1
|
Roze E, Dubacq C, Welniarz Q. Corticospinal Tract Development, Evolution, and Skilled Movements. Mov Disord 2025. [PMID: 40277091 DOI: 10.1002/mds.30199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The evolution of the corticospinal tract (CST) is closely linked to the development of skilled voluntary movements in mammals. The main evolutionary divergence concerns the position of the CST within the spinal cord white matter and its postsynaptic targets in the grey matter. Here, we examine the developmental steps contributing to the CST projection pattern from an evolutionary point of view. Recent studies have highlighted the molecular mechanisms involved in these processes and how they relate to the acquisition of skilled movements. Comparison of the evolution of the CST in different species offers a new perspective on manual dexterity. In particular, it adds a new level of complexity to the classic view linking the evolution of the CST and the sequential improvement of skilled hand movements from rodents to primates. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emmanuel Roze
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Dubacq
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
| | - Quentin Welniarz
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Takizawa S, Nakanishi Y, Koga Y, Yamazaki Y, Kolattukudy P, Goshima Y, Ohshima T. CRMP2 and its phosphorylation prevent axonal misrouting of the corticospinal tract. Neurosci Lett 2025; 855:138231. [PMID: 40199395 DOI: 10.1016/j.neulet.2025.138231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
During the development of the central nervous system (CNS), the formation of neural circuits such as the corticospinal tract (CST) is crucial to control voluntary movement and is regulated by axonal guidance mechanisms. In this study, we examined the role of CRMP2 (Collapsin response mediator protein 2) in the formation of CST. CRMP2, which binds to actin and microtubules to control the cytoskeleton, is a phosphoprotein whose activity depends on its phosphorylated state. To inhibit Cyclin-dependent kinase 5 (Cdk5) phosphorylation, CRMP2 knock-in (crmp2ki/ki) mice were generated in which the serine residue at position 522 was replaced with alanine. Our results showed that both CRMP2 knock-out (crmp2-/-) and crmp2ki/ki mice exhibited higher percentages of CST axons that crossed the midline erroneously than wild-type (WT) mice. However, in mice lacking CRMP1, which is highly homologous to CRMP2, few axons crossed the midline, similar to WT mice. Additionally, crmp2-/- and crmp2ki/ki mice showed decreased proportions of independent forelimb movements. These findings emphasize that CRMP2 and its phosphorylation are necessary for proper CST formation in the mouse CNS.
Collapse
Affiliation(s)
- Satohiro Takizawa
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Yurika Nakanishi
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Yumeno Koga
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Yuki Yamazaki
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Papachan Kolattukudy
- Biomolecular Science Center, University of Central Florida, Biomolecular Science, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 Japan.
| |
Collapse
|
3
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
4
|
Hu L, Liu XY, Zhao L, Hu ZB, Li ZX, Liu WT, Song NN, Hu YQ, Jiang LP, Zhang L, Tao YC, Zhang Q, Chen JY, Lang B, Wang YB, Yue L, Ding YQ. Ventricular Netrin-1 deficiency leads to defective pyramidal decussation and mirror movement in mice. Cell Death Dis 2024; 15:343. [PMID: 38760361 PMCID: PMC11101614 DOI: 10.1038/s41419-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Luo-Peng Jiang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Yue
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Borgognon S, Rouiller EM. Loss of Motor Cortical Inputs to the Red Nucleus after CNS Disorders in Nonhuman Primates. J Neurosci 2023; 43:1682-1691. [PMID: 36693756 PMCID: PMC10010457 DOI: 10.1523/jneurosci.1942-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
The premotor (PM) and primary motor (M1) cortical areas broadcast voluntary motor commands through multiple neuronal pathways, including the corticorubral projection that reaches the red nucleus (RN). However, the respective contribution of M1 and PM to corticorubral projections as well as changes induced by motor disorders or injuries are not known in nonhuman primates. Here, we quantified the density and topography of axonal endings of the corticorubral pathway in RN in intact monkeys, as well as in monkeys subjected to either cervical spinal cord injury (SCI), Parkinson's disease (PD)-like symptoms or primary motor cortex injury (MCI). Twenty adult macaque monkeys of either sex were injected with the biotinylated dextran amine anterograde tracer either in PM or in M1. We developed a semiautomated algorithm to reliably detect and count axonal boutons within the magnocellular and parvocellular (pRN) subdivisions of RN. In intact monkeys, PM and M1 preferentially target the medial part of the ipsilateral pRN, reflecting its somatotopic organization. Projection of PM to the ipsilateral pRN is denser than that of M1, matching previous observations for the corticotectal, corticoreticular, and corticosubthalamic projections (Fregosi et al., 2018, 2019; Borgognon et al., 2020). In all three types of motor disorders, there was a uniform and strong decrease (near loss) of the corticorubral projections from PM and M1. The RN may contribute to functional recovery after SCI, PD, and MCI, by reducing direct cortical influence. This reduction possibly privileges direct access to the final output motor system, via emphasis on the direct corticospinal projection.SIGNIFICANCE STATEMENT We measured the corticorubral projection density arising from the PM or the M1 cortices in adult macaques. The premotor cortex sent denser corticorubral projections than the primary motor cortex, as previously observed for the corticotectal, corticoreticular, and corticosubthalamic projections. The premotor cortex may thus exert more influence than primary motor cortex onto subcortical structures. We next asked whether the corticorubral motor projections undergo lesion-dependent plasticity after either cervical spinal cord injury, Parkinson's disease-like symptoms, or primary motor cortex lesion. In all three types of pathology, there was a strong decrease of the corticorubral motor projection density, suggesting that the red nucleus may contribute to functional recovery after such motor system disorders based on a reduced direct cortical influence.
Collapse
Affiliation(s)
- Simon Borgognon
- Center for the Neural Basis of Cognition, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Eric M Rouiller
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Rehabilitation on a treadmill induces plastic changes in the dendritic spines of spinal motoneurons associated with improved execution after a pharmacological injury to the motor cortex in rats. J Chem Neuroanat 2022; 125:102159. [PMID: 36087877 DOI: 10.1016/j.jchemneu.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022]
Abstract
Lesions to the corticospinal tract result in several neurological symptoms and several rehabilitation protocols have proven useful in attempts to direct underlying plastic phenomena. However, the effects that such protocols may exert on the dendritic spines of motoneurons to enhance accuracy during rehabilitation are unknown. Thirty three female Sprague-Dawley adult rats were injected stereotaxically at the primary motor cerebral cortex (Fr1) with saline (CTL), or kainic acid (INJ), or kainic acid and further rehabilitation on a treadmill 16 days after lesion (INJ+RB). Motor performance was evaluated with the the Basso, Beatie and Bresnahan (BBB) locomotion scale and in the Rotarod. Spine density was quantified in a primary dendrite of motoneurons in Lamina IX in the ventral horn of the thoracolumbar spinal cord as well as spine morphology. AMPA, BDNF, PSD-95 and synaptophysin expression was evaluated by Western blot. INJ+RB group showed higher scores in motor performance. Animals from the INJ+RB group showed more thin, mushroom, stubby and wide spines than the CTL group, while the content of AMPA, BDNF, PSD-95 and Synaptophysin was not different between the groups INJ+RB and CTL. AMPA and synaptophysin content was greater in INJ group than in CTL and INJ+RB groups. The increase in the proportion of each type of spine observed in INJ+RB group suggest spinogenesis and a greater capability to integrate the afferent information to motoneurons under relatively stable molecular conditions at the synaptic level.
Collapse
|
7
|
Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype. eNeuro 2022; 9:ENEURO.0216-18.2021. [PMID: 35115383 PMCID: PMC8906791 DOI: 10.1523/eneuro.0216-18.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in DCC have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic Dcc mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of Dcc heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the Dcc+/− motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult Dcc+/− mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated Dcc+/− spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although Dcc+/− mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.
Collapse
|
8
|
Sahni V, Itoh Y, Shnider SJ, Macklis JD. Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Rep 2021; 37:109842. [PMID: 34686337 PMCID: PMC8697027 DOI: 10.1016/j.celrep.2021.109842] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Friel KM, Ferre CL, Brandao M, Kuo HC, Chin K, Hung YC, Robert MT, Flamand VH, Smorenburg A, Bleyenheuft Y, Carmel JB, Campos T, Gordon AM. Improvements in Upper Extremity Function Following Intensive Training Are Independent of Corticospinal Tract Organization in Children With Unilateral Spastic Cerebral Palsy: A Clinical Randomized Trial. Front Neurol 2021; 12:660780. [PMID: 34012418 PMCID: PMC8127842 DOI: 10.3389/fneur.2021.660780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background/Objectives: Intensive training of the more affected upper extremity (UE) has been shown to be effective for children with unilateral spastic cerebral palsy (USCP). Two types of UE training have been particularly successful: Constraint-Induced Movement Therapy (CIMT) and Bimanual training. Reorganization of the corticospinal tract (CST) early during development often occurs in USCP. Prior studies have suggested that children with an ipsilateral CST controlling the affected UE may improve less following CIMT than children with a contralateral CST. We tested the hypothesis that improvements in UE function after intensive training depend on CST laterality. Study Participants and Setting: Eighty-two children with USCP, age 5 years 10 months to 17 years, University laboratory setting. Materials/Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to determine each child's CST connectivity pattern. Children were stratified by age, sex, baseline hand function and CST connectivity pattern, and randomized to receive either CIMT or Bimanual training, each of which were provided in a day-camp setting (90 h). Hand function was tested before, immediately and 6 months after the intervention with the Jebsen-Taylor Test of Hand Function, the Assisting Hand Assessment, the Box and Block Test, and ABILHAND-Kids. The Canadian Occupational Performance Measure was used to track goal achievement and the Pediatric Evaluation of Disability Inventory was used to assess functioning in daily living activities at home. Results: In contrast to our hypothesis, participants had statistically similar improvements for both CIMT and Bimanual training for all measures independent of their CST connectivity pattern (contralateral, ipsilateral, or bilateral) (p < 0.05 in all cases). Conclusions/Significance: The efficacy of CIMT and Bimanual training is independent of CST connectivity pattern. Children with an ipsilateral CST, previously thought to be maladaptive, have the capacity to improve as well as children with a contralateral or bilateral CST following intensive CIMT or Bimanual training. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02918890.
Collapse
Affiliation(s)
- Kathleen M Friel
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | - Claudio L Ferre
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Marina Brandao
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hsing-Ching Kuo
- Teachers College, Columbia University, New York, NY, United States
| | - Karen Chin
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Ya-Ching Hung
- Queens College, City University of New York, New York, NY, United States
| | - Maxime T Robert
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | | | - Ana Smorenburg
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | | | - Jason B Carmel
- Weinberg Family Cerebral Palsy Center, Columbia University Medical Center, New York, NY, United States
| | - Talita Campos
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Andrew M Gordon
- Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Loss of floor plate Netrin-1 impairs midline crossing of corticospinal axons and leads to mirror movements. Cell Rep 2021; 34:108654. [PMID: 33472083 DOI: 10.1016/j.celrep.2020.108654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
In humans, execution of unimanual movements requires lateralized activation of the primary motor cortex, which then transmits the motor command to the contralateral hand through the crossed corticospinal tract (CST). Mutations in NTN1 alter motor control lateralization, leading to congenital mirror movements. To address the role of midline Netrin-1 on CST development and subsequent motor control, we analyze the morphological and functional consequences of floor plate Netrin-1 depletion in conditional knockout mice. We show that depletion of floor plate Netrin-1 in the brainstem critically disrupts CST midline crossing, whereas the other commissural systems are preserved. The only associated defect is an abnormal entry of CST axons within the inferior olive. Alteration of CST midline crossing results in functional ipsilateral projections and is associated with abnormal symmetric movements. Our study reveals the role of Netrin-1 in CST development and describes a mouse model recapitulating the characteristics of human congenital mirror movements.
Collapse
|
11
|
Laflamme OD, Lemieux M, Thiry L, Bretzner F. DSCAM Mutation Impairs Motor Cortex Network Dynamic and Voluntary Motor Functions. Cereb Cortex 2020; 29:2313-2330. [PMID: 29718256 DOI: 10.1093/cercor/bhy097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/25/2023] Open
Abstract
While it is well known that netrin-1 and its receptors UNC5 and UNC40 family members are involved in the normal establishment of the motor cortex and its corticospinal tract, less is known about its other receptor Down syndrome cell adherence molecule (DSCAM). DSCAM is expressed in the developing motor cortex, regulates axonal outgrowth of cortical neurons, and its mutation impairs the dendritic arborization of cortical neurons, thus suggesting that it might be involved in the normal development and functioning of the motor cortex. In comparison to WT littermates, DSCAM2J mutant mice slipped and misplaced their paw while walking on the rungs of a horizontal ladder, and exhibited more difficulties in stepping over an obstacle while walking at slow speed. Anterograde tracing showed a normal pyramidal decussation and corticospinal projection, but a more dorsal distribution of their axonal terminals in the spinal gray matter. Intracortical microstimulations showed a reduced corticospinal and intracortical efficacy, whereas stimulations of the pyramidal tract revealed a normal spinal efficacy and excitability of corticospinal tract axons, thus arguing for a dysfunctional cortical development. Our study reveals impairment of the network dynamics within the motor cortex, reducing corticospinal drive and impairing voluntary locomotor functions upon DSCAM2J mutation.
Collapse
Affiliation(s)
- Olivier D Laflamme
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Maxime Lemieux
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Louise Thiry
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Frédéric Bretzner
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada.,Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada
| |
Collapse
|
12
|
EphA4 Is Required for Neural Circuits Controlling Skilled Reaching. J Neurosci 2020; 40:7091-7104. [PMID: 32801149 DOI: 10.1523/jneurosci.2892-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Skilled forelimb movements are initiated by feedforward motor commands conveyed by supraspinal motor pathways. The accuracy of reaching and grasping relies on internal feedback pathways that update ongoing motor commands. In mice lacking the axon guidance molecule EphA4, axonal misrouting of the corticospinal tract and spinal interneurons is manifested, leading to a hopping gait in hindlimbs. Moreover, mice with a conditional forebrain deletion of EphA4, display forelimb hopping in adaptive locomotion and exploratory reaching movements. However, it remains unclear how loss of EphA4 signaling disrupts function of forelimb motor circuit and skilled reaching and grasping movements. Here we investigated how neural circuits controlling skilled reaching were affected by the loss of EphA4. Both male and female C57BL/6 wild-type, heterozygous EphA4+/-, and homozygous EphA4-/- mice were used in behavioral and in vivo electrophysiological investigations. We found that EphA4 knock-out (-/-) mice displayed impaired goal-directed reaching movements. In vivo intracellular recordings from forelimb motor neurons demonstrated increased corticoreticulospinal excitation, decreased direct reticulospinal excitation, and reduced direct propriospinal excitation in EphA4 knock-out mice. Cerebellar surface recordings showed a functional perturbation of the lateral reticular nucleus-cerebellum internal feedback pathway in EphA4 knock-out mice. Together, our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts the function of both feedforward and feedback motor pathways, resulting in deficits in skilled reaching.SIGNIFICANCE STATEMENT The central advances of this study are the demonstration that null mutation in the axon guidance molecule EphA4 gene impairs the ability of mice to perform skilled reaching, and identification of how these behavioral deficits correlates with discrete neurophysiological changes in central motor pathways involved in the control of reaching. Our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. This analysis of motor circuit function may help to understand the pathophysiological mechanisms underlying movement disorders in humans.
Collapse
|
13
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
14
|
Aizawa S, Okada T, Keino-Masu K, Doan TH, Koganezawa T, Akiyama M, Tamaoka A, Masu M. Abnormal Pyramidal Decussation and Bilateral Projection of the Corticospinal Tract Axons in Mice Lacking the Heparan Sulfate Endosulfatases, Sulf1 and Sulf2. Front Mol Neurosci 2020; 12:333. [PMID: 32038163 PMCID: PMC6985096 DOI: 10.3389/fnmol.2019.00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The corticospinal tract (CST) plays an important role in controlling voluntary movement. Because the CST has a long trajectory throughout the brain toward the spinal cord, many axon guidance molecules are required to navigate the axons correctly during development. Previously, we found that double-knockout (DKO) mouse embryos lacking the heparan sulfate endosulfatases, Sulf1 and Sulf2, showed axon guidance defects of the CST owing to the abnormal accumulation of Slit2 protein on the brain surface. However, postnatal development of the CST, especially the pyramidal decussation and spinal cord projection, could not be assessed because DKO mice on a C57BL/6 background died soon after birth. We recently found that Sulf1/2 DKO mice on a mixed C57BL/6 and CD-1/ICR background can survive into adulthood and therefore investigated the anatomy and function of the CST in the adult DKO mice. In Sulf1/2 DKO mice, abnormal dorsal deviation of the CST fibers on the midbrain surface persisted after maturation of the CST. At the pyramidal decussation, some CST fibers located near the midline crossed the midline, whereas others located more laterally extended ipsilaterally. In the spinal cord, the crossed CST fibers descended in the dorsal funiculus on the contralateral side and entered the contralateral gray matter normally, whereas the uncrossed fibers descended in the lateral funiculus on the ipsilateral side and entered the ipsilateral gray matter. As a result, the CST fibers that originated from 1 side of the brain projected bilaterally in the DKO spinal cord. Consistently, microstimulation of 1 side of the motor cortex evoked electromyogram responses only in the contralateral forelimb muscles of the wild-type mice, whereas the same stimulation evoked bilateral responses in the DKO mice. The functional consequences of the CST defects in the Sulf1/2 DKO mice were examined using the grid-walking, staircase, and single pellet-reaching tests, which have been used to evaluate motor function in mice. Compared with the wild-type mice, the Sulf1/2 DKO mice showed impaired performance in these tests, indicating deficits in motor function. These findings suggest that disruption of Sulf1/2 genes leads to both anatomical and functional defects of the CST.
Collapse
Affiliation(s)
- Satoshi Aizawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takuya Okada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tri Huu Doan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Tamaoka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
16
|
KUO HSINGCHING, FRIEL KATHLEENM, GORDON ANDREWM. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy. Dev Med Child Neurol 2018; 60:155-161. [PMID: 28884806 PMCID: PMC8331099 DOI: 10.1111/dmcn.13524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 12/01/2022]
Abstract
UNLABELLED Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. WHAT THIS PAPER ADDS Mirror movements may be indicative of the underlying corticospinal tract reorganization in children with unilateral spastic cerebral palsy (CP). Future research will benefit from systematic investigations of the relationship between mirror movements and its pathophysiology. Mirror movements may be a potential biomarker for individualized medicine in children with unilateral spastic CP.
Collapse
Affiliation(s)
- HSING-CHING KUO
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | | | - ANDREW M GORDON
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Gu Z, Kalambogias J, Yoshioka S, Han W, Li Z, Kawasawa YI, Pochareddy S, Li Z, Liu F, Xu X, Wijeratne HRS, Ueno M, Blatz E, Salomone J, Kumanogoh A, Rasin MR, Gebelein B, Weirauch MT, Sestan N, Martin JH, Yoshida Y. Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science 2018; 357:400-404. [PMID: 28751609 DOI: 10.1126/science.aan3721] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 11/02/2022]
Abstract
Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. PlexA1 mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing PlexA1 expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of PlexA1 expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.
Collapse
Affiliation(s)
- Zirong Gu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - John Kalambogias
- Department of Cellular, Molecular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA.,Graduate Center, City University of New York, New York, NY 10017, USA
| | - Shin Yoshioka
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Wenqi Han
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.,Basic Medical School of Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.,Institute for Personalized Medicine, Departments of Biochemistry and Molecular Biology and Pharmacology, Penn State College of Medicine, PA 17033, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fuchen Liu
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - H. R. Sagara Wijeratne
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Masaki Ueno
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Emily Blatz
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nenad Sestan
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - John H Martin
- Department of Cellular, Molecular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA. .,Graduate Center, City University of New York, New York, NY 10017, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Marneweck M, Kuo HC, Smorenburg ARP, Ferre CL, Flamand VH, Gupta D, Carmel JB, Bleyenheuft Y, Gordon AM, Friel KM. The Relationship Between Hand Function and Overlapping Motor Representations of the Hands in the Contralesional Hemisphere in Unilateral Spastic Cerebral Palsy. Neurorehabil Neural Repair 2018; 32:62-72. [PMID: 29303031 DOI: 10.1177/1545968317745991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In many children with unilateral spastic cerebral palsy (USCP), the corticospinal tract to the affected hand atypically originates in the hemisphere ipsilateral to the affected hand. Such ipsilateral connectivity is on average a predictor of poor hand function. However, there is high variability in hand function in these children, which might be explained by the complexity of motor representations of both hands in the contralesional hemisphere. OBJECTIVE To measure the link between hand function and the size and excitability of motor representations of both hands, and their overlap, in the contralesional hemisphere of children with USCP. METHODS We used single-pulse transcranial magnetic stimulation to measure the size and excitability of motor representations of both hands, and their overlap, in the contralesional hemisphere of 50 children with USCP. We correlated these measures with manual dexterity of the affected hand, bimanual performance, and mirror movement strength. RESULTS The main and novel findings were (1) the large overlap in contralesional motor representations of the 2 hands and (2) the moderate positive associations of the size and excitability of such shared-site representations with hand function. Such functional associations were not present for overall size and excitability of representations of the affected hand. CONCLUSIONS Greater relative overlap of the affected hand representation with the less-affected hand representation within the contralesional hemisphere was associated with better hand function. This association suggests that overlapping representations might be adaptively "yoked," such that cortical control of the child's less-affected hand supports that of the affected hand.
Collapse
Affiliation(s)
| | - Hsing-Ching Kuo
- 2 University of Calgary, Calgary, Alberta, Canada.,3 Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Ana R P Smorenburg
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Claudio L Ferre
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | | | - Disha Gupta
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Jason B Carmel
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA.,7 Blythedale Children's Hospital, Valhalla, NY, USA
| | | | - Andrew M Gordon
- 9 Teachers College of Columbia University, New York, NY, USA
| | - Kathleen M Friel
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA.,7 Blythedale Children's Hospital, Valhalla, NY, USA
| |
Collapse
|
19
|
Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization. Neuron 2017; 94:626-641.e4. [PMID: 28472660 DOI: 10.1016/j.neuron.2017.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.
Collapse
|
20
|
Nugent AA, Park JG, Wei Y, Tenney AP, Gilette NM, DeLisle MM, Chan WM, Cheng L, Engle EC. Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome. J Clin Invest 2017; 127:1664-1682. [PMID: 28346224 DOI: 10.1172/jci88502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/02/2017] [Indexed: 01/18/2023] Open
Abstract
Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.
Collapse
|
21
|
Welniarz Q, Morel MP, Pourchet O, Gallea C, Lamy JC, Cincotta M, Doulazmi M, Belle M, Méneret A, Trouillard O, Ruiz M, Brochard V, Meunier S, Trembleau A, Vidailhet M, Chédotal A, Dusart I, Roze E. Non cell-autonomous role of DCC in the guidance of the corticospinal tract at the midline. Sci Rep 2017; 7:410. [PMID: 28341853 PMCID: PMC5428661 DOI: 10.1038/s41598-017-00514-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
DCC, a NETRIN-1 receptor, is considered as a cell-autonomous regulator for midline guidance of many commissural populations in the central nervous system. The corticospinal tract (CST), the principal motor pathway for voluntary movements, crosses the anatomic midline at the pyramidal decussation. CST fails to cross the midline in Kanga mice expressing a truncated DCC protein. Humans with heterozygous DCC mutations have congenital mirror movements (CMM). As CMM has been associated, in some cases, with malformations of the pyramidal decussation, DCC might also be involved in this process in human. Here, we investigated the role of DCC in CST midline crossing both in human and mice. First, we demonstrate by multimodal approaches, that patients with CMM due to DCC mutations have an increased proportion of ipsilateral CST projections. Second, we show that in contrast to Kanga mice, the anatomy of the CST is not altered in mice with a deletion of DCC in the CST. Altogether, these results indicate that DCC controls CST midline crossing in both humans and mice, and that this process is non cell-autonomous in mice. Our data unravel a new level of complexity in the role of DCC in CST guidance at the midline.
Collapse
Affiliation(s)
- Quentin Welniarz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005, Paris, France
| | - Marie-Pierre Morel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005, Paris, France
| | - Oriane Pourchet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005, Paris, France
| | - Cécile Gallea
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Jean-Charles Lamy
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Massimo Cincotta
- Unità Operativa di Neurologia-Firenze, Azienda USL Toscana Centro, Ospedale San Giovanni di Dio, 50143, Firenze, Italy
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et vieillissement, F-75005, Paris, France
| | - Morgane Belle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Aurélie Méneret
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Département de Neurologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Oriane Trouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Marta Ruiz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Vanessa Brochard
- Centre d'Investigation Clinique 14-22, INSERM/AP-HP, Paris, France
| | - Sabine Meunier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Alain Trembleau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005, Paris, France
| | - Marie Vidailhet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Département de Neurologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005, Paris, France
| | - Emmanuel Roze
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France. .,Département de Neurologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.
| |
Collapse
|
22
|
Serradj N, Agger SF, Hollis ER. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neurosci Lett 2016; 652:94-104. [PMID: 27939980 DOI: 10.1016/j.neulet.2016.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/18/2022]
Abstract
Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.
Collapse
Affiliation(s)
- Najet Serradj
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States
| | - Sydney F Agger
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States
| | - Edmund R Hollis
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
23
|
Smorenburg ARP, Gordon AM, Kuo HC, Ferre CL, Brandao M, Bleyenheuft Y, Carmel JB, Friel KM. Does Corticospinal Tract Connectivity Influence the Response to Intensive Bimanual Therapy in Children With Unilateral Cerebral Palsy? Neurorehabil Neural Repair 2016; 31:250-260. [PMID: 27856938 DOI: 10.1177/1545968316675427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Reorganization of the corticospinal tract (CST) can occur in unilateral spastic cerebral palsy (USCP). The affected hand can be controlled via (1) typical contralateral projections from the lesioned hemisphere, (2) ipsilateral projections from the nonlesioned hemisphere, and (3) a combination of contralateral and ipsilateral projections (ie, bilateral). Intensive bimanual therapy and constraint-induced movement therapy (CIMT) improve hand function of children with USCP. Earlier it was suggested that the CST connectivity pattern may influence the efficacy of CIMT. OBJECTIVE To examine whether CST projection pattern influences the efficacy of intensive bimanual therapy in children with USCP. PARTICIPANTS Thirty-three children with USCP (age 8.9 ± 2.6 years, 16 females). METHODS Bimanual therapy was provided in a day-camp setting (90 hours). Participants were involved in different bimanual play and functional activities actively engaging both hands. Hand function was tested before and after the intervention with the Jebsen-Taylor Test of Hand Function, Assisting Hand Assessment, ABILHAND-Kids, and the Canadian Occupational Performance Measure. Single-pulse transcranial magnetic stimulation (TMS) was used to determine each child's CST projection pattern (ie, ipsilateral, contralateral, or bilateral). RESULTS Children whose affected hand was controlled only by ipsilateral CST projections had worse Jebsen-Taylor Test of Hand Function and Assisting Hand Assessment scores than children in the contralateral group at baseline. Bimanual hand use and functional hand use was independent of CST projection pattern. After bimanual therapy, improvements on all outcome measures were observed, and these improvements were independent of the CST connectivity pattern. CONCLUSION The efficacy of bimanual therapy on hand function in children with USCP appears to be independent of CST connectivity pattern.
Collapse
Affiliation(s)
| | | | - Hsing-Ching Kuo
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,2 Teachers College, Columbia University, New York, NY, USA
| | - Claudio L Ferre
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,2 Teachers College, Columbia University, New York, NY, USA
| | - Marina Brandao
- 3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Jason B Carmel
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Kathleen M Friel
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 2016; 77:810-829. [PMID: 27706924 DOI: 10.1002/dneu.22455] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
Abstract
The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017.
Collapse
Affiliation(s)
- Quentin Welniarz
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Isabelle Dusart
- Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Département des Maladies du Système Nerveux, AP-HP, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
25
|
Serradj N, Martin JH. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit. PLoS One 2016; 11:e0163775. [PMID: 27673329 PMCID: PMC5038944 DOI: 10.1371/journal.pone.0163775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system connections and voluntary control. Further, our findings inform the mechanisms of and strategies for developing behavioral therapies to treat bilateral movement impairments and CST miswiring in cerebral palsy.
Collapse
Affiliation(s)
- Najet Serradj
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY, United States of America
| | - John H. Martin
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY, United States of America
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent Hypoxia-Ischemia Models for Cerebral Palsy Research: A Systematic Review. Front Neurol 2016; 7:57. [PMID: 27199883 PMCID: PMC4843764 DOI: 10.3389/fneur.2016.00057] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/03/2016] [Indexed: 12/28/2022] Open
Abstract
Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5-3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice-Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Tatiana Bregman
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Steven P Miller
- Department of Pediatrics, Hospital for Sick Children , Toronto, ON , Canada
| | - Jerome Y Yager
- Division of Pediatric Neurosciences, Stollery Children's Hospital, University of Alberta , Edmonton, AB , Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. Arthritis Res Ther 2016; 18:65. [PMID: 26980243 PMCID: PMC4791873 DOI: 10.1186/s13075-016-0965-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ephrins and their related receptors have been implicated in some developmental events. We have demonstrated that ephrin-B2 (EFNB2) could play a role in knee joint pathology associated with osteoarthritis (OA). Here, we delineate the in vivo role of EFNB2 in musculoskeletal growth, development, and in OA using a cartilage-specific EFNB2 knockout (EFNB2(Col2)KO) mouse model. METHODS EFNB2(Col2)KO was generated with Col2a1-Cre transgenic mice. The skeletal development was evaluated using macroscopy, immunohistochemistry, histomorphometry, radiology, densitometry, and micro-computed tomography. Analyses were performed at P0 (birth) and on postnatal days P15, P21, and on 8-week- and 1-year-old mice. RESULTS EFNB2(Col2)KO mice exhibited significant reduction in size, weight, length, and in long bones. At P0, the growth plates of EFNB2(Col2)KO mice displayed increased type X collagen, disorganized hyphertrophic zone, and decreased mineralization. At P15, mutant mice demonstrated a significant reduction in VEGF and TRAP at the chondro-osseous junction and a delay in the secondary ossification, including a decrease in bone volume and trabecular thickness. At P21 and 8 weeks old, EFNB2(Col2)KO mice exhibited reduced bone mineral density in the total skeleton, femur and spine. One-year-old EFNB2(Col2)KO mice demonstrated OA phenotypic features in both the knee and hip. By P15, 27 % of the EFNB2(Col2)KO mice developed a hip locomotor phenotype, which further experiments demonstrated reflected the neurological midline abnormality involving the corticospinal tract. CONCLUSION This in vivo study demonstrated, for the first time, that EFNB2 is essential for normal long bone growth and development and its absence leads to a knee and hip OA phenotype in aged mice.
Collapse
|
28
|
Abstract
The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to coordinate their emerging functions and, if so, the mechanisms underlying this process. This study examined activity-dependent interactions between the developing corticospinal and rubrospinal systems, two key systems for skilled limb movements. We show that the developing rubrospinal system competes with the corticospinal system in establishing the red nucleus motor map and rubrospinal tract connections. This is the first demonstration of one motor system steering development, and ultimately function, of another. Knowledge of activity-dependent competition between these two systems helps predict the response of the rubrospinal system following corticospinal system developmental injury.
Collapse
|
29
|
Abstract
Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Maggie M Shin
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
30
|
Welniarz Q, Dusart I, Gallea C, Roze E. One hand clapping: lateralization of motor control. Front Neuroanat 2015; 9:75. [PMID: 26082690 PMCID: PMC4451425 DOI: 10.3389/fnana.2015.00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output.
Collapse
Affiliation(s)
- Quentin Welniarz
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France ; Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Isabelle Dusart
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France
| | - Cécile Gallea
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France ; Département des Maladies du Système Nerveux, AP-HP, Hôpital Pitié Salpêtrière Paris, France
| |
Collapse
|
31
|
Clowry GJ, Basuodan R, Chan F. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy? Front Neurol 2014; 5:258. [PMID: 25538677 PMCID: PMC4255621 DOI: 10.3389/fneur.2014.00258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
Collapse
Affiliation(s)
- Gavin John Clowry
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Reem Basuodan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
32
|
Friel KM, Williams PTJA, Serradj N, Chakrabarty S, Martin JH. Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Front Neurol 2014; 5:229. [PMID: 25505443 PMCID: PMC4241838 DOI: 10.3389/fneur.2014.00229] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/22/2014] [Indexed: 01/29/2023] Open
Abstract
This review presents the mechanistic underpinnings of corticospinal tract (CST) development, derived from animal models, and applies what has been learned to inform neural activity-based strategies for CST repair. We first discuss that, in normal development, early bilateral CST projections are later refined into a dense crossed CST projection, with maintenance of sparse ipsilateral projections. Using a novel mouse genetic model, we show that promoting the ipsilateral CST projection produces mirror movements, common in hemiplegic cerebral palsy (CP), suggesting that ipsilateral CST projections become maladaptive when they become abnormally dense and strong. We next discuss how animal studies support a developmental “competition rule” whereby more active/used connections are more competitive and overtake less active/used connections. Based on this rule, after unilateral injury the damaged CST is less able to compete for spinal synaptic connections than the uninjured CST. This can lead to a progressive loss of the injured hemisphere’s contralateral projection and a reactive gain of the undamaged hemisphere’s ipsilateral CST. Knowledge of the pathophysiology of the developing CST after injury informs interventional strategies. In an animal model of hemiplegic CP, promoting injured system activity or decreasing the uninjured system’s activity immediately after the period of a developmental injury both increase the synaptic competitiveness of the damaged system, contributing to significant CST repair and motor recovery. However, delayed intervention, despite significant CST repair, fails to restore skilled movements, stressing the need to consider repair strategies for other neural systems, including the rubrospinal and spinal interneuronal systems. Our interventional approaches harness neural activity-dependent processes and are highly effective in restoring function. These approaches are minimally invasive and are poised for translation to the human.
Collapse
Affiliation(s)
- Kathleen M Friel
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medical College , New York, NY , USA ; Burke Medical Research Institute , White Plains, NY , USA
| | - Preston T J A Williams
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Najet Serradj
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biology, University of Leeds , Leeds , UK
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA ; The Graduate Center of the City University of New York , New York, NY , USA
| |
Collapse
|
33
|
Chédotal A. Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci 2014; 37:551-62. [DOI: 10.1016/j.tins.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
|