral hemisphere, respectively. Much less is known about humans’ ability to deploy such alpha lateralization in time, and to thus exploit alpha power as a spatio-temporal filter. Here we show that spatially lateralized alpha power does signify – beyond the direction of spatial attention – the distribution of attention in time and thereby qualifies as a spatio-temporal attentional filter. Participants (N = 20) selectively listened to spoken numbers presented on one side (left vs right), while competing numbers were presented on the other side. Key to our hypothesis, temporal foreknowledge was manipulated via a visual cue, which was either instructive and indicated the to-be-probed number position (70% valid) or neutral. Temporal foreknowledge did guide participants’ attention, as they recognized numbers from the to-be-attended side more accurately following valid cues. In the magnetoencephalogram (MEG), spatial attention to the left versus right side induced lateralization of alpha power in all temporal cueing conditions. Modulation of alpha lateralization at the 0.8 Hz presentation rate of spoken numbers was stronger following instructive compared to neutral temporal cues. Critically, we found stronger modulation of lateralized alpha power specifically at the onsets of temporally cued numbers. These results suggest that the precisely timed hemispheric lateralization of alpha power qualifies as a spatio-temporal attentional filter mechanism susceptible to top-down behavioural goals.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Burkhard Maess
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Anobile G, Arrighi R, Castaldi E, Burr DC. A Sensorimotor Numerosity System. Trends Cogn Sci 2020; 25:24-36. [PMID: 33221159 DOI: 10.1016/j.tics.2020.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Incoming sensory input provides information for the planning and execution of actions, which yield motor outcomes that are themselves sensory inputs. One dimension where action and perception strongly interact is numerosity perception. Many non-human animals can estimate approximately the number of external elements as well as their own actions, and neurons have been identified that respond to both. Recent psychophysical adaptation studies on humans also provide evidence for neural mechanisms responding to both the number of externally generated events and self-produced actions. Here we advance the idea that these strong connections may arise from dedicated sensorimotor mechanisms in the brain, part of a more generalized system interfacing action with the processing of other quantitative magnitudes such as space and time.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Institute of Neuroscience, National Research Council, Pisa, Italy.
| |
Collapse
|
12
|
Rubinsten O, Korem N, Levin N, Furman T. Frequency-based Dissociation of Symbolic and Nonsymbolic Numerical Processing during Numerical Comparison. J Cogn Neurosci 2020; 32:762-782. [DOI: 10.1162/jocn_a_01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Recent evidence suggests that during numerical calculation, symbolic and nonsymbolic processing are functionally distinct operations. Nevertheless, both roughly recruit the same brain areas (spatially overlapping networks in the parietal cortex) and happen at the same time (roughly 250 msec poststimulus onset). We tested the hypothesis that symbolic and nonsymbolic processing are segregated by means of functionally relevant networks in different frequency ranges: high gamma (above 50 Hz) for symbolic processing and lower beta (12–17 Hz) for nonsymbolic processing. EEG signals were quantified as participants compared either symbolic numbers or nonsymbolic quantities. Larger EEG gamma-band power was observed for more difficult symbolic comparisons (ratio of 0.8 between the two numbers) than for easier comparisons (ratio of 0.2) over frontocentral regions. Similarly, beta-band power was larger for more difficult nonsymbolic comparisons than for easier ones over parietal areas. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during numerical processing that is compatible with the notion of distinct linguistic processing of symbolic numbers and approximation of nonsymbolic numerical information.
Collapse
|
13
|
Parametric Representation of Tactile Numerosity in Working Memory. eNeuro 2020; 7:ENEURO.0090-19.2019. [PMID: 31919053 PMCID: PMC7029184 DOI: 10.1523/eneuro.0090-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 11/23/2022] Open
Abstract
Estimated numerosity perception is processed in an approximate number system (ANS) that resembles the perception of a continuous magnitude. The ANS consists of a right lateralized frontoparietal network comprising the lateral prefrontal cortex (LPFC) and the intraparietal sulcus. Although the ANS has been extensively investigated, only a few studies have focused on the mental representation of retained numerosity estimates. Specifically, the underlying mechanisms of estimated numerosity working memory (WM) is unclear. Besides numerosities, as another form of abstract quantity, vibrotactile WM studies provide initial evidence that the right LPFC takes a central role in maintaining magnitudes. In the present fMRI multivariate pattern analysis study, we designed a delayed match-to-numerosity paradigm to test what brain regions retain approximate numerosity memoranda. In line with parametric WM results, our study found numerosity-specific WM representations in the right LPFC as well as in the supplementary motor area and the left premotor cortex extending into the superior frontal gyrus, thus bridging the gap in abstract quantity WM literature.
Collapse
|
14
|
Alpha Oscillations in the Human Brain Implement Distractor Suppression Independent of Target Selection. J Neurosci 2019; 39:9797-9805. [PMID: 31641052 DOI: 10.1523/jneurosci.1954-19.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
In principle, selective attention is the net result of target selection and distractor suppression. The way in which both mechanisms are implemented neurally has remained contested. Neural oscillatory power in the alpha frequency band (∼10 Hz) has been implicated in the selection of to-be-attended targets, but there is lack of empirical evidence for its involvement in the suppression of to-be-ignored distractors. Here, we use electroencephalography recordings of N = 33 human participants (males and females) to test the preregistered hypothesis that alpha power directly relates to distractor suppression and thus operates independently from target selection. In an auditory spatial pitch discrimination task, we modulated the location (left vs right) of either a target or a distractor tone sequence, while fixing the other in the front. When the distractor was fixed in the front, alpha power relatively decreased contralaterally to the target and increased ipsilaterally. Most importantly, when the target was fixed in the front, alpha lateralization reversed in direction for the suppression of distractors on the left versus right. These data show that target-selection-independent alpha power modulation is involved in distractor suppression. Although both lateralized alpha responses for selection and for suppression proved reliable, they were uncorrelated and distractor-related alpha power emerged from more anterior, frontal cortical regions. Lending functional significance to suppression-related alpha oscillations, alpha lateralization at the individual, single-trial level was predictive of behavioral accuracy. These results fuel a renewed look at neurobiological accounts of selection-independent suppressive filtering in attention.SIGNIFICANCE STATEMENT Although well established models of attention rest on the assumption that irrelevant sensory information is filtered out, the neural implementation of such a filter mechanism is unclear. Using an auditory attention task that decouples target selection from distractor suppression, we demonstrate that two sign-reversed lateralized alpha responses reflect target selection versus distractor suppression. Critically, these alpha responses are reliable, independent of each other, and generated in more anterior, frontal regions for suppression versus selection. Prediction of single-trial task performance from alpha modulation after stimulus onset agrees with the view that alpha modulation bears direct functional relevance as a neural implementation of attention. Results demonstrate that the neurobiological foundation of attention implies a selection-independent alpha oscillatory mechanism to suppress distraction.
Collapse
|
15
|
Cross-modal attention modulates tactile subitizing but not tactile numerosity estimation. Atten Percept Psychophys 2019; 80:1229-1239. [PMID: 29549663 DOI: 10.3758/s13414-018-1507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Debate remains about whether the same attentional mechanism subserves subitizing (with number of items less than or equal to 4) and numerosity estimation (with number of items equal to or larger than 5), and evidence is scarce from the tactile modality. Here, we examined tactile numerosity perception. Using tactile Braille displays, participants completed the following three main tasks: (1) Unisensory task with focused attention: Participants reported the number (1~12) of the tactile pins. (2) Unisensory task with divided attention: Participants compared the numbers of pins across the upper and lower area of their left index fingers, in addition to reporting the number of tactile pins on their right index fingers. (3) Cross-modal task with divided attention: Participants reported the number of tactile pins and compared the numbers of visual dots across the upper and lower part of a (illusory) rectangle that overlaid the tactile stimuli. We found that performance of subitizing rather than estimation was interfered with in dual tasks, regardless of whether distractor events were from the same modality (tactile modality) or from a different modality (visual modality). Moreover, a further test of visual/tactile working memory capacity revealed that the precision of tactile subitizing, in the presence of a visual distractor, was correlated with the capacity of visual working memory, not of tactile working memory. Overall, our study revealed that tactile numerosity perception is accounted for by amodal attentional modulation yet by differential attentional mechanisms in terms of subitizing and estimation.
Collapse
|
16
|
Uluç I, Schmidt TT, Wu YH, Blankenburg F. Content-specific codes of parametric auditory working memory in humans. Neuroimage 2018; 183:254-262. [PMID: 30107259 DOI: 10.1016/j.neuroimage.2018.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022] Open
Abstract
Brain activity in frontal regions has been found to represent frequency information with a parametric code during working memory delay phases. The mental representation of frequencies has furthermore been shown to be modality independent in non-human primate electrophysiology and human EEG studies, suggesting frontal regions encoding quantitative information in a supramodal manner. A recent fMRI study using multivariate pattern analysis (MVPA) supports an overlapping multimodal network for the maintenance of visual and tactile frequency information over frontal and parietal brain regions. The present study extends the investigation of working memory representation of frequency information to the auditory domain. To this aim, we used MVPA on fMRI data recorded during an auditory frequency maintenance task. A support vector regression analysis revealed working memory information in auditory association areas and, consistent with earlier findings of parametric working memory, in a frontoparietal network. A direct comparison to an analogous dataset of vibrotactile parametric working memory revealed an overlap of information coding in prefrontal regions, particularly in the right inferior frontal gyrus. Therefore, our findings indicate that the prefrontal cortex represents frequency-specific working memory content irrespective of the modality as has been now also revealed for the auditory modality.
Collapse
Affiliation(s)
- Işıl Uluç
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Cognitive Science, University of Osnabrück, 49090 Osnabrück, Germany
| | - Yuan-Hao Wu
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
17
|
Cavdaroglu S, Knops A. Evidence for a Posterior Parietal Cortex Contribution to Spatial but not Temporal Numerosity Perception. Cereb Cortex 2018; 29:2965-2977. [DOI: 10.1093/cercor/bhy163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 11/12/2022] Open
Abstract
Abstract
Posterior parietal cortex (PPC) is thought to encode and represent the number of objects in a visual scene (i.e., numerosity). Whether this representation is shared for simultaneous and sequential stimuli (i.e., mode independency) is debated. We tested the existence of a common neural substrate for the encoding of these modes using fMRI. While both modes elicited overlapping BOLD response in occipital areas, only simultaneous numerosities significantly activated PPC. Unique activation for sequential numerosities was found in bilateral temporal areas. Multivoxel pattern analysis revealed numerosity selectivity in PPC only for simultaneous numerosities and revealed differential encoding of presentation modes. Voxel-wise numerosity tuning functions for simultaneous numerosities in occipital and parietal ROIs revealed increasing numerosity selectivity along an occipito-to-parietal gradient. Our results suggest that the parietal cortex is involved in the extraction of spatial but not temporal numerosity and question the idea of commonly used cortical circuits for a mode-independent numerosity representation.
Collapse
Affiliation(s)
- Seda Cavdaroglu
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Knops
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
González-Garrido AA, Gómez-Velázquez FR, Salido-Ruiz RA, Espinoza-Valdez A, Vélez-Pérez H, Romo-Vazquez R, Gallardo-Moreno GB, Ruiz-Stovel VD, Martínez-Ramos A, Berumen G. The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain Cogn 2018; 124:57-63. [PMID: 29747149 DOI: 10.1016/j.bandc.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Symbolic numerical magnitude processing is crucial to arithmetic development, and it is thought to be supported by the functional activation of several brain-interconnected structures. In this context, EEG beta oscillations have been recently associated with attention and working memory processing that underlie math achievement. Due to that EEG coherence represents a useful measure of brain functional connectivity, we aimed to contrast the EEG coherence in forty 8-to-9-year-old children with different math skill levels (High: HA, and Low achievement: LA) according to their arithmetic scores in the Fourth Edition of the Wide Range Achievement Test (WRAT-4) while performing a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger). The analysis showed significantly greater coherence over the right hemisphere in the two groups, but with a distinctive connectivity pattern. Whereas functional connectivity in the HA group was predominant in parietal areas, especially involving beta frequencies, the LA group showed more extensive frontoparietal relationships, with higher participation of delta, theta and alpha band frequencies, along with a distinct time-frequency domain expression. The results seem to reflect that lower math achievements in children mainly associate with cognitive processing steps beyond stimulus encoding, along with the need of further attentional resources and cognitive control than their peers, suggesting a lower degree of numerical processing automation.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico; O.P.D. Hospital Civil de Guadalajara, Calle Coronel Calderón #777, El Retiro, 44280 Guadalajara, Jalisco, Mexico.
| | - Fabiola R Gómez-Velázquez
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | | | | | - Hugo Vélez-Pérez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Mexico
| | - Rebeca Romo-Vazquez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Mexico
| | - Geisa B Gallardo-Moreno
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | - Vanessa D Ruiz-Stovel
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | | | - Gustavo Berumen
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| |
Collapse
|
19
|
Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans. J Neurosci 2017; 37:9771-9777. [PMID: 28893928 DOI: 10.1523/jneurosci.1167-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/03/2023] Open
Abstract
To understand how the brain handles mentally represented information flexibly in the absence of sensory stimulation, working memory (WM) studies have been essential. A seminal finding in monkey research is that neurons in the prefrontal cortex (PFC) retain stimulus-specific information when vibrotactile frequencies were memorized. A direct mapping between monkey studies and human research is still controversial. Although oscillatory signatures, in terms of frequency-dependent parametric beta-band modulation, have been observed recently in human EEG studies, the content specificity of these representations in terms of multivariate pattern analysis has not yet been shown. Here, we used fMRI in combination with multivariate classification techniques to determine which brain regions retain information during WM. In a retro-cue delayed-match-to-sample task, human subjects memorized the frequency of vibrotactile stimulation over a 12 s delay phase. Using an assumption-free whole-brain searchlight approach, we tested with support vector regression which brain regions exhibited multivariate parametric WM codes of the maintained frequencies during the WM delay. Interestingly, our analysis revealed an overlap with regions previously identified in monkeys composed of bilateral premotor cortices, supplementary motor area, and the right inferior frontal gyrus as part of the PFC. Therefore, our results establish a link between the WM codes found in monkeys and those in humans and emphasize the importance of the PFC for information maintenance during WM also in humans.SIGNIFICANCE STATEMENT Working memory (WM) research in monkeys has identified a network of regions, including prefrontal regions, to code stimulus-specific information when vibrotactile frequencies are memorized. Here, we performed an fMRI study during which human subjects had to memorize vibratory frequencies in parallel to previous monkey research. Using an assumption-free, whole-brain searchlight decoding approach, we identified for the first time regions in the human brain that exhibit multivariate patterns of activity to code the vibratory frequency parametrically during WM. Our results parallel previous monkey findings and show that the supplementary motor area, premotor, and the right prefrontal cortex are involved in vibrotactile WM coding in humans.
Collapse
|
20
|
Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. eNeuro 2017; 4:eN-REV-0170-17. [PMID: 28785729 PMCID: PMC5539431 DOI: 10.1523/eneuro.0170-17.2017] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Among the rhythms of the brain, oscillations in the beta frequency range (∼13-30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulating new findings of content-specific beta-synchronization during endogenous information processing in working memory (WM) and decision making. We characterize such content-specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re)activation of cortical representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.
Collapse
|
21
|
Valentini E, Nicolardi V, Aglioti SM. Painful engrams: Oscillatory correlates of working memory for phasic nociceptive laser stimuli. Brain Cogn 2017; 115:21-32. [PMID: 28390217 DOI: 10.1016/j.bandc.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/28/2017] [Accepted: 03/23/2017] [Indexed: 11/15/2022]
Abstract
Research suggests that working memory (WM) is impaired in chronic pain. Yet, information on how potentially noxious stimuli are maintained in memory is limited in patients as well as in healthy people. We recorded electroencephalography (EEG) in healthy volunteers during a modified delayed match-to-sample task where maintenance in memory of relevant attributes of nociceptive laser stimuli was essential for subsequent cued-discrimination. Participants performed in high and low load conditions (i.e. three vs. two stimuli to keep in WM). Modulation of EEG oscillations in the beta band during the retention interval and in the alpha band during the pre-retention interval reflected performance in the WM task. Importantly, both a non-verbal and a verbal neuropsychological WM test predicted oscillatory modulations. Moreover, these two neuropsychological tests and self-reported personality measures predicted the performance in the nociceptive WM task. Results demonstrate (i) that beta and alpha EEG oscillations can represent WM for nociceptive stimuli; (ii) the association between neuropsychological measures of WM and the brain representation of phasic nociceptive painful stimuli; and (iii) that personality factors can predict memory for nociceptive stimuli at the behavioural level. Altogether, our findings offer a promising approach for investigating cortical correlates of nociceptive memory in clinical pain conditions.
Collapse
Affiliation(s)
- Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy; Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, Italy.
| | - Valentina Nicolardi
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| |
Collapse
|
22
|
Lu M, Doñamayor N, Münte TF, Bahlmann J. Event-related potentials and neural oscillations dissociate levels of cognitive control. Behav Brain Res 2017; 320:154-164. [DOI: 10.1016/j.bbr.2016.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/28/2016] [Accepted: 12/10/2016] [Indexed: 12/01/2022]
|
23
|
Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. The Distributed Nature of Working Memory. Trends Cogn Sci 2017; 21:111-124. [PMID: 28063661 DOI: 10.1016/j.tics.2016.12.007] [Citation(s) in RCA: 479] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
Abstract
Studies in humans and non-human primates have provided evidence for storage of working memory contents in multiple regions ranging from sensory to parietal and prefrontal cortex. We discuss potential explanations for these distributed representations: (i) features in sensory regions versus prefrontal cortex differ in the level of abstractness and generalizability; and (ii) features in prefrontal cortex reflect representations that are transformed for guidance of upcoming behavioral actions. We propose that the propensity to produce persistent activity is a general feature of cortical networks. Future studies may have to shift focus from asking where working memory can be observed in the brain to how a range of specialized brain areas together transform sensory information into a delayed behavioral response.
Collapse
Affiliation(s)
- Thomas B Christophel
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany.
| | - P Christiaan Klink
- Department of Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernhard Spitzer
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Phasic Modulation of Human Somatosensory Perception by Transcranially Applied Oscillating Currents. Brain Stimul 2016; 9:712-719. [DOI: 10.1016/j.brs.2016.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/04/2016] [Accepted: 04/16/2016] [Indexed: 11/24/2022] Open
|
25
|
Spitzer B, Blankenburg F, Summerfield C. Rhythmic gain control during supramodal integration of approximate number. Neuroimage 2016; 129:470-479. [DOI: 10.1016/j.neuroimage.2015.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022] Open
|
26
|
Leung S, Mareschal D, Rowsell R, Simpson D, Iaria L, Grbic A, Kaufman J. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers. Front Syst Neurosci 2016; 10:4. [PMID: 26903821 PMCID: PMC4744938 DOI: 10.3389/fnsys.2016.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6–8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants’ representation of small numbers.
Collapse
Affiliation(s)
- Sumie Leung
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London London, UK
| | - Renee Rowsell
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| | - David Simpson
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| | - Leon Iaria
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| | - Amanda Grbic
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| | - Jordy Kaufman
- School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology Hawthorn, VIC, Australia
| |
Collapse
|
27
|
Damarla SR, Cherkassky VL, Just MA. Modality-independent representations of small quantities based on brain activation patterns. Hum Brain Mapp 2016; 37:1296-307. [PMID: 26749189 DOI: 10.1002/hbm.23102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/11/2022] Open
Abstract
Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural representation of quantities of objects can be decoded from fMRI patterns, in cases where the quantities were visually displayed. Here we apply these techniques to investigate whether neural representations of quantities depicted in one modality (say, visual) can be decoded from brain activation patterns evoked by quantities depicted in the other modality (say, auditory). The main finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The representations that were common across modalities were mainly right-lateralized in frontal and parietal regions. A second finding was that the neural patterns in parietal cortex that represent quantities were common across participants. These findings demonstrate a common neuronal foundation for the representation of quantities across sensory modalities and participants and provide insight into the role of parietal cortex in the representation of quantity information.
Collapse
Affiliation(s)
- Saudamini Roy Damarla
- Department of Psychology, Center for Cognitive Brain Imaging, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Vladimir L Cherkassky
- Department of Psychology, Center for Cognitive Brain Imaging, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Marcel Adam Just
- Department of Psychology, Center for Cognitive Brain Imaging, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Abstract
Studies of interference in working and short-term memory suggest that irrelevant information may overwrite the contents of memory or intrude into memory. While some previous studies have reported greater interference when irrelevant information is similar to the contents of memory than when it is dissimilar, other studies have reported greater interference for dissimilar distractors than for similar distractors. In the present study, we find the latter effect in a paradigm that uses auditory tones as stimuli. We suggest that the effects of distractor similarity to memory contents are mediated by the type of information held in memory, particularly the complexity or simplicity of information.
Collapse
|
29
|
Hertrich I, Kirsten M, Tiemann S, Beck S, Wühle A, Ackermann H, Rolke B. Context-dependent impact of presuppositions on early magnetic brain responses during speech perception. BRAIN AND LANGUAGE 2015; 149:1-12. [PMID: 26185045 DOI: 10.1016/j.bandl.2015.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 05/20/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Discourse structure enables us to generate expectations based upon linguistic material that has already been introduced. The present magnetoencephalography (MEG) study addresses auditory perception of test sentences in which discourse coherence was manipulated by using presuppositions (PSP) that either correspond or fail to correspond to items in preceding context sentences with respect to uniqueness and existence. Context violations yielded delayed auditory M50 and enhanced auditory M200 cross-correlation responses to syllable onsets within an analysis window of 1.5s following the PSP trigger words. Furthermore, discourse incoherence yielded suppression of spectral power within an expanded alpha band ranging from 6 to 16Hz. This effect showed a bimodal temporal distribution, being significant in an early time window of 0.0-0.5s following the PSP trigger and a late interval of 2.0-2.5s. These findings indicate anticipatory top-down mechanisms interacting with various aspects of bottom-up processing during speech perception.
Collapse
Affiliation(s)
- Ingo Hertrich
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Mareike Kirsten
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Germany
| | - Sonja Tiemann
- Descriptive and Theoretical Linguistics, Department of English, University of Tübingen, Germany
| | - Sigrid Beck
- Descriptive and Theoretical Linguistics, Department of English, University of Tübingen, Germany
| | - Anja Wühle
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Bettina Rolke
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Germany
| |
Collapse
|
30
|
Electrophysiological Correlates of Subitizing in Healthy Aging. PLoS One 2015; 10:e0131063. [PMID: 26098959 PMCID: PMC4476746 DOI: 10.1371/journal.pone.0131063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
To understand the nature of age-related changes in enumeration abilities we measured two ERP responses -N2pc and CDA, associated respectively to attentive individuation and VWM- and posterior alpha band (8-15 Hz) event-related desynchronization (ERD), traditionally linked to enhanced target processing. Two groups of old and young participants enumerated a variable number (1-6) of targets presented among distractors. Older participants were less accurate in enumerating targets. ERP results in old participants showed a suppression of N2pc amplitudes for all numerosities, and a decrease in CDA only for the largest set (4-6 targets). In contrast with the pattern for young adults, time/frequency results on older adults revealed neither a modulation of alpha oscillations as a function of target numerosity, nor an effect of ERD lateralization. These patterns indicate that both attention and working memory contribute to the age-related decline in enumeration, and point to an overall decrease in the activity of the visual areas responsible for the processing of the hemifield where the relevant objects are presented.
Collapse
|
31
|
Neural alpha dynamics in younger and older listeners reflect acoustic challenges and predictive benefits. J Neurosci 2015; 35:1458-67. [PMID: 25632123 DOI: 10.1523/jneurosci.3250-14.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Speech comprehension in multitalker situations is a notorious real-life challenge, particularly for older listeners. Younger listeners exploit stimulus-inherent acoustic detail, but are they also actively predicting upcoming information? And further, how do older listeners deal with acoustic and predictive information? To understand the neural dynamics of listening difficulties and according listening strategies, we contrasted neural responses in the alpha-band (∼10 Hz) in younger (20-30 years, n = 18) and healthy older (60-70 years, n = 20) participants under changing task demands in a two-talker paradigm. Electroencephalograms were recorded while humans listened to two spoken digits against a distracting talker and decided whether the second digit was smaller or larger. Acoustic detail (temporal fine structure) and predictiveness (the degree to which the first digit predicted the second) varied orthogonally. Alpha power at widespread scalp sites decreased with increasing acoustic detail (during target digit presentation) but also with increasing predictiveness (in-between target digits). For older compared with younger listeners, acoustic detail had a stronger impact on task performance and alpha power modulation. This suggests that alpha dynamics plays an important role in the changes in listening behavior that occur with age. Last, alpha power variations resulting from stimulus manipulations (of acoustic detail and predictiveness) as well as task-independent overall alpha power were related to subjective listening effort. The present data show that alpha dynamics is a promising neural marker of individual difficulties as well as age-related changes in sensation, perception, and comprehension in complex communication situations.
Collapse
|
32
|
Ku Y, Bodner M, Zhou YD. Prefrontal cortex and sensory cortices during working memory: quantity and quality. Neurosci Bull 2015; 31:175-82. [PMID: 25732526 DOI: 10.1007/s12264-014-1503-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022] Open
Abstract
The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM-quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant information in WM. The PFC and sensory cortices interact through different frequency bands of neuronal oscillation (theta, alpha, and gamma) to fulfill goal-directed behaviors.
Collapse
Affiliation(s)
- Yixuan Ku
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China,
| | | | | |
Collapse
|
33
|
Christophel TB, Cichy RM, Hebart MN, Haynes JD. Parietal and early visual cortices encode working memory content across mental transformations. Neuroimage 2015; 106:198-206. [DOI: 10.1016/j.neuroimage.2014.11.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 11/27/2022] Open
|