1
|
Park HY, Ryu YK, Lee GS, Go J, Kim JE, Min KS, Lee CH, Moon JH, Kim KS. Sitagliptin attenuates L-dopa-induced dyskinesia by regulating mitochondrial proteins and neuronal activity in a 6-OHDA-induced mouse model of Parkinson's disease. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02907-1. [PMID: 40095077 DOI: 10.1007/s00702-025-02907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
L-dopa-induced dyskinesia (LID) is an incapacitating complication of long-term administration of L-dopa therapy that commonly affects patients with Parkinson's disease (PD) due to the widespread use of the causative drug. Herein, we investigated the therapeutic potential of sitagliptin, a drug used to treat type 2 diabetes mellitus, to treat LID. 6-hydroxydopamine (6-OHDA) was unilaterally injected into the left side of the substantia nigra pas compacta to induce a mouse model of PD. After four weeks of 6-OHDA induction, L-dopa was administered with or without sitagliptin for 11 consecutive days. LID was monitored using abnormal involuntary movement (AIM) scoring, conducted on days 5 and 10 of L-dopa treatment. Comparative proteomic analysis was performed on the 6-OHDA-lesioned striatum by comparing groups treated with vehicle + L-dopa and sitagliptin + L-dopa. Sitagliptin combined with L-dopa significantly attenuated AIM scores in 6-OHDA-lesioned mice. Proteomic analysis following sitagliptin treatment showed an increase in proteins involved in mitochondrial function regulation and a decrease in proteins associated with cytoskeleton function regulation. Changes in the expression of Ndufb2, a subunit of NADH: ubiquinone oxidoreductase (complex I), and Arc, an immediate early gene (IEG), which showed the most significant increase and decrease, respectively, were validated using western blotting and RT-PCR analysis. These findings suggest that sitagliptin may have therapeutic potential by enhancing mitochondrial functions and suppressing neuronal activity in the striatum, thereby mitigating the incapacitating complications associated with long-term L-dopa use in patients with PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Li WQ, Liu SN, Yang SC, Lin X, Zhang ZJ. Nitrous oxide exerts rewarding effect via regulating D1 receptor and BDNF pathway in ventral tegmental area-nucleus accumbens dopamine circuit. Transl Psychiatry 2025; 15:34. [PMID: 39875366 PMCID: PMC11775255 DOI: 10.1038/s41398-025-03257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Recreational use of nitrous oxide (N2O) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of N2O for 30 min for 4 consecutive days paired with N2O in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm. This was abrogated by microinjection into the nucleus accumbens (NAc) of the dopamine (DA) D1 receptor antagonist SCH23390, but not the D2 antagonist haloperidol. N2O robustly enhanced DAergic neuronal activity of the ventral tegmental area (VTA) and the concentration of DA in the NAc. The repeated N2O exposure also upregulated the expression of brain-derived neurotrophic factor (BDNF) in the VTA and its multiple downstream mediators in the NAc. Conversely, VTA focal knockdown of BDNF and the inhibition of the downstream mediators suppressed the N2O-induced rewarding effect and the DAergic neuronal activity of the VTA. Further, the combined intervention of BDNF knockdown and D1 antagonist significantly inhibited the N2O-induced rewarding effect in mice, which was greater than that of BDNF knockdown alone, but was not significantly different from that of D1 antagonist alone. These results indicate that the rewarding properties of N2O at subanesthetic concentration are associated with its upregulation of the VTA-NAc DA reward pathway probably via mediation of D1 receptor and BDNF/TrkB signaling. Among them, the modulation of BDNF may be the upstream of D1 receptor involved in N2O rewarding effect.
Collapse
Affiliation(s)
- Wen-Qi Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sheng-Nan Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Si-Chang Yang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Lin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front Neurol 2025; 15:1505879. [PMID: 39935805 PMCID: PMC11810746 DOI: 10.3389/fneur.2024.1505879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
This review explores the impact of physical exercise on brain-derived neurotrophic factor (BDNF) and its relationship with neurodegenerative diseases. The key role of BDNF in maintaining brain health is highlighted, and recent studies are analyzed that indicate an increase in BDNF levels following physical activity, particularly in young adults. Additionally, the interaction between the BDNF Val66Met genetic polymorphism and exercise on cognitive function is examined. The review emphasizes the possibility of exercise as a complementary therapy for neurodegenerative diseases, although further research is required to fully understand its effects.
Collapse
Affiliation(s)
- Ana Romero Garavito
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Valery Díaz Martínez
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | | | - José Vicente Negrete Díaz
- Programa de Fisioterapia, Universidad de Guanajuato, Guanajuato, Mexico
- Programa de Psicologia Clinica, Universidad de Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
4
|
Wang LX, Li JB, Liu ZH, Zeng J, Dou K. The Impact of Adverse Childhood Experiences on the Development of Adolescent Risk-Taking: The Mediating Effect of Self-Control and Moderating Effect of Genetic Variations. J Youth Adolesc 2025:10.1007/s10964-025-02136-5. [PMID: 39825987 DOI: 10.1007/s10964-025-02136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking. Even less research has investigated the underlying mechanisms. Drawing on the self-regulation theory, this study examined the associations between ACEs and the developmental trajectory of adolescent risk-taking. Moreover, it also explored self-control as a mediator and genetic variations as a moderator from a "gene × environment" approach. Participants were 564 Chinese adolescents (48.40% males, Mage = 14.20 years, SD = 1.52). Adolescents reported their ACEs and self-control at T1 and risk-taking three times, with a six-month interval between each time point. Adolescents' saliva was collected at T1 for genetic extraction, and polygenetic index was created based on the gene-by-environment interaction between SNPs and ACEs for self-control via the leave-one-out machine learning approach. Findings of latent growth modeling revealed that adolescents' risk-taking decreased over time. ACEs were directly and indirectly through self-control associated with high initial levels of, and a rapid decrease in, risk-taking, especially for those with a higher polygenetic index compared to those with a lower polygenetic index. Theoretically, these results suggest a tripartite model of adolescent risk-taking, such that risk-taking is the combined function of adverse experiences in early years, low self-control, and carriage of sensitive genes. Practically, intervention strategies should reduce childhood adversities, build up self-control, and consider the potential impacts of genetic plasticity.
Collapse
Affiliation(s)
- Lin-Xin Wang
- Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Jian-Bin Li
- Department of Early Childhood Education, The Education University of Hong Kong, Hong Kong S.A.R, China
| | - Zi-Hao Liu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zeng
- Foshan Public Security Bureau Shunde Branch, Foshan, China
| | - Kai Dou
- Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Nolbrant S, Wallace JL, Ding J, Zhu T, Sevetson JL, Kajtez J, Baldacci IA, Corrigan EK, Hoglin K, McMullen R, Schmitz MT, Breevoort A, Swope D, Wu F, Pavlovic BJ, Salama SR, Kirkeby A, Huang H, Schaefer NK, Pollen AA. INTERSPECIES ORGANOIDS REVEAL HUMAN-SPECIFIC MOLECULAR FEATURES OF DOPAMINERGIC NEURON DEVELOPMENT AND VULNERABILITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623592. [PMID: 39605599 PMCID: PMC11601475 DOI: 10.1101/2024.11.14.623592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate cis- and trans-regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
Collapse
Affiliation(s)
- Sara Nolbrant
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jenelle L. Wallace
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jingwen Ding
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess L. Sevetson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella A. Baldacci
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emily K. Corrigan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kaylynn Hoglin
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Reed McMullen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dani Swope
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Fengxia Wu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong Province, China
| | - Bryan J. Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan K. Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
7
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
8
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
DSouza AA, Kulkarni P, Ferris CF, Amiji MM, Bleier BS. Mild repetitive TBI reduces brain-derived neurotrophic factor (BDNF) in the substantia nigra and hippocampus: A preclinical model for testing BDNF-targeted therapeutics. Exp Neurol 2024; 374:114696. [PMID: 38244886 PMCID: PMC10922982 DOI: 10.1016/j.expneurol.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Clinical studies have consistently shown that neurodegenerative diseases (NDs) such as Parkinson's disease, Alzheimer's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease show absent or low levels of brain-derived neurotrophic factor (BDNF). Despite this relationship between BDNF and ND, only a few ND animal models have been able to recapitulate the low BDNF state, thereby hindering research into the therapeutic targeting of this important neurotrophic factor. In order to address this unmet need, we sought to develop a reproducible model of BDNF reduction by inducing traumatic brain injury (TBI) using a closed head momentum exchange injury model in mature 9-month-old male and female rats. Head impacts were repetitive and varied in intensity from mild to severe. BDNF levels, as assessed by ELISA, were significantly reduced in the hippocampus of both males and females as well as in the substantia nigra of males 12 days after mild TBI. However, we observed significant sexual dimorphism in multiple sequelae, including magnetic resonance imaging-determined vasogenic edema, astrogliosis (GFAP-activation), and microgliosis (Iba1 activation). This study provides an opportunity to investigate the mechanism of BDNF reduction in rodent models and provides a reliable paradigm to test BDNF-targeted therapeutics for the treatment of ND.
Collapse
Affiliation(s)
- Anisha A DSouza
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
11
|
Sharma P, Mittal P. Paraquat (herbicide) as a cause of Parkinson's Disease. Parkinsonism Relat Disord 2024; 119:105932. [PMID: 38008593 DOI: 10.1016/j.parkreldis.2023.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The four features of Parkinson's disease (PD), which also manifests other non-motor symptoms, are bradykinesia, tremor, postural instability, and stiffness. The pathogenic causes of Parkinsonism include Lewy bodies, intracellular protein clumps of αsynuclein, and the degeneration of dopaminergic neurons in the substantia nigra's pars compacta region. The pathophysiology of PD is still poorly understood due to the complexity of the illness. The apoptotic cell death of neurons in PD, however, has been linked to a variety of intracellular mechanisms, according to a wide spectrum of study. The endoplasmic reticulum's stress, decreased levels of neurotrophic factors, oxidative stress, mitochondrial dysfunction, catabolic alterations in dopamine, and decreased activity of tyrosine hydroxylase are some of these causes. The herbicide paraquat has been used in laboratory studies to create a variety of PD pathological features in numerous in-vitro and in-vivo animals. Due to the unique neurotoxicity that paraquat causes, understanding of the pathophysiology of PD has changed. Parkinson's disease (PD) is more likely to develop among people exposed to paraquat over an extended period of time, according to epidemiological studies. Thanks to this paradigm, the hunt for new therapy targets for PD has expanded. In both in-vitro and in-vivo models, the purpose of this study is to summarise the relationship between paraquat exposure and the onset of Parkinson's disease (PD).
Collapse
Affiliation(s)
| | - Payal Mittal
- University Institute of Pharma Sciences, Mohali, Punjab, India.
| |
Collapse
|
12
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
13
|
H Z R, H J S, R C S B, Kr R, R RD, M E B. Physical Exercise Promotes Beneficial Changes on Neurotrophic Factors in Mesolimbic Brain Areas After AMPH Relapse: Involvement of the Endogenous Opioid System. Neurotox Res 2023; 41:741-751. [PMID: 37904065 DOI: 10.1007/s12640-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Addiction is a serious public health problem, and the current pharmacotherapy is unable to prevent drug use reinstatement. Studies have focused on physical exercise as a promising coadjuvant treatment. Our research group recently showed beneficial neuroadaptations in the dopaminergic system related to amphetamine-relapse prevention involving physical exercise-induced endogenous opioid system activation (EXE-OS activation). In this context, additional mechanisms were explored to understand the exercise benefits on drug addiction. Male rats previously exposed to amphetamine (AMPH, 4.0 mg/kg) for 8 days were submitted to physical exercise for 5 weeks. EXE-OS activation was blocked by naloxone administration (0.3 mg/kg) 5 min before each physical exercise session. After the exercise protocol, the rats were re-exposed to AMPH for 3 days, and in sequence, euthanasia was performed and the VTA and NAc were dissected. In the VTA, our findings showed increased immunocontent of proBDNF, BDNF, and GDNF and decreased levels of AMPH-induced TrkB; therefore, EXE-OS activation increased all these markers and naloxone administration prevented this exercise-induced effect. In the NAc, the same molecular markers were also increased by AMPH and decreased by EXE-OS activation. In this study, we propose a close relation between EXE-OS activation beneficial influence and a consequent neuroadaptation on neurotrophins and dopaminergic system levels in the mesolimbic brain area, preventing the observed AMPH-relapse behavior. Our outcomes bring additional knowledge concerning addiction neurobiology understanding and show that EXE-OS activation may be a potential adjuvant tool in drug addiction therapy.
Collapse
Affiliation(s)
- Rosa H Z
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Segat H J
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Barcelos R C S
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roversi Kr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rossato D R
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Burger M E
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
15
|
Cho YW, Park JH, Kang MJ, Kim TH. Crater-like nanoelectrode arrays for electrochemical detection of dopamine release from neuronal cells. Biomed Mater 2023; 18:065015. [PMID: 37769679 DOI: 10.1088/1748-605x/acfe69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Stem cell therapy has shown great potential in treating various incurable diseases using conventional chemotherapy. Parkinson's disease (PD)-a neurodegenerative disease-has been reported to be caused by quantitative loss or abnormal functionality of dopaminergic neurons (DAnergic neurons). To date, stem cell therapies have shown some potential in treating PD throughex vivoengraftment of stem-cell-derived neurons. However, accurately identifying the differentiation and non-invasively evaluating the functionality and maturity of DAnergic neurons are formidable challenges in stem cell therapies. These strategies are important in enhancing the efficacy of stem cell therapies. In this study, we report a novel cell cultivation platform, that is, a nanocrater-like electrochemical nanoelectrode array (NCENA) for monitoring dopamine (DA) release from neurons to detect exocytotic DA release from DAnergic neurons. In particular, the developed NCENA has a nanostructure in which three-dimensional porous gold nanopillars are uniformly arranged on conductive electrodes. The developed NCENA exhibited great DA sensing capabilities with a linear range of 0.39-150μM and a limit of detection of 1.16μM. Furthermore, the nanotopographical cues provided by the NCENA are suitable for cell cultivation with enhanced cellular adhesion. Finally, we successfully analysed the functionality and maturity of differentiated neurons on the NCENA through its excellent sensing ability for exocytotic DA.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Wu L, Zeeshan M, Dang Y, Zhang YT, Liang LX, Huang JW, Zhou JX, Guo LH, Fan YY, Sun MK, Yu T, Wen Y, Lin LZ, Liu RQ, Dong GH, Chu C. Maternal transfer of F-53B inhibited neurobehavior in zebrafish offspring larvae and potential mechanisms: Dopaminergic dysfunction, eye development defects and disrupted calcium homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164838. [PMID: 37353013 DOI: 10.1016/j.scitotenv.2023.164838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Maternal exposure to environment toxicants is an important risk factor for neurobehavioral health in their offspring. In our study, we investigated the impact of maternal exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs, commercial name: F-53B) on behavioral changes and the potential mechanism in the offspring larvae of zebrafish. Adult zebrafish exposed to Cl-PFESAs (0, 0.2, 2, 20 and 200 μg/L) for 21 days were subsequently mated their embryos were cultured for 5 days. Higher concentrations of Cl-PFESAs in zebrafish embryos were observed, along with, reduced swimming speed and distance travelled in the offspring larvae. Molecular docking analysis revealed that Cl-PFESAs can form hydrogen bonds with brain-derived neurotropic factor (BDNF), protein kinase C, alpha, (PKCα), Ca2+-ATPase and Na, K - ATPase. Molecular and biochemical studies evidenced Cl-PFESAs induce dopaminergic dysfunction, eye developmental defects and disrupted Ca2+ homeostasis. Together, our results showed that maternal exposure to Cl-PFESAs lead to behavioral alteration in offspring mediated by disruption in Ca2+ homeostasis, dopaminergic dysfunction and eye developmental defects.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Wen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Geng X, Zou Y, Li J, Li S, Qi R, Yu H, Zhong L. BDNF alleviates Parkinson's disease by promoting STAT3 phosphorylation and regulating neuronal autophagy. Cell Tissue Res 2023; 393:455-470. [PMID: 37450039 PMCID: PMC10485099 DOI: 10.1007/s00441-023-03806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual death of dopaminergic neurons. Brain-derived neurotrophic factor (BDNF) and its receptors are widely distributed throughout the central nervous system, which can promote the survival and growth of neurons and protect neurons. This study revealed that BDNF promotes STAT3 phosphorylation and regulates autophagy in neurons. The PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Moreover, SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridinium (MPP+) to establish a PD cell model. The level of BDNF was low in PD model mice and SH-SY5Y cells treated with MPP+. BDNF enhanced the levels of p-TrkB, P-STAT3, PINK1, and DJ-1. BDNF promoted autophagy, inhibited the level of p-α-syn (Ser129) and enhanced cell proliferation. The autophagy inhibitor 3-Methyladenine (3-methyladenine, 3-MA) reversed the protective effects of BDNF on neurons. BiFC assay results showed that there was a direct physical interaction between BDNF and STAT3, and coimmunoprecipitation experiments indicated an interaction between STAT3 and PI3K. The PI3K agonist Recilisib activated the PI3K/AKT/mTOR pathway, promoted autophagy, and alleviated neuronal cell damage. BDNF alleviates PD pathology by promoting STAT3 phosphorylation and regulating neuronal autophagy in SH-SY5Y cells and cultured primary neurons. Finally, BDNF has neuroprotective effects on PD model mice.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| | - Lianmei Zhong
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
18
|
Andreska T, Lüningschrör P, Wolf D, McFleder RL, Ayon-Olivas M, Rattka M, Drechsler C, Perschin V, Blum R, Aufmkolk S, Granado N, Moratalla R, Sauer M, Monoranu C, Volkmann J, Ip CW, Stigloher C, Sendtner M. DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons. Cell Rep 2023; 42:112575. [PMID: 37252844 DOI: 10.1016/j.celrep.2023.112575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Rhonda L McFleder
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Marta Rattka
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christine Drechsler
- Department of Microbiology, Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Veronika Perschin
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Camelia Monoranu
- Department for Neuropathology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany.
| |
Collapse
|
19
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
20
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Marques CR, Fuzeta MDA, Dos Santos Cunha RM, Pereira-Sousa J, Silva D, Campos J, Teixeira-Castro A, Sousa RA, Fernandes-Platzgummer A, da Silva CL, Salgado AJ. Neurodifferentiation and Neuroprotection Potential of Mesenchymal Stromal Cell-Derived Secretome Produced in Different Dynamic Systems. Biomedicines 2023; 11:biomedicines11051240. [PMID: 37238911 DOI: 10.3390/biomedicines11051240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD. However, to accelerate the integration of this therapy in the clinical setting, there is still the need to develop a protocol for the large-scale production of secretome under good manufacturing practices (GMP) guidelines. Bioreactors have the capacity to produce large quantities of secretomes in a scalable manner, surpassing the limitations of planar static culture systems. However, few studies focused on the influence of the culture system used to expand MSC, on the secretome composition. In this work, we studied the capacity of the secretome produced by bone marrow-derived mesenchymal stromal cells (BMSC) expanded in a spinner flask (SP) and in a Vertical-Wheel™ bioreactor (VWBR) system, to induce neurodifferentiation of human neural progenitor cells (hNPCs) and to prevent dopaminergic neuron degeneration caused by the overexpression of α-synuclein in one Caenorhabditis elegans model of PD. Results showed that secretomes from both systems were able to induce neurodifferentiation, though the secretome produced in the SP system had a greater effect. Additionally, in the conditions of our study, only the secretome produced in SP had a neuroprotective potential. Lastly, the secretomes had different profiles regarding the presence and/or specific intensity of different molecules, namely, interleukin (IL)-6, IL-4, matrix metalloproteinase-2 (MMP2), and 3 (MMP3), tumor necrosis factor-beta (TNF-β), osteopontin, nerve growth factor beta (NGFβ), granulocyte colony-stimulating factor (GCSF), heparin-binding (HB) epithelial growth factor (EGF)-like growth factor (HB-EGF), and IL-13. Overall, our results suggest that the culture conditions might have influenced the secretory profiles of cultured cells and, consequently, the observed effects. Additional studies should further explore the effects that different culture systems have on the secretome potential of PD.
Collapse
Affiliation(s)
- Cláudia Raquel Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Raquel Medina Dos Santos Cunha
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Amandi Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., 4805-017 Barco, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
23
|
Usmani MT, Krattli RP, El-Khatib SM, Le ACD, Smith SM, Baulch JE, Ng DQ, Acharya MM, Chan A. BDNF Augmentation Using Riluzole Reverses Doxorubicin-Induced Decline in Cognitive Function and Neurogenesis. Neurotherapeutics 2023; 20:838-852. [PMID: 36720792 PMCID: PMC10275819 DOI: 10.1007/s13311-022-01339-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/02/2023] Open
Abstract
Cancer-related cognitive impairment (CRCI) considerably affects the quality of life of millions of cancer survivors. Brain-derived neurotrophic factor (BDNF) has been shown to promote survival, differentiation, and maintenance of in vivo dentate neurogenesis, and chemotherapy induces a plethora of physiological and cellular alterations, including a decline in neurogenesis and increased neuroinflammation linked with cognitive impairments. In our clinical studies, breast cancer patients treated with doxorubicin (Adriamycin®, ADR) experienced a significant reduction in the blood levels of BDNF that was associated with a higher risk of CRCI. Our past rodent studies in CRCI have also shown a significant reduction in dentate neurogenesis accompanied by cognitive impairment. In this study, using a female mouse model of ADR-induced cognitive decline, we tested the impact of riluzole (RZ), an orally active BDNF-enhancing medication that is FDA-approved for amyotrophic lateral sclerosis. ADR-treated mice receiving RZ in the drinking water for 1 month showed significant improvements in hippocampal-dependent learning and memory function (spatial recognition), fear extinction memory consolidation, and reduced anxiety-like behavior. RZ prevented chemotherapy-induced reductions of BDNF levels in the hippocampus. Importantly, RZ mitigated chemotherapy-induced loss of newly born, immature neurons, dentate neurogenesis, and neuroinflammation. In conclusion, this data provides pre-clinical evidence for a translationally feasible approach to enhance the neuroprotective effects of RZ treatment to prevent CRCI.
Collapse
Affiliation(s)
- Manal T Usmani
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Robert P Krattli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sanad M El-Khatib
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Anh C D Le
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sarah M Smith
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Ding Quan Ng
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA.
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Hassab LY, Abbas SS, Mohammed RA, Abdallah DM. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington’s disease: Focus on the IRE1α/JNK and PERK/CHOP trajectories. Front Pharmacol 2023; 14:1133863. [PMID: 37056990 PMCID: PMC10088517 DOI: 10.3389/fphar.2023.1133863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Dimethyl fumarate (DMF) is FDA-approved for use in patients with relapsing multiple sclerosis, and it processes neuroprotection in several experimental settings; however, its impact on combating Huntington’s disease (HD) remains elusive. This study aimed to explore the role of DMF post-treatment on HD mediated endoplasmic reticulum (ER) stress response in a selective striatal degeneration HD model.Methods: Rats, exposed to 3-nitropropionic acid, were either left untreated or post-treated with DMF for 14 days.Results and Discussion: DMF reduced locomotion deficits in both the open field and beam walk paradigms, boosted the striatal dopamine (DA) content, improved its architecture at the microscopic level, and hindered astrogliosis. Mechanistically, DMF limited the activation of two of the ER stress arms in the striatum by reducing p-IRE1α, p-JNK, and p-PERK protein expressions besides the CHOP/GADD153 content. Downstream from both ER stress arms’ suppression, DMF inhibited the intrinsic apoptotic pathway, as shown by the decrease in Bax and active caspase-3 while raising Bcl-2. DMF also decreased oxidative stress markers indicated by a decline in both reactive oxygen species and malondialdehyde while boosting glutathione. Meanwhile, it enhanced p-AKT to activate /phosphorylate mTOR and stimulate the CREB/BDNF/TrkB trajectory, which, in a positive feedforward loop, activates AKT again. DMF also downregulated the expression of miRNA-634, which negatively regulates AKT, to foster survival kinase activation.Conclusion: This study features a focal novel point on the DMF therapeutic ability to reduce HD motor manifestations via its ability to enhance DA and suppress the IRE1α/JNK and PERK/CHOP/GADD153 hubs to inhibit the mitochondrial apoptotic pathway through activating the AKT/mTOR and BDNF/TrkB/AKT/CREB signaling pathways and abating miRNA-634 and oxidative stress.
Collapse
Affiliation(s)
- Lina Y. Hassab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samah S. Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- *Correspondence: Dalaal M. Abdallah,
| |
Collapse
|
25
|
The laterodorsal tegmentum-ventral tegmental area circuit controls depression-like behaviors by activating ErbB4 in DA neurons. Mol Psychiatry 2023; 28:1027-1045. [PMID: 33990773 PMCID: PMC8590712 DOI: 10.1038/s41380-021-01137-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.
Collapse
|
26
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
27
|
Faustini G, Longhena F, Muscò A, Bono F, Parrella E, La Via L, Barbon A, Pizzi M, Onofri F, Benfenati F, Missale C, Memo M, Zizioli D, Bellucci A. Synapsin III Regulates Dopaminergic Neuron Development in Vertebrates. Cells 2022; 11:cells11233902. [PMID: 36497160 PMCID: PMC9739466 DOI: 10.3390/cells11233902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.
Collapse
Affiliation(s)
- Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessia Muscò
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Via Leon Battista Alberti 2, 16132 Genova, Italy
| | - Fabio Benfenati
- IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Correspondence: (D.Z.); (A.B.); Tel.: +39-(0)30-3717546 (D.Z.); +39-(0)30-3717380 (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Correspondence: (D.Z.); (A.B.); Tel.: +39-(0)30-3717546 (D.Z.); +39-(0)30-3717380 (A.B.)
| |
Collapse
|
28
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
29
|
Buniyaadi A, Prabhat A, Bhardwaj SK, Kumar V. Night melatonin levels affect cognition in diurnal animals: Molecular insights from a corvid exposed to an illuminated night environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119618. [PMID: 35714793 DOI: 10.1016/j.envpol.2022.119618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the role of nocturnal melatonin secretion in the cognitive performance of diurnal animals. An initial experiment measured the cognitive performance in Indian house crows treated for 11 days with 12 h light at 1.426 W/m2 (∼150 lux) coupled with 12 h of 0.058 W/m2 (∼6-lux) dim light at night (dLAN) or with absolute darkness (0 lux dark night, LD). dLAN treatment significantly decreased midnight melatonin levels and negatively impacted cognitive performance. Subsequently, the role of exogenous melatonin (50 μg; administered intraperitoneally half an hour before the night began) was assessed on the regulation of cognitive performance in two separate experimental cohorts of crows kept under dLAN; LD controls received vehicle. Exogenous melatonin restored its mid-night levels under dLAN at par with those under LD controls, and improved the cognitive performance, as measured in the innovative problem-solving, and spatial and pattern learning-memory efficiency tests in dLAN-treated crows. There were concurrent molecular changes in the cognition-associated brain areas, namely the hippocampus, nidopallium caudolaterale and midbrain. In particular, the expression levels of genes involved in neurogenesis and synaptic plasticity (bdnf, dcx, egr1, creb), and dopamine synthesis and signalling (th, drd1, drd2, darpp32, taar1) were restored to LD control levels in crows treated with illuminated nights and received melatonin. These results demonstrate that the maintenance of nocturnal melatonin levels is crucial for an optimal higher-order brain function in diurnal animals in the face of an environmental threat, such as light pollution.
Collapse
Affiliation(s)
- Amaan Buniyaadi
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Abhilash Prabhat
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | | | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
30
|
D’Agostino Y, Frigato E, Noviello TM, Toni M, Frabetti F, Cigliano L, Ceccarelli M, Sordino P, Cerulo L, Bertolucci C, D’Aniello S. Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. iScience 2022; 25:104054. [PMID: 35345456 PMCID: PMC8957028 DOI: 10.1016/j.isci.2022.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/14/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf−/− compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf−/− larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf−/− zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental diseases Generation of a viable bdnf KO line in zebrafish Bdnf deficiency affects locomotor activity and thigmotaxis in larvae Differential RNA-seq analysis shows changes in expression of circadian clock genes Bdnf mutant fails in the generation of the behavioral circadian rhythmicity
Collapse
|
31
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
32
|
Peripheral Blood Levels of Brain-Derived Neurotrophic Factor in Patients with First Episode Psychosis: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:brainsci12040414. [PMID: 35447946 PMCID: PMC9027267 DOI: 10.3390/brainsci12040414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Peripheral blood level of brain-derived neurotrophic factor (BDNF) may be used as a diagnostic and/or prognostic marker for schizophrenia. Previous studies were inconsistent. A systematic review was conducted to examine whether BDNF level is different in patients with first episode psychosis (FEP) compared to health controls (HC) and whether it changes after treatment. Methods: Literature search was done in PubMed, Web of Science, and Google Scholar following standard procedures. Hedges’ g was used as the measure of effect size (ES), which was pooled with random effects model. Publication bias and moderator effects were examined. Results: Search yielded 29 studies with a total sample size of 2912. First meta-analysis included 27 studies with FEP vs. HC comparison. Pooled ES was −0.63, p < 0.001, indicating that BDNF level was lower in FEP than in HC. Studies were heterogeneous, and moderator analysis showed that studies of younger patient, higher symptom severity, and more drug naïve had larger ES. Second meta-analysis examined change in BDNF levels before and after antipsychotic treatment in eight studies. A pooled ES of −0.003 (p = 0.96) showed no change in peripheral BDNF level after treatment. Conclusion: Peripheral BDNF level was decreased in FEP compared to HC, but it did not change after treatment.
Collapse
|
33
|
See WZC, Naidu R, Tang KS. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Mol Neurobiol 2022; 59:3353-3369. [PMID: 35306641 PMCID: PMC9148284 DOI: 10.1007/s12035-022-02799-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in triggering apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis of PD in in vitro and in vivo models.
Collapse
Affiliation(s)
- Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
34
|
Tessarollo L, Yanpallewar S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front Neurosci 2022; 16:847572. [PMID: 35321093 PMCID: PMC8934854 DOI: 10.3389/fnins.2022.847572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of secreted growth factors and binds with high affinity to the TrkB tyrosine kinase receptors. BDNF is a critical player in the development of the central (CNS) and peripheral (PNS) nervous system of vertebrates and its strong pro-survival function on neurons has attracted great interest as a potential therapeutic target for the management of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), Huntington, Parkinson's and Alzheimer's disease. The TrkB gene, in addition to the full-length receptor, encodes a number of isoforms, including some lacking the catalytic tyrosine kinase domain. Importantly, one of these truncated isoforms, namely TrkB.T1, is the most widely expressed TrkB receptor in the adult suggesting an important role in the regulation of BDNF signaling. Although some progress has been made, the mechanism of TrkB.T1 function is still largely unknown. Here we critically review the current knowledge on TrkB.T1 distribution and functions that may be helpful to our understanding of how it regulates and participates in BDNF signaling in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | |
Collapse
|
35
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
36
|
ABU-EL-RUB EJLAL, R. KHASAWNEH RAMADA, A. ALMAHASNEH FATIMAH, M. ZEGALLAI HANA. Mesenchymal stem cells derived secretome as an innovative cell-free therapeutic approach. BIOCELL 2022; 46:907-911. [DOI: 10.32604/biocell.2022.018306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/29/2021] [Indexed: 11/15/2022]
|
37
|
Adachi H, Morizane A, Torikoshi S, Raudzus F, Taniguchi Y, Miyamoto S, Sekiguchi K, Takahashi J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:767-777. [PMID: 35605097 PMCID: PMC9299512 DOI: 10.1093/stcltm/szac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiromasa Adachi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Corresponding authors: Asuka Morizane, MD, PhD, Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650 0046, Japan, Tel: +81 78 302 4321; Fax: +81 78 302 7537;
| | - Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Neuronal Signaling and Regeneration Unit, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Medical Education Center/International Education Section, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Susumu Miyamoto
- Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Kiyotoshi Sekiguchi, PhD (for chimeric laminin fragments), Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 6 6105 5935; Fax: +81 6 6105 5935; Email;
| | - Jun Takahashi
- Jun Takahashi, MD, PhD, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81 75 366 7052; Fax: +81 75 366 7071;
| |
Collapse
|
38
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
39
|
Gorzkowska A, Cholewa J, Cholewa J, Wilk A, Klimkowicz-Mrowiec A. Risk Factors for Apathy in Polish Patients with Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910196. [PMID: 34639517 PMCID: PMC8507785 DOI: 10.3390/ijerph181910196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022]
Abstract
Apathy, a feeling of indifference or a general lack of interest and motivation to engage in activity, is one of the most common neuropsychiatric symptoms in Parkinson’s disease (PD). The large variation in prevalence and the underlying pathophysiological processes remain unclear due to heterogeneous PD populations. The purpose of this study was to identify risk factors for apathy, the modification or treatment of which may be clinically relevant and improve quality of life and caregiver burden for patients with Parkinson’s disease. Caucasian subjects with Parkinson’s disease were included in the study. Baseline demographics, neurological deficit, medications taken, cognitive and neuropsychiatric status, and the polymorphisms in the brain-derived neurotrophic factor gene were assessed. Apathy was diagnosed in 53 (50.5%) patients. They were less educated (OR 0.76 CI 0.64–0.89; p = 0.001), more frequently depressed (OR 1.08 CI 1.01–1.15; p = 0.018), and less frequently treated with inhibitors of monoamine oxidase-B (MAOB-I) (OR 0.07 CI 0.01–0.69; p = 0.023). Although apathetic patients were more likely to carry the Met/Met genotype, differences in the brain-derived neurotrophic factor BDNF rs6265 polymorphism between apathetic and non-apathetic PD patients were not statistically significant in multivariate analysis. Some risk factors for apathy may be clinically modifiable. Further studies are needed to assess whether modeling modifiable apathy risk factors will affect the prevalence of this neuropsychiatric symptom in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Joanna Cholewa
- Department of Physical Education and Adapted Physical Activity, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | - Jaroslaw Cholewa
- Department of Health Related Physical Activity and Tourism, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
- Correspondence: ; Tel.: +48-601-560-011
| | - Aleksander Wilk
- Department of Neurosurgery, University Hospital, 31-501 Krakow, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 31-008 Krakow, Poland;
| |
Collapse
|
40
|
Advancing Our Understanding of Brain Disorders: Research Using Postmortem Brain Tissue. Methods Mol Biol 2021. [PMID: 34558012 DOI: 10.1007/978-1-0716-1783-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is thought that proliferative potential of neural progenitor cells, from postmortem tissue obtained from idiopathic PD patients, present in the substantia nigra (SN) as well as other brain regions can be maintained in vitro. While they might be lacking in factors required for differentiation into mature neurons, their regenerative potential is undeniable and suggestive that progenitor cells are found endogenously in the diseased brain. Adult stem/progenitor cells exist in several regions within the PD brain and are likely a valuable source of progenitor cells for understanding disease course, as well as useful tools for generating potential cellular and pharmacologic therapies. One successful therapy for some PD patients is deep brain stimulation (DBS) and has been used for more than a decade to treat PD; however its mechanism of action remains unknown. Given the close proximity of the electrode trajectory to areas of the brain known as the "germinal niches" and the Parkinsonian brain's regenerative potential, it is possible that DBS influences neural stem cell proliferation locally, as well as distally. A study of banked brain tissue from idiopathic PD patients treated with DBS, compared to 12 control brains without CNS disease, identified a significant increase in the number of proliferating precursor cells in the subventricular zone (SVZ) of the lateral ventricles, the third ventricle, and the tissue surrounding the DBS lead. Our studies with banked human tissues from the aforementioned regions demonstrate the importance of studying brain-banked tissue from germinal niches and DBS perielectrode tissue. We reveal in these studies the presence of proliferative potential in diseased brains as well as an increase in cellular plasticity in the brain as a consequence of DBS.
Collapse
|
41
|
Zhang Y, Zhou L, Lian H, Zhang Y, Tong S, Wang Z. Dopamine receptor 2 downregulation and brain-derived neurotrophic factor upregulation in the paraventricular nucleus are correlated with brown adipose tissue thermogenesis in rats with bilateral substantia nigra lesions. J Chem Neuroanat 2021; 117:102016. [PMID: 34454019 DOI: 10.1016/j.jchemneu.2021.102016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
The thermogenesis resulting from brown adipose tissue (BAT)-induced energy consumption is an important method of energy regulation. It has been reported that brain-derived neurotrophic factor (BDNF)-positive neurons in the paraventricular nucleus (PVN) can regulate adaptive thermogenesis in interscapular brown adipose tissue (IBAT), but the upstream regulatory mechanism is still unclear. Our previous studies have found that a large number of dopamine (DA) receptors (DRs) are expressed on BDNF-positive neurons in the PVN and that the substantia nigra (SN) can directly project to the PVN (forming the SN-PVN pathway). Therefore, we speculate that DA in the SN can regulate the expression of BDNF via DRs and then affect IBAT thermogenesis. In this study, bilateral SN lesions were induced in rats with 6-hydroxydopamine (6-OHDA), and the altered expression of DRs and BDNF in the PVN and the metabolic changes in IBAT were studied via double immunofluorescence and western blotting. The results showed that BDNF-positive neurons in the PVN expressed DR 1 (D1) and DR 2 (D2) and were surrounded by a large number of tyrosine hydroxylase (TH)-positive nerve fibers. Compared with the control group, the 6-OHDA group exhibited significantly fewer TH-positive neurons and significantly lower TH expression in the SN, but body weight, IBAT weight and food consumption did not differ between the groups. In the PVN, BDNF expression was upregulated in the 6-OHDA group, while D2 and TH expression was downregulated. In IBAT, the expression of uncoupling protein-1 (UCP-1), phosphorylated hormone-sensitive lipase (p-HSL), TH and β3-adrenergic receptor (β3-AR) was increased, while the expression of fatty acid synthase (FAS) was decreased. The IBAT cell diameter was also decreased in the 6-OHDA group. The results suggest that the SN-PVN pathway may be an upstream neural pathway that can affect BDNF expression in the PVN and that DRs may mediate its regulatory effects. This study expands our understanding of the relationship between DA and obesity.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Zhou
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Lian
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yimin Zhang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Shilin Tong
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhiyong Wang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
42
|
Yang Y, Zhang Y, Wang J, Ning X, Zhang Y, Zhao T, Zhong Y, Liu Z, Xia L, Li W, Yao X, Zhang K, Liu H. Sex Differences in the Association of HOMA-IR Index and BDNF in Han Chinese Patients With Chronic Schizophrenia. Front Psychiatry 2021; 12:656230. [PMID: 34234699 PMCID: PMC8255609 DOI: 10.3389/fpsyt.2021.656230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Previous research has indicated that there are significant sex differences in serum BDNF levels and metabolic indicators in patients with schizophrenia. Studies have found that BDNF is involved in blood sugar regulation. Homeostasis model assessment of insulin resistance (HOMA-IR) is currently a sensitive indicator for measuring insulin resistance. Our study aims to explore the sex differences in the relationship between serum BDNF levels and HOMA-IR in patients with chronic schizophrenia (CS). Methods: A total of 332 patients with CS were enrolled in this study. General information of all participants was collected. Haematological indicators were collected, and the Positive and Negative Syndrome Scale (PANSS) was used to evaluate psychiatric symptoms. Sex differences in serum BDNF levels, HOMA-IR index and other metabolic indexes were investigated. Then, linear regression analysis was used to analyse the relationship between the HOMA-IR index and BDNF levels in male and female patients. Results: The HOMA-IR index of female patients was significantly higher than that of males, but there was no significant difference in serum BDNF levels between male patients and female patients. There was a positive correlation between BDNF level and HOMA-IR index, and this relationship only existed in female patients. Conclusion: The results show that there are significant sex differences in HOMA-IR in patients with CS. In addition, only in female patients was there a positive correlation between the HOMA-IR index and BDNF level, which suggests that sex factors should be taken into account in evaluating the relationship between BDNF and blood glucose in patients with CS.
Collapse
Affiliation(s)
- Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Juan Wang
- Chengdu Fourth People's Hospital, Chengdu, China
| | - Xiaoshuai Ning
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Yelei Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Tongtong Zhao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Yi Zhong
- Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Zhiwei Liu
- Fuyang Third People's Hospital, Fuyang, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Wenzheng Li
- Hefei Fourth People's Hospital, Hefei, China
| | - Xianhu Yao
- Ma'anshan Fourth People's Hospital, Ma'anshan, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Anhui Psychiatric Center, Anhui Medical University, Chaohu, China
| |
Collapse
|
43
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
44
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
KCNQ Channels in the Mesolimbic Reward Circuit Regulate Nociception in Chronic Pain in Mice. Neurosci Bull 2021; 37:597-610. [PMID: 33900570 PMCID: PMC8099961 DOI: 10.1007/s12264-021-00668-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mesocorticolimbic dopaminergic (DA) neurons have been implicated in regulating nociception in chronic pain, yet the mechanisms are barely understood. Here, we found that chronic constructive injury (CCI) in mice increased the firing activity and decreased the KCNQ channel-mediated M-currents in ventral tegmental area (VTA) DA neurons projecting to the nucleus accumbens (NAc). Chemogenetic inhibition of the VTA-to-NAc DA neurons alleviated CCI-induced thermal nociception. Opposite changes in the firing activity and M-currents were recorded in VTA DA neurons projecting to the medial prefrontal cortex (mPFC) but did not affect nociception. In addition, intra-VTA injection of retigabine, a KCNQ opener, while reversing the changes of the VTA-to-NAc DA neurons, alleviated CCI-induced nociception, and this was abolished by injecting exogenous BDNF into the NAc. Taken together, these findings highlight a vital role of KCNQ channel-mediated modulation of mesolimbic DA activity in regulating thermal nociception in the chronic pain state.
Collapse
|
46
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
47
|
Xiao L, Sharma VK, Toulabi L, Yang X, Lee C, Abebe D, Peltekian A, Arnaoutova I, Lou H, Loh YP. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry 2021; 11:24. [PMID: 33414376 PMCID: PMC7791060 DOI: 10.1038/s41398-020-01112-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Stress leads to brain pathology including hippocampal degeneration, cognitive dysfunction, and potential mood disorders. Hippocampal CA3, a most stress-vulnerable region, consists of pyramidal neurons that regulate cognitive functions e.g. learning and memory. These CA3 neurons express high levels of the neuroprotective protein, neurotrophic factor-α1 (NF-α1), also known as carboxypeptidase E (CPE), and receive contacts from granule cell projections that release BDNF which has neuroprotective activity. Whether NF-α1-CPE and/or BDNF are critical in protecting these CA3 neurons against severe stress-induced cell death is unknown. Here we show that social combined with the physical stress of maternal separation, ear tagging, and tail snipping at weaning in 3-week-old mice lacking NF-α1-CPE, led to complete hippocampal CA3 degeneration, despite having BDNF and active phosphorylated TrkB receptor levels similar to WT animals. Mice administered TrkB inhibitor, ANA12 which blocked TrkB phosphorylation showed no degeneration of the CA3 neurons after the weaning stress paradigm. Furthermore, transgenic knock-in mice expressing CPE-E342Q, an enzymatically inactive form, replacing NF-α1-CPE, showed no CA3 degeneration and exhibited normal learning and memory after the weaning stress, unlike NF-α1-CPE-KO mice. Mechanistically, we showed that radio-labeled NF-α1-CPE bound HT22 hippocampal cells in a saturable manner and with high affinity (Kd = 4.37 nM). Subsequently, treatment of the HT22cpe-/- cells with NF-α1-CPE or CPE-E342Q equivalently activated ERK signaling and increased BCL2 expression to protect these neurons against H2O2-or glutamate-induced cytotoxicity. Our findings show that NF-α1-CPE is more critical compared to BDNF in protecting CA3 pyramidal neurons against stress-induced cell death and cognitive dysfunction, independent of its enzymatic activity.
Collapse
Affiliation(s)
- Lan Xiao
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Vinay Kumar Sharma
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leila Toulabi
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Xuyu Yang
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Cheol Lee
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Daniel Abebe
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Areg Peltekian
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irina Arnaoutova
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Hong Lou
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Y. Peng Loh
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
48
|
Huang Y, Huang C, Zhang Q, Wu W, Sun J. Serum BDNF discriminates Parkinson's disease patients with depression from without depression and reflect motor severity and gender differences. J Neurol 2020; 268:1411-1418. [PMID: 33179143 DOI: 10.1007/s00415-020-10299-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the diagnostic value of serum Brain-derived neurotrophic factor (BDNF) levels for discriminating PD with depression from without depression, and to investigate whether serum BDNF levels were associated with motor severity and gender in depressed PD patients. METHODS Demographic and clinical data were collected from 122 PD patients with depression, 137 without depression and 110 healthy controls. All participants' serum BDNF concentrations were measured. Their motor abilities and activity were assessed by the Unified PD Rating Scale Part III (UPDRS III) score and the Hoehn and Yahr (H-Y) stage. Depression was scored using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Associations were analyzed with multivariate regression. RESULTS The serum BDNF levels were lower in depressed PD patients compared to non-depressed PD patients and controls (p < 0.001). The BDNF levels were negatively correlated with UPDRS III score (r = - 0.54, p < 0.001) and H-Y stage (r = - 0.45, p < 0.001). Decreased BDNF levels were associated with women only among depressed PD patients (r = 0.45, p < 0.001). The HAMD-17 score was negatively correlated with BDNF levels (r = - 0.59, p < 0.001), and positively associated with UPDRS III score (r = 0.51, p < 0.001). Multiple regression analysis demonstrated that in the depressed PD patients, female, H-Y stage and UPDRS III score were independent contributors to the BDNF levels (p < 0.001; p = 0.006; p = 0.03, respectively), BDNF and UPDRS III score were independent contributors to HAMD-17 score (p < 0.001, p = 0.01, respectively). CONCLUSIONS Decreased serum BDNF levels may be a useful clinical biomarker of depression in PD patients. Serum BDNF may serve as a potential biomarker for motor severity of PD patients with depression, especially in female.
Collapse
Affiliation(s)
- Yixian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Caili Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Qilin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wenqi Wu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jiawei Sun
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| |
Collapse
|
49
|
Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain Behav Immun 2020; 90:26-46. [PMID: 32739365 DOI: 10.1016/j.bbi.2020.07.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the Parkinson's disease (PD) pathogenesis is strongly associated with bidirectional pathways in the microbiota-gut-brain axis (MGBA), and psychobiotics may inhibit PD progression. We previously reported that the novel psychobiotic strain, Lactobacillus plantarum PS128 (PS128), ameliorated abnormal behaviors and modulated neurotransmissions in dopaminergic pathways in rodent models. Here, we report that orally administering PS128 for 4 weeks significantly alleviated the motor deficits, elevation in corticosterone, nigrostriatal dopaminergic neuronal death, and striatal dopamine reduction in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. PS128 ingestion suppressed glial cell hyperactivation and increased norepinephrine and neurotrophic factors in the striatum of the PD-model mice. PS128 administration also attenuated MPTP-induced oxidative stress and neuroinflammation in the nigrostriatal pathway. Fecal analysis showed that PS128 modulated the gut microbiota. L. plantarum abundance was significantly increased along with methionine biosynthesis-related microbial modules. PS128 also suppressed the increased family Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules caused by MPTP. In conclude, PS128 ingestion alleviated MPTP-induced motor deficits and neurotoxicity.PS128 supplementation inhibited neurodegenerative processes in PD-model mice and may help prevent PD.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Yun-Fang Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Shu-Ting You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Wen-Chun Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chi-Wei Huang
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Jen-Jie Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chih-Chieh Hsu
- Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, 88, Section 4, Tingchow Rd., Wenshan Dist., Taipei City 116, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| |
Collapse
|
50
|
Induction of BDNF Expression in Layer II/III and Layer V Neurons of the Motor Cortex Is Essential for Motor Learning. J Neurosci 2020; 40:6289-6308. [PMID: 32651187 PMCID: PMC7424868 DOI: 10.1523/jneurosci.0288-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Motor learning depends on synaptic plasticity between corticostriatal projections and striatal medium spiny neurons. Retrograde tracing from the dorsolateral striatum reveals that both layer II/III and V neurons in the motor cortex express BDNF as a potential regulator of plasticity in corticostriatal projections in male and female mice. The number of these BDNF-expressing cortical neurons and levels of BDNF protein are highest in juvenile mice when adult motor patterns are shaped, while BDNF levels in the adult are low. When mice are trained by physical exercise in the adult, BDNF expression in motor cortex is reinduced, especially in layer II/III projection neurons. Reduced expression of cortical BDNF in 3-month-old mice results in impaired motor learning while space memory is preserved. These findings suggest that activity regulates BDNF expression differentially in layers II/III and V striatal afferents from motor cortex and that cortical BDNF is essential for motor learning. SIGNIFICANCE STATEMENT Motor learning in mice depends on corticostriatal BDNF supply, and regulation of BDNF expression during motor learning is highest in corticostriatal projection neurons in cortical layer II/III.
Collapse
|