1
|
Qasim SE, Mohan UR, Stein JM, Jacobs J. Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding. Nat Hum Behav 2023; 7:754-764. [PMID: 36646837 PMCID: PMC11243592 DOI: 10.1038/s41562-022-01502-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/25/2022] [Indexed: 01/17/2023]
Abstract
Emotional events comprise our strongest and most valuable memories. Here we examined how the brain prioritizes emotional information for storage using direct brain recording and deep brain stimulation. First, 148 participants undergoing intracranial electroencephalographic (iEEG) recording performed an episodic memory task. Participants were most successful at remembering emotionally arousing stimuli. High-frequency activity (HFA), a correlate of neuronal spiking activity, increased in both the hippocampus and the amygdala when participants successfully encoded emotional stimuli. Next, in a subset of participants (N = 19), we show that applying high-frequency electrical stimulation to the hippocampus selectively diminished memory for emotional stimuli and specifically decreased HFA. Finally, we show that individuals with depression (N = 19) also exhibit diminished emotion-mediated memory and HFA. By demonstrating how direct stimulation and symptoms of depression unlink HFA, emotion and memory, we show the causal and translational potential of neural activity in the amygdalohippocampal circuit for prioritizing emotionally arousing memories.
Collapse
Affiliation(s)
- Salman E Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Chen Z, Headley DB, Gomez-Alatorre LF, Kanta V, Ho KC, Pare D, Nair SS. Approaches to characterizing oscillatory burst detection algorithms for electrophysiological recordings. J Neurosci Methods 2023; 391:109865. [PMID: 37086753 PMCID: PMC10175206 DOI: 10.1016/j.jneumeth.2023.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Cognitive processes are associated with fast oscillations of the local field potential and electroencephalogram. There is a growing interest in targeting them because these are disrupted by aging and disease. This has proven challenging because they often occur as short-lasting bursts. Moreover, they are obscured by broad-band aperiodic activity reflecting other neural processes. These attributes have made it exceedingly difficult to develop analytical tools for estimating the reliability of detection methods. NEW METHOD To address this challenge, we developed an open-source toolkit with four processing steps, that can be tailored to specific brain states and individuals. First, the power spectrum is decomposed into periodic and aperiodic components, each of whose properties are estimated. Second, the properties of the transient oscillatory bursts that contribute to the periodic component are derived and optimized to account for contamination from the aperiodic component. Third, using the burst properties and aperiodic power spectrum, surrogate neural signals are synthesized that match the observed signal's spectrotemporal properties. Lastly, oscillatory burst detection algorithms run on the surrogate signals are subjected to a receiver operating characteristic analysis, providing insight into their performance. RESULTS The characterization algorithm extracted features of oscillatory bursts across multiple frequency bands and brain regions, allowing for recording-specific evaluation of detection performance. For our dataset, the optimal detection threshold for gamma bursts was found to be lower than the one commonly used. COMPARISON WITH EXISTING METHODS Existing methods characterize the power spectrum, while ours evaluates the detection of oscillatory bursts. CONCLUSIONS This pipeline facilitates the evaluation of thresholds for detection algorithms from individual recordings.
Collapse
Affiliation(s)
- Ziao Chen
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Luisa F Gomez-Alatorre
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Vasiliki Kanta
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA
| | - K C Ho
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Satish S Nair
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
4
|
Conditioned up and down modulations of short latency gamma band oscillations in visual cortex during fear learning in humans. Sci Rep 2022; 12:2652. [PMID: 35173252 PMCID: PMC8850570 DOI: 10.1038/s41598-022-06596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over the course of evolution, the human brain has been shaped to prioritize cues that signal potential danger. Thereby, the brain does not only favor species-specific prepared stimulus sets such as snakes or spiders but can learn associations between new cues and aversive outcomes. One important mechanism to achieve this is associated with learning induced plasticity changes in sensory cortex that optimizes the representation of motivationally relevant sensory stimuli. Animal studies have shown that the modulation of gamma band oscillations predicts plasticity changes in sensory cortices by shifting neurons’ responses to fear relevant features as acquired by Pavlovian fear conditioning. Here, we report conditioned gamma band modulations in humans during fear conditioning of orthogonally oriented sine gratings representing fear relevant and irrelevant conditioned cues. Thereby, pairing of a sine grating with an aversive loud noise not only increased short latency (during the first 180 ms) evoked visual gamma band responses, but was also accompanied by strong gamma power reductions for the fear irrelevant control grating. The current findings will be discussed in the light of recent neurobiological models of plasticity changes in sensory cortices and classic learning models such as the Rescorla–Wagner framework.
Collapse
|
5
|
Headley DB, Kyriazi P, Feng F, Nair SS, Pare D. Gamma Oscillations in the Basolateral Amygdala: Localization, Microcircuitry, and Behavioral Correlates. J Neurosci 2021; 41:6087-6101. [PMID: 34088799 PMCID: PMC8276735 DOI: 10.1523/jneurosci.3159-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The lateral (LA) and basolateral (BL) nuclei of the amygdala regulate emotional behaviors. Despite their dissimilar extrinsic connectivity, they are often combined, perhaps because their cellular composition is similar to that of the cerebral cortex, including excitatory principal cells reciprocally connected with fast-spiking interneurons (FSIs). In the cortex, this microcircuitry produces gamma oscillations that support information processing and behavior. We tested whether this was similarly the case in the rat (males) LA and BL using extracellular recordings, biophysical modeling, and behavioral conditioning. During periods of environmental assessment, both nuclei exhibited gamma oscillations that stopped upon initiation of active behaviors. Yet, BL exhibited more robust spontaneous gamma oscillations than LA. The greater propensity of BL to generate gamma resulted from several microcircuit differences, especially the proportion of FSIs and their interconnections with principal cells. Furthermore, gamma in BL but not LA regulated the efficacy of excitatory synaptic transmission between connected neurons. Together, these results suggest fundamental differences in how LA and BL operate. Most likely, gamma in LA is externally driven, whereas in BL it can also arise spontaneously to support ruminative processing and the evaluation of complex situations.SIGNIFICANCE STATEMENT The basolateral amygdala (BLA) participates in the production and regulation of emotional behaviors. It is thought to perform this using feedforward circuits that enhance stimuli that gain emotional significance and directs them to valence-appropriate downstream effectors. This perspective overlooks the fact that its microcircuitry is recurrent and potentially capable of generating oscillations in the gamma band (50-80 Hz), which synchronize spiking activity and modulate communication between neurons. This study found that BLA gamma supports both of these processes, is associated with periods of action selection and environmental assessment regardless of valence, and differs between BLA subnuclei in a manner consistent with their heretofore unknown microcircuit differences. Thus, it provides new mechanisms for BLA to support emotional behaviors.
Collapse
Affiliation(s)
- Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Pinelopi Kyriazi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, New Jersey 07102
| | - Feng Feng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211
| | - Satish S Nair
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
6
|
Yin S, Bo K, Liu Y, Thigpen N, Keil A, Ding M. Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Soc Cogn Affect Neurosci 2021; 15:950-964. [PMID: 32901822 PMCID: PMC7647380 DOI: 10.1093/scan/nsaa122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Repeated exposure to threatening stimuli alters sensory responses. We investigated the underlying neural mechanism by re-analyzing previously published simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) data from humans viewing oriented gratings during Pavlovian fear conditioning. In acquisition, one grating (CS+) was paired with a noxious noise, the unconditioned stimulus (US). The other grating (CS-) was never paired with the US. In habituation, which preceded acquisition, and in extinction, the same two gratings were presented without US. Using fMRI multivoxel patterns in primary visual cortex during habituation as reference, we found that during acquisition, aversive learning selectively prompted systematic changes in multivoxel patterns evoked by CS+. Specifically, CS+ evoked voxel patterns in V1 became sparser as aversive learning progressed, and the sparsified pattern appeared to be preserved in extinction. Concomitant with the voxel pattern changes, occipital alpha oscillations were increasingly more desynchronized during CS+ (but not CS-) trials. Across acquisition trials, the rate of change in CS+-related alpha desynchronization was correlated with the rate of change in multivoxel pattern representations of CS+. Furthermore, alpha oscillations co-varied with blood-oxygen-level-dependent (BOLD) data in the ventral attention network, but not with BOLD in the amygdala. Thus, fear conditioning prompts persistent sparsification of voxel patterns evoked by threat, likely mediated by attention-related mechanisms
Collapse
Affiliation(s)
- Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ke Bo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | - Nina Thigpen
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Ozawa M, Davis P, Ni J, Maguire J, Papouin T, Reijmers L. Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction. Nat Commun 2020; 11:4358. [PMID: 32868768 PMCID: PMC7459312 DOI: 10.1038/s41467-020-18199-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Learned fear and safety are associated with distinct oscillatory states in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). To determine if and how these network states support the retrieval of competing memories, we mimicked endogenous oscillatory activity through optogenetic stimulation of parvalbumin-expressing interneurons in mice during retrieval of contextual fear and extinction memories. We found that exogenously induced 4 Hz and 8 Hz oscillatory activity in the BLA exerts bi-directional control over conditioned freezing behavior in an experience- and context-specific manner, and that these oscillations have an experience-dependent ability to recruit distinct functional neuronal ensembles. At the network level we demonstrate, via simultaneous manipulation of BLA and mPFC, that experience-dependent 4 Hz resonance across BLA-mPFC circuitry supports post-extinction fear memory retrieval. Our findings reveal that post-extinction fear memory retrieval is supported by local and interregional experience-dependent resonance, and suggest novel approaches for interrogation and therapeutic manipulation of acquired fear circuitry.
Collapse
Affiliation(s)
- Minagi Ozawa
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Patrick Davis
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, MA, USA
| | - Jianguang Ni
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA
| | - Thomas Papouin
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Leon Reijmers
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
8
|
Tallot L, Doyère V. Neural encoding of time in the animal brain. Neurosci Biobehav Rev 2020; 115:146-163. [DOI: 10.1016/j.neubiorev.2019.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023]
|
9
|
Noradrenergic Responsiveness Supports Selective Attention across the Adult Lifespan. J Neurosci 2020; 40:4372-4390. [PMID: 32317388 DOI: 10.1523/jneurosci.0398-19.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Selectively attending to relevant information while blocking out distractors is crucial for goal-directed behavior, yet with advancing age, deficits emerge in attentional selectivity. Decrements in attention have been associated with altered noradrenergic activity in animals. However, research linking noradrenergic functioning to attention in aging humans is scarce, likely reflecting long-standing methodological challenges in noninvasive assessments. We studied whether age-related differences in the noradrenergic system predict differences in attention. We measured pupil dilation, a noninvasive marker of arousal-related norepinephrine (NE) release, while concurrently recording the EEG of male younger (N = 39; 25.2 ± 3.2 years) and older adults (N = 38; 70.6 ± 2.7 years). Arousal was modulated on a trial-by-trial basis using fear-conditioned (CS+) stimuli. During conditioning, pupil and EEG markers related to heightened arousal were identified. Afterward, in a dichotic listening task, participants were cued to direct attention to either the left or right ear while highly similar syllable pairs were presented simultaneously to both ears. During the dichotic listening task, presentation of fear-conditioned stimuli reinstated the acquired arousal response, as reflected in pupil and EEG α-β band responses. Critically, pupil dilation to CS+ was correlated with stronger EEG α-β desynchronization, suggesting a common dependence on NE release. On a behavioral level, stronger arousal reactions were associated with better attention. In particular, structural equation modeling revealed that the responsiveness of the NE system is associated with attention on a latent construct level, measured by several indicator tasks. Overall, our results suggest that the responsiveness of the NE system supports attention across the lifespan.SIGNIFICANCE STATEMENT In old age, the ability to selectively process relevant aspects of the environment fades. Animal research suggests that the neuromodulator norepinephrine helps to maintain selective attention. We tested younger and older adults across a variety of attention tasks. In addition, we used arousing stimuli to experimentally activate participants' noradrenergic system while recording pupillometry and EEG to infer its functional capacity. Older adults showed compromised attention and reduced noradrenergic responsiveness as indicated by interrelated pupil and EEG markers. Crucially, in both age groups, a more responsive noradrenergic system was strongly associated with attention. Our findings link animal and human studies on the neural underpinning of attention in aging and underscore the importance of the noradrenergic system in late-life cognition.
Collapse
|
10
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
11
|
Multisensory learning between odor and sound enhances beta oscillations. Sci Rep 2019; 9:11236. [PMID: 31375760 PMCID: PMC6677763 DOI: 10.1038/s41598-019-47503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022] Open
Abstract
Multisensory interactions are essential to make sense of the environment by transforming the mosaic of sensory inputs received by the organism into a unified perception. Brain rhythms allow coherent processing within areas or between distant brain regions and could thus be instrumental in functionally connecting remote brain areas in the context of multisensory interactions. Still, odor and sound processing relate to two sensory systems with specific anatomofunctional characteristics. How does the brain handle their association? Rats were challenged to discriminate between unisensory stimulation (odor or sound) and the multisensory combination of both. During learning, we observed a progressive establishment of high power beta oscillations (15–35 Hz) spanning on the olfactory bulb, the piriform cortex and the perirhinal cortex, but not the primary auditory cortex. In the piriform cortex, beta oscillations power was higher in the multisensory condition compared to the presentation of the odor alone. Furthermore, in the olfactory structures, the sound alone was able to elicit a beta oscillatory response. These findings emphasize the functional differences between olfactory and auditory cortices and reveal that beta oscillations contribute to the memory formation of the multisensory association.
Collapse
|
12
|
Cole MW, Ito T, Schultz D, Mill R, Chen R, Cocuzza C. Task activations produce spurious but systematic inflation of task functional connectivity estimates. Neuroimage 2018; 189:1-18. [PMID: 30597260 DOI: 10.1016/j.neuroimage.2018.12.054] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 01/21/2023] Open
Abstract
Most neuroscientific studies have focused on task-evoked activations (activity amplitudes at specific brain locations), providing limited insight into the functional relationships between separate brain locations. Task-state functional connectivity (FC) - statistical association between brain activity time series during task performance - moves beyond task-evoked activations by quantifying functional interactions during tasks. However, many task-state FC studies do not remove the first-order effect of task-evoked activations prior to estimating task-state FC. It has been argued that this results in the ambiguous inference "likely active or interacting during the task", rather than the intended inference "likely interacting during the task". Utilizing a neural mass computational model, we verified that task-evoked activations substantially and inappropriately inflate task-state FC estimates, especially in functional MRI (fMRI) data. Various methods attempting to address this problem have been developed, yet the efficacies of these approaches have not been systematically assessed. We found that most standard approaches for fitting and removing mean task-evoked activations were unable to correct these inflated correlations. In contrast, methods that flexibly fit mean task-evoked response shapes effectively corrected the inflated correlations without reducing effects of interest. Results with empirical fMRI data confirmed the model's predictions, revealing activation-induced task-state FC inflation for both Pearson correlation and psychophysiological interaction (PPI) approaches. These results demonstrate that removal of mean task-evoked activations using an approach that flexibly models task-evoked response shape is an important preprocessing step for valid estimation of task-state FC.
Collapse
Affiliation(s)
- Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA; Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, 07102, USA
| | - Douglas Schultz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Ravi Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Richard Chen
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA; Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, 07102, USA
| | - Carrisa Cocuzza
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA; Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
13
|
Concina G, Cambiaghi M, Renna A, Sacchetti B. Coherent Activity between the Prelimbic and Auditory Cortex in the Slow-Gamma Band Underlies Fear Discrimination. J Neurosci 2018; 38:8313-8328. [PMID: 30093537 PMCID: PMC6596172 DOI: 10.1523/jneurosci.0540-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex and the basolateral amygdala (BLA) are essential for discriminating between harmful and safe stimuli. The primary auditory cortex (Te1) sends projections to both sites, but whether and how it interacts with these areas during fear discrimination are poorly understood. Here we show that in male rats that can differentiate between a new tone and a threatening one, the selective optogenetic inhibition of Te1 axon terminals into the prelimbic (PL) cortex shifted discrimination to fear generalization. Meanwhile, no effects were detected when Te1 terminals were inhibited in the BLA. Using a combination of local field potential and multiunit recordings, we show that in animals that discriminate successfully between a new tone and a harmful one, the activity of the Te1 and the PL cortex becomes immediately and tightly synchronized in the slow-gamma range (40-70 Hz) at the onset of the new tone. This enhanced synchronization was not present in other frequency ranges, such as the theta range. Critically, the level of gamma synchrony predicted the behavioral choice (i.e., no freezing or freezing) of the animals. Moreover, in the same rats, gamma synchrony was absent before the fear-learning trial and when animals should discriminate between an olfactory stimulus and the auditory harmful one. Thus, our findings reveal that the Te1 and the PL cortex dynamically establish a functional connection during auditory fear-discrimination processes, and that this corticocortical oscillatory mechanism drives the behavioral choice of the animals.SIGNIFICANCE STATEMENT Identifying neural networks that infer safety versus danger is of great interest in the scientific field. Fear generalization reduces the chances of an animal's survival and leads to psychiatric diseases, such as post-traumatic stress disorders and phobias in humans. Here we demonstrate that animals able to differentiate a new tone from a previous threating tone showed synchronization between the prefrontal and primary auditory cortices. Critically, this connectivity precedes and predicts the behavioral outcome of the animal. Optogenetic inhibition of this functional connectivity leads to fear generalization. To the best of our knowledge, this study is the first to demonstrate that a corticocortical dialogue occurring between sensory and prefrontal areas is a key node for fear-discrimination processes.
Collapse
Affiliation(s)
- Giulia Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy, and
| | - Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy, and
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy, and
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy, and
- National Institute of Neuroscience-Turin, I-10125, Turin, Italy
| |
Collapse
|
14
|
Neural Oscillatory Correlates for Conditioning and Extinction of Fear. Biomedicines 2018; 6:biomedicines6020049. [PMID: 29724018 PMCID: PMC6027138 DOI: 10.3390/biomedicines6020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 12/27/2022] Open
Abstract
The extinction of conditioned-fear represents a hallmark of current exposure therapies as it has been found to be impaired in people suffering from post-traumatic stress disorder (PTSD) and anxiety. A large body of knowledge focusing on psychophysiological animal and human studies suggests the involvement of key brain structures that interact via neural oscillations during the acquisition and extinction of fear. Consequently, neural oscillatory correlates of such mechanisms appear relevant regarding the development of novel therapeutic approaches to counterbalance abnormal activity in fear-related brain circuits, which, in turn, could alleviate fear and anxiety symptoms. Here, we provide an account of state-of-the-art neural oscillatory correlates for the conditioning and extinction of fear, and also deal with recent translational efforts aimed at fear extinction by neural oscillatory modulation.
Collapse
|
15
|
Yusuf PA, Hubka P, Tillein J, Kral A. Induced cortical responses require developmental sensory experience. Brain 2017; 140:3153-3165. [PMID: 29155975 PMCID: PMC5841147 DOI: 10.1093/brain/awx286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/12/2017] [Indexed: 01/25/2023] Open
Abstract
Sensory areas of the cerebral cortex integrate the sensory inputs with the ongoing activity. We studied how complete absence of auditory experience affects this process in a higher mammal model of complete sensory deprivation, the congenitally deaf cat. Cortical responses were elicited by intracochlear electric stimulation using cochlear implants in adult hearing controls and deaf cats. Additionally, in hearing controls, acoustic stimuli were used to assess the effect of stimulus mode (electric versus acoustic) on the cortical responses. We evaluated time-frequency representations of local field potential recorded simultaneously in the primary auditory cortex and a higher-order area, the posterior auditory field, known to be differentially involved in cross-modal (visual) reorganization in deaf cats. The results showed the appearance of evoked (phase-locked) responses at early latencies (<100 ms post-stimulus) and more abundant induced (non-phase-locked) responses at later latencies (>150 ms post-stimulus). In deaf cats, substantially reduced induced responses were observed in overall power as well as duration in both investigated fields. Additionally, a reduction of ongoing alpha band activity was found in the posterior auditory field (but not in primary auditory cortex) of deaf cats. The present study demonstrates that induced activity requires developmental experience and suggests that higher-order areas involved in the cross-modal reorganization show more auditory deficits than primary areas.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,ENT Clinics, J. W. Goethe University, Frankfurt am Main, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
16
|
Leon MI, Miasnikov AA, Wright EJ, Weinberger NM. CS-specific modifications of auditory evoked potentials in the behaviorally conditioned rat. Brain Res 2017; 1670:235-247. [PMID: 28673481 DOI: 10.1016/j.brainres.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
The current report provides a detailed analysis of the changes in the first two components of the auditory evoked potential (AEP) that accompany associative learning. AEPs were recorded from the primary auditory cortex before and after training sessions. Experimental subjects underwent one (n=5) or two (n=7) days of conditioning in which a tone, serving as a conditioned stimulus (CS), was paired with mild foot shock. Control subjects received one (n=5) or two (n=7) days of exposure to the same stimuli delivered randomly. Only animals receiving paired CS-US training developed a conditioned tachycardia response to the tone. Our analyses demonstrated that both early components of the AEP recorded from the granular layer of the cortex undergo CS-specific associative changes: (1) the first, negative component (occurring ∼21ms following tone onset) was significantly augmented after one and two days of training while maintaining its latency, and (2) the second, positive component (occurring ∼50ms following tone onset) was augmented after two days of training, and showed a significant reduction in latency after one and two days of training. We view these changes as evidence of increased cortical synchronization, thereby lending new insight into the temporal dynamics of neural network activity related to auditory learning.
Collapse
Affiliation(s)
- Matthew I Leon
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States; Department of Psychology, California State University, Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, United States.
| | - Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Ernest J Wright
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| |
Collapse
|
17
|
Chen YC, Xia W, Chen H, Feng Y, Xu JJ, Gu JP, Salvi R, Yin X. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum Brain Mapp 2017; 38:2384-2397. [PMID: 28112466 DOI: 10.1002/hbm.23525] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jian-Ping Gu
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, 14214, New York
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| |
Collapse
|
18
|
Headley DB, Paré D. Common oscillatory mechanisms across multiple memory systems. NPJ SCIENCE OF LEARNING 2017; 2:1. [PMID: 30294452 PMCID: PMC6171763 DOI: 10.1038/s41539-016-0001-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 05/09/2023]
Abstract
The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a 'slow' or 'fast' mode. The slow mode happens during slow-wave sleep (SWS) and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and REM and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have the similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to SWS, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during SWS seem to promote declarative and procedural memories.
Collapse
Affiliation(s)
- Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| |
Collapse
|
19
|
Berger JI, Coomber B, Wallace MN, Palmer AR. Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. Eur J Neurosci 2016; 45:398-409. [PMID: 27862478 PMCID: PMC5763375 DOI: 10.1111/ejn.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022]
Abstract
Tinnitus chronically affects between 10-15% of the population but, despite its prevalence, the underlying mechanisms are still not properly understood. One experimental model involves administration of high doses of sodium salicylate, as this is known to reliably induce tinnitus in both humans and animals. Guinea pigs were implanted with chronic electrocorticography (ECoG) electrode arrays, with silver-ball electrodes placed on the dura over left and right auditory cortex. Two more electrodes were positioned over the cerebellum to monitor auditory brainstem responses (ABRs). We recorded resting-state and auditory evoked neural activity from awake animals before and 2 h following salicylate administration (350 mg/kg; i.p.). Large increases in click-evoked responses (> 100%) were evident across the whole auditory cortex, despite significant reductions in wave I ABR amplitudes (in response to 20 kHz tones), which are indicative of auditory nerve activity. In the same animals, significant decreases in 6-10 Hz spontaneous oscillations (alpha waves) were evident over dorsocaudal auditory cortex. We were also able to demonstrate for the first time that cortical evoked potentials can be inhibited by a preceding gap in background noise [gap-induced pre-pulse inhibition (PPI)], in a similar fashion to the gap-induced inhibition of the acoustic startle reflex that is used as a behavioural test for tinnitus. Furthermore, 2 h following salicylate administration, we observed significant deficits in PPI of cortical responses that were closely aligned with significant deficits in behavioural responses to the same stimuli. Together, these data are suggestive of neural correlates of tinnitus and oversensitivity to sound (hyperacusis).
Collapse
Affiliation(s)
- Joel I Berger
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Ben Coomber
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark N Wallace
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Alan R Palmer
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
20
|
Do Monte FH, Quirk GJ, Li B, Penzo MA. Retrieving fear memories, as time goes by…. Mol Psychiatry 2016; 21:1027-36. [PMID: 27217148 PMCID: PMC4956525 DOI: 10.1038/mp.2016.78] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
Research in fear conditioning has provided a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, our understanding of the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring some clarity and raise awareness about the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points following auditory fear conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus (PVT) for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change with time, and consider the functional strategy of recruiting structures not previously considered as part of the retrieval circuit.
Collapse
Affiliation(s)
- Fabricio H. Do Monte
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Mario A. Penzo
- National Institute of Mental Health, 35 Convent Drive, Bldg. 35A Room 2E621, Bethesda, MD 20850
| |
Collapse
|
21
|
Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat. Neuroscience 2016; 332:38-52. [PMID: 27329334 DOI: 10.1016/j.neuroscience.2016.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022]
Abstract
The rat has long been considered an important model system for studying neural mechanisms of auditory perception and learning, and particularly mechanisms involving auditory thalamo-cortical processing. However, the functional topography of the auditory thalamus, or medial geniculate body (MGB) has not yet been fully characterized in the rat, and the anatomically-defined features of field-specific, layer-specific and tonotopic thalamo-cortical projections have never been confirmed electrophysiologically. In the present study, we have established a novel technique for recording simultaneously from a surface microelectrode array on the auditory cortex, and a depth electrode array across auditory cortical layers and within the MGB, and characterized the rat MGB and thalamo-cortical projections under isoflurane anesthesia. We revealed that the ventral division of the MGB (MGv) exhibited a low-high-low CF gradient and long-short-long latency gradient along the dorsolateral-to-ventromedial axis, suggesting that the rat MGv is divided into two subdivisions. We also demonstrated that microstimulation in the MGv elicited cortical activation in layer-specific, region-specific and tonotopically organized manners. To our knowledge, the present study has provided the first and most compelling electrophysiological confirmation of the anatomical organization of the primary thalamo-cortical pathway in the rat, setting the groundwork for further investigation.
Collapse
|
22
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Elias GA, Bieszczad KM, Weinberger NM. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory. Neurobiol Learn Mem 2015; 126:39-55. [PMID: 26596700 DOI: 10.1016/j.nlm.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS- tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was "bar-press from tone-onset-to-error signal" ("TOTE"). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error ("iTOTE"). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain sites, including reversal of cortical expansion.
Collapse
Affiliation(s)
- Gabriel A Elias
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Kasia M Bieszczad
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States; Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, NJ 08854-8020, United States
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States.
| |
Collapse
|
24
|
Fitzgerald PJ, Pinard CR, Camp MC, Feyder M, Sah A, Bergstrom H, Graybeal C, Liu Y, Schlüter O, Grant SG, Singewald N, Xu W, Holmes A. Durable fear memories require PSD-95. Mol Psychiatry 2015; 20:901-12. [PMID: 25510511 PMCID: PMC4469631 DOI: 10.1038/mp.2014.161] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022]
Abstract
Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories.
Collapse
Affiliation(s)
- Paul J. Fitzgerald
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Courtney R. Pinard
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Marguerite C. Camp
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Michael Feyder
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Anupam Sah
- Department of Pharmacology & Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Hadley Bergstrom
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Carolyn Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| | - Yan Liu
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Seth G.N. Grant
- Centre for Clinical Brain Sciences and Centre for Neuroregeneration, The University of Edinburgh, Edinburgh, UK
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Weifeng Xu
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, NIH
| |
Collapse
|
25
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
26
|
Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci 2015; 38:158-66. [PMID: 25583269 PMCID: PMC4352381 DOI: 10.1016/j.tins.2014.12.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/22/2022]
Abstract
The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.
Collapse
Affiliation(s)
- Ekaterina Likhtik
- Associate Research Scientist, Department of Psychiatry, 1051 Riverside Drive, Unit 87, Kolb Annex, Room 136, New York, NY 10032, USA.
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
27
|
Paradoxical neurobehavioral rescue by memories of early-life abuse: the safety signal value of odors learned during abusive attachment. Neuropsychopharmacology 2015; 40:906-14. [PMID: 25284320 PMCID: PMC4330504 DOI: 10.1038/npp.2014.266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 01/26/2023]
Abstract
Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood-in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70-90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation.
Collapse
|
28
|
Weinberger NM. New perspectives on the auditory cortex: learning and memory. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:117-47. [PMID: 25726266 DOI: 10.1016/b978-0-444-62630-1.00007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
|
30
|
Stujenske JM, Likhtik E, Topiwala MA, Gordon JA. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 2014; 83:919-33. [PMID: 25144877 DOI: 10.1016/j.neuron.2014.07.026] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
Abstract
Theta oscillations synchronize the basolateral amygdala (BLA) with the hippocampus (HPC) and medial prefrontal cortex (mPFC) during fear expression. The role of gamma-frequency oscillations in the BLA is less well characterized. We examined gamma- and theta-frequency activity in recordings of neural activity from the BLA-HPC-mPFC circuit during fear conditioning, extinction, and exposure to an open field. In the BLA, slow (40-70 Hz) and fast (70-120 Hz) gamma oscillations were coupled to distinct phases of the theta cycle and reflected synchronous high-frequency unit activity. During periods of fear, BLA theta-fast gamma coupling was enhanced, while fast gamma power was suppressed. Periods of relative safety were associated with enhanced BLA fast gamma power, mPFC-to-BLA directionality, and strong coupling of BLA gamma to mPFC theta. These findings suggest that switches between states of fear and safety are mediated by changes in BLA gamma coupling to competitive theta frequency inputs.
Collapse
Affiliation(s)
- Joseph M Stujenske
- Graduate Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Ekaterina Likhtik
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mihir A Topiwala
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Joshua A Gordon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
31
|
Song I, Keil A. Differential classical conditioning selectively heightens response gain of neural population activity in human visual cortex. Psychophysiology 2014; 51:1185-94. [PMID: 24981277 DOI: 10.1111/psyp.12260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Abstract
Neutral cues, after being reliably paired with noxious events, prompt defensive engagement and amplified sensory responses. To examine the neurophysiology underlying these adaptive changes, we quantified the contrast-response function of visual cortical population activity during differential aversive conditioning. Steady-state visual evoked potentials (ssVEPs) were recorded while participants discriminated the orientation of rapidly flickering grating stimuli. During each trial, luminance contrast of the gratings was slowly increased and then decreased. Right-tilted gratings (CS+) were paired with loud white noise but left-tilted gratings (CS-) were not. The contrast-following waveform envelope of ssVEPs showed selective amplification of the CS+ only during the high-contrast stage of the viewing epoch. Findings support the notion that motivational relevance, learned in a time frame of minutes, affects vision through a response gain mechanism.
Collapse
Affiliation(s)
- Inkyung Song
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
32
|
Yokota R, Aihara K, Kanzaki R, Takahashi H. Learning-stage-dependent plasticity of temporal coherence in the auditory cortex of rats. Brain Topogr 2014; 28:401-10. [PMID: 24615394 DOI: 10.1007/s10548-014-0359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Temporal coherence among neural populations may contribute importantly to signal encoding, specifically by providing an optimal tradeoff between encoding reliability and efficiency. Here, we considered the possibility that learning modulates the temporal coherence among neural populations in association with well-characterized map plasticity. We previously demonstrated that, in appetitive operant conditioning tasks, the tone-responsive area globally expanded during the early stage of learning, but shrank during the late stage. The present study further showed that phase locking of the first spike to band-specific oscillations of local field potentials (LFPs) significantly increased during the early stage of learning but decreased during the late stage, suggesting that neurons in A1 were more synchronously activated during early learning, whereas they were more asynchronously activated once learning was completed. Furthermore, LFP amplitudes increased during early learning but decreased during later learning. These results suggest that, compared to naïve encoding, early-stage encoding is more reliable but energy-consumptive, whereas late-stage encoding is more energetically efficient. Such a learning-stage-dependent encoding strategy may underlie learning-induced, non-monotonic map plasticity. Accumulating evidence indicates that the cholinergic system is likely to be a shared neural substrate of the processes for perceptual learning and attention, both of which modulate neural encoding in an adaptive manner. Thus, a better understanding of the links between map plasticity and modulation of temporal coherence will likely lead to a more integrated view of learning and attention.
Collapse
Affiliation(s)
- Ryo Yokota
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | | | |
Collapse
|
33
|
Weinberger NM. Neuromusic research: some benefits of incorporating basic research on the neurobiology of auditory learning and memory. Front Syst Neurosci 2014; 7:128. [PMID: 24574978 PMCID: PMC3918647 DOI: 10.3389/fnsys.2013.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/31/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Norman M Weinberger
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Hearing Research, University of California Irvine, CA, USA
| |
Collapse
|
34
|
Kass MD, Rosenthal MC, Pottackal J, McGann JP. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 2013; 342:1389-1392. [PMID: 24337299 DOI: 10.1126/science.1244916] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The central nervous system rapidly learns that particular stimuli predict imminent danger. This learning is thought to involve associations between neutral and harmful stimuli in cortical and limbic brain regions, though associative neuroplasticity in sensory structures is increasingly appreciated. We observed the synaptic output of olfactory sensory neurons (OSNs) in individual mice before and after they learned that a particular odor indicated an impending foot shock. OSNs are the first cells in the olfactory system, physically contacting the odor molecules in the nose and projecting their axons to the brain's olfactory bulb. OSN output evoked by the shock-predictive odor was selectively facilitated after fear conditioning. These results indicate that affective information about a stimulus can be encoded in its very earliest representation in the nervous system.
Collapse
Affiliation(s)
- Marley D Kass
- Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Michelle C Rosenthal
- Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Joseph Pottackal
- Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - John P McGann
- Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854
| |
Collapse
|
35
|
Lee S, Jones SR. Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Front Hum Neurosci 2013; 7:869. [PMID: 24385958 PMCID: PMC3866567 DOI: 10.3389/fnhum.2013.00869] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/28/2013] [Indexed: 01/14/2023] Open
Abstract
Gamma frequency rhythms have been implicated in numerous studies for their role in healthy and abnormal brain function. The frequency band has been described to encompass as broad a range as 30-150 Hz. Crucial to understanding the role of gamma in brain function is an identification of the underlying neural mechanisms, which is particularly difficult in the absence of invasive recordings in macroscopic human signals such as those from magnetoencephalography (MEG) and electroencephalography (EEG). Here, we studied features of current dipole (CD) signals from two distinct mechanisms of gamma generation, using a computational model of a laminar cortical circuit designed specifically to simulate CDs in a biophysically principled manner (Jones et al., 2007, 2009). We simulated spiking pyramidal interneuronal gamma (PING) whose period is regulated by the decay time constant of GABAA-mediated synaptic inhibition and also subthreshold gamma driven by gamma-periodic exogenous excitatory synaptic drive. Our model predicts distinguishable CD features created by spiking PING compared to subthreshold driven gamma that can help to disambiguate mechanisms of gamma oscillations in human signals. We found that gamma rhythms in neocortical layer 5 can obscure a simultaneous, independent gamma in layer 2/3. Further, we arrived at a novel interpretation of the origin of high gamma frequency rhythms (100-150 Hz), showing that they emerged from a specific temporal feature of CDs associated with single cycles of PING activity and did not reflect a separate rhythmic process. Last we show that the emergence of observable subthreshold gamma required highly coherent exogenous drive. Our results are the first to demonstrate features of gamma oscillations in human current source signals that distinguish cellular and circuit level mechanisms of these rhythms and may help to guide understanding of their functional role.
Collapse
Affiliation(s)
- Shane Lee
- Department of Neuroscience, Brown University Providence, RI, USA
| | | |
Collapse
|
36
|
Headley DB, Paré D. In sync: gamma oscillations and emotional memory. Front Behav Neurosci 2013; 7:170. [PMID: 24319416 PMCID: PMC3836200 DOI: 10.3389/fnbeh.2013.00170] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022] Open
Abstract
Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.
Collapse
Affiliation(s)
- Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New JerseyNewark, NJ, USA
| | | |
Collapse
|
37
|
Courtin J, Karalis N, Gonzalez-Campo C, Wurtz H, Herry C. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem 2013; 113:82-9. [PMID: 24091205 DOI: 10.1016/j.nlm.2013.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/10/2013] [Accepted: 09/24/2013] [Indexed: 11/15/2022]
Abstract
Extinction of auditory fear conditioning induces a temporary inhibition of conditioned fear responses that can spontaneously reappear with the passage of time. Several lines of evidence indicate that extinction learning relies on the recruitment of specific neuronal populations within the basolateral amygdala. In contrast, post-extinction spontaneous fear recovery is thought to result from deficits in the consolidation of extinction memory within prefrontal neuronal circuits. Interestingly, recent data indicates that the strength of gamma oscillations in the basolateral amygdala during auditory fear conditioning correlates with retrieval of conditioned fear responses. In the present manuscript we evaluated the hypothesis that post-extinction spontaneous fear recovery might depend on the maintenance of gamma oscillations within the basolateral amygdala by using single unit and local field potential recordings in behaving mice. Our results indicate that gamma oscillations in the basolateral amygdala were enhanced following fear conditioning, whereas during extinction learning gamma profiles were more heterogeneous despite similar extinction learning rates. Remarkably, variations in the strength of gamma power within the basolateral amygdala between early and late stages of extinction linearly predicted the level of post-extinction spontaneous fear recovery. These data suggest that maintenance of gamma oscillations in the basolateral amygdala during extinction learning is a strong predictive factor of long term spontaneous fear recovery.
Collapse
Affiliation(s)
- J Courtin
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - N Karalis
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - C Gonzalez-Campo
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - H Wurtz
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - C Herry
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| |
Collapse
|
38
|
Bieszczad KM, Miasnikov AA, Weinberger NM. Remodeling sensory cortical maps implants specific behavioral memory. Neuroscience 2013; 246:40-51. [PMID: 23639876 DOI: 10.1016/j.neuroscience.2013.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Neural mechanisms underlying the capacity of memory to be rich in sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels the adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66-kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity was consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects' area of expansion and the tone that was strongest in each animal's memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation.
Collapse
Affiliation(s)
- K M Bieszczad
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States.
| | | | | |
Collapse
|