1
|
Shen PS, Willardson BM. Protein folding by the CCT/TRiC chaperone complex. Curr Opin Struct Biol 2025; 91:102999. [PMID: 39914052 PMCID: PMC11885017 DOI: 10.1016/j.sbi.2025.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 03/08/2025]
Abstract
The chaperonin-containing TCP-1 (CCT) complex, also known as TRiC, is an abundant and essential molecular chaperone responsible for folding a significant portion of the eukaryotic proteome. Prominent CCT folding clients include cytoskeletal proteins such as actin and tubulin, and proteins with β-propeller folds. Recent advances in cryo-EM have provided unprecedented insights into CCT's substrate-specific folding mechanisms. This review summarizes these discoveries, emphasizing how CCT utilizes its unique structural features to recognize and fold diverse substrates.
Collapse
Affiliation(s)
- Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City UT 84112, USA.
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo UT 84602, USA.
| |
Collapse
|
2
|
Suga A, Minegishi Y, Yamamoto M, Ueda K, Iwata T. Compound heterozygous mutations in a mouse model of Leber congenital amaurosis reveal the role of CCT2 in photoreceptor maintenance. Commun Biol 2024; 7:676. [PMID: 38830954 PMCID: PMC11148128 DOI: 10.1038/s42003-024-06384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
TRiC/CCT is a chaperonin complex required for the folding of cytoplasmic proteins. Although mutations in each subunit of TRiC/CCT are associated with various human neurodegenerative diseases, their impact in mammalian models has not yet been examined. A compound heterozygous mutation in CCT2 (p.[Thr400Pro]; p.[Arg516His]) is causal for Leber congenital amaurosis. Here, we generate mice carrying each mutation and show that Arg516His (R516H) homozygosity causes photoreceptor degeneration accompanied by a significant depletion of TRiC/CCT substrate proteins in the retina. In contrast, Thr400Pro (T400P) homozygosity results in embryonic lethality, and the compound heterozygous mutant (T400P/R516H) mouse showed aberrant cone cell lamination and died 2 weeks after birth. Finally, CCDC181 is identified as a interacting protein for CCTβ protein, and its localization to photoreceptor connecting cilia is compromised in the mutant mouse. Our results demonstrate the distinct impact of each mutation in vivo and suggest a requirement for CCTβ in ciliary maintenance.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
3
|
Kolesnikov AV, Murphy DP, Corbo JC, Kefalov VJ. Germline knockout of Nr2e3 protects photoreceptors in three distinct mouse models of retinal degeneration. Proc Natl Acad Sci U S A 2024; 121:e2316118121. [PMID: 38442152 PMCID: PMC10945761 DOI: 10.1073/pnas.2316118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 03/07/2024] Open
Abstract
Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Daniel P. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| |
Collapse
|
4
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. Mol Cell 2023; 83:3852-3868.e6. [PMID: 37852256 PMCID: PMC10841713 DOI: 10.1016/j.molcel.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Mikaila I Sass
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Theresa M Smith
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ethan J Carter
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Nathan E Gladden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Margot Riggi
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Janet H Iwasa
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA.
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539424. [PMID: 37205387 PMCID: PMC10187262 DOI: 10.1101/2023.05.04.539424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mikaila I. Sass
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - W. Grant Ludlam
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Theresa M. Smith
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Ethan J. Carter
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Nathan E. Gladden
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Margot Riggi
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Peter S. Shen
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
6
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
7
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
8
|
Minegishi Y, Sheng X, Yoshitake K, Sergeev Y, Iejima D, Shibagaki Y, Monma N, Ikeo K, Furuno M, Zhuang W, Liu Y, Rong W, Hattori S, Iwata T. CCT2 Mutations Evoke Leber Congenital Amaurosis due to Chaperone Complex Instability. Sci Rep 2016; 6:33742. [PMID: 27645772 PMCID: PMC5028737 DOI: 10.1038/srep33742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a hereditary early-onset retinal dystrophy that is accompanied by severe macular degeneration. In this study, novel compound heterozygous mutations were identified as LCA-causative in chaperonin-containing TCP-1, subunit 2 (CCT2), a gene that encodes the molecular chaperone protein, CCTβ. The zebrafish mutants of CCTβ are known to exhibit the eye phenotype while its mutation and association with human disease have been unknown. The CCT proteins (CCT α-θ) forms ring complex for its chaperon function. The LCA mutants of CCTβ, T400P and R516H, are biochemically instable and the affinity for the adjacent subunit, CCTγ, was affected distinctly in both mutants. The patient-derived induced pluripotent stem cells (iPSCs), carrying these CCTβ mutants, were less proliferative than the control iPSCs. Decreased proliferation under Cct2 knockdown in 661W cells was significantly rescued by wild-type CCTβ expression. However, the expression of T400P and R516H didn’t exhibit the significant effect. In mouse retina, both CCTβ and CCTγ are expressed in the retinal ganglion cells and connecting cilium of photoreceptor cells. The Cct2 knockdown decreased its major client protein, transducing β1 (Gβ1). Here we report the novel LCA mutations in CCTβ and the impact of chaperon disability by these mutations in cellular biology.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - XunLun Sheng
- Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China
| | - Kazutoshi Yoshitake
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daisuke Iejima
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Science, Kitasato University, Tokyo, Japan
| | - Norikazu Monma
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Masaaki Furuno
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Life Science Accelerator Technology Group, Transcriptome Technology Team, Yokohama, Japan
| | - Wenjun Zhuang
- Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China
| | - Yani Liu
- Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China
| | - Weining Rong
- Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Science, Kitasato University, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
9
|
Xie K, Masuho I, Shih CC, Cao Y, Sasaki K, Lai CWJ, Han PL, Ueda H, Dessauer CW, Ehrlich ME, Xu B, Willardson BM, Martemyanov KA. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. eLife 2015; 4. [PMID: 26613416 PMCID: PMC4728126 DOI: 10.7554/elife.10451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, United States
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chun Wan J Lai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, United States
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
10
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
11
|
Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proc Natl Acad Sci U S A 2015; 112:2413-8. [PMID: 25675501 DOI: 10.1073/pnas.1419595112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein signaling depends on the ability of the individual subunits of the G-protein heterotrimer to assemble into a functional complex. Formation of the G-protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings Gβ and Gγ together. This system includes cytosolic chaperonin containing TCP-1 (CCT; also called TRiC) and its cochaperone phosducin-like protein 1 (PhLP1). Two key intermediates in the Gβγ assembly process, the Gβ-CCT and the PhLP1-Gβ-CCT complexes, were isolated and analyzed by a hybrid structural approach using cryo-electron microscopy, chemical cross-linking coupled with mass spectrometry, and unnatural amino acid cross-linking. The structures show that Gβ interacts with CCT in a near-native state through interactions of the Gγ-binding region of Gβ with the CCTγ subunit. PhLP1 binding stabilizes the Gβ fold, disrupting interactions with CCT and releasing a PhLP1-Gβ dimer for assembly with Gγ. This view provides unique insight into the interplay between CCT and a cochaperone to orchestrate the folding of a protein substrate.
Collapse
|
12
|
Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling. PLoS One 2015; 10:e0117129. [PMID: 25659125 PMCID: PMC4319785 DOI: 10.1371/journal.pone.0117129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
G protein β subunits (Gβ) play essential roles in phototransduction as part of G protein βγ (Gβγ) and regulator of G protein signaling 9 (RGS9)-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2) and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.
Collapse
|
13
|
Baehr W. Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture. Invest Ophthalmol Vis Sci 2014; 55:8653-66. [PMID: 25550383 DOI: 10.1167/iovs.14-16066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This lecture details the elucidation of cGMP phosphodiesterase (PDEδ), discovered 25 years ago by Joe Beavo at the University of Washington. PDEδ, once identified as a fourth PDE6 subunit, is now regarded as a promiscuous prenyl-binding protein and important chaperone of prenylated small G proteins of the Ras superfamily and prenylated proteins of phototransduction. Alfred Wittinghofer's group in Germany showed that PDEδ forms an immunoglobulin-like β-sandwich fold that is closely related in structure to other lipid-binding proteins, for example, Uncoordinated 119 (UNC119) and RhoGDI. His group cocrystallized PDEδ with ARL (Arf-like) 2(GTP), and later with farnesylated Rheb (ras homolog expressed in brain). PDEδ specifically accommodates farnesyl and geranylgeranyl moieties in the absence of bound protein. Germline deletion of the Pde6d gene encoding PDEδ impeded transport of rhodopsin kinase (GRK1) and PDE6 to outer segments, causing slowly progressing, recessive retinitis pigmentosa. A rare PDE6D null allele in human patients, discovered by Tania Attié-Bitach in France, specifically impeded trafficking of farnesylated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase (INPP5E) to cilia, causing severe syndromic ciliopathy (Joubert syndrome). Binding of cargo to PDEδ is controlled by Arf-like proteins, ARL2 and ARL3, charged with guanosine-5'-triphosphate (GTP). Arf-like proteins 2 and 3 are unprenylated small GTPases that serve as cargo displacement factors. The lifetime of ARL3(GTP) is controlled by its GTPase-activating protein, retinitis pigmentosa protein 2 (RP2), which accelerates GTPase activity up to 90,000-fold. RP2 null alleles in human patients are associated with severe X-linked retinitis pigmentosa (XLRP). Germline deletion of RP2 in mouse, however, causes only a mild form of XLRP. Absence of RP2 prolongs the activity of ARL3(GTP) that, in turn, impedes PDE6δ-cargo interactions and trafficking of prenylated protein to the outer segments. Hyperactive ARL3(GTP), acting as a hyperactive cargo displacement factor, is predicted to be key in the pathobiology of RP2-XLRP.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Neurobiology and Anatomy, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Sinha S, Belcastro M, Datta P, Seo S, Sokolov M. Essential role of the chaperonin CCT in rod outer segment biogenesis. Invest Ophthalmol Vis Sci 2014; 55:3775-85. [PMID: 24854858 DOI: 10.1167/iovs.14-13889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE While some evidence suggests an essential role for the chaperonin containing t-complex protein 1 (CCT) in ciliogenesis, this function remains poorly understood mechanistically. We used transgenic mice, previously generated in our lab, and characterized by a genetically-induced suppression of CCT in rod photoreceptors as well as a malformation of the rod sensory cilia, the outer segments, to gain new insights into this underlying molecular mechanism. METHODS The CCT activity in rod photoreceptors of mice was suppressed by overexpressing the chaperonin inhibitor, phosducin-like protein short, and the ensuing changes of cellular morphology were analyzed by light and electron microscopy. Protein expression levels were studied by fluorescent microscopy and Western blotting. RESULTS Suppressing the chaperonin made the photoreceptors incompetent to build their outer segments. Specifically, the CCT-deficient rods appeared unable to expand the outer segment plasma membrane, and accommodate growth of this compartment. Seeking the molecular mechanisms underlying such a shortcoming, we found that the affected rods could not express normal levels of Bardet-Biedl Syndrome (BBS) proteins 2, 5, and 7 and, owing to that deficiency, were unable to assemble the BBSome, a multisubunit complex responsible for ciliary trafficking. A similar effect in response to the chaperonin suppression was also observed in cultured ciliated cells. CONCLUSIONS Our data provide new evidence indicating the essential role of the chaperonin CCT in the biogenesis of vertebrate photoreceptor sensory cilia, and suggest that it may be due to the direct participation of the chaperonin in the posttranslational processing of selected BBS proteins and assembly of the BBSome.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States
| | - Marycharmain Belcastro
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
15
|
Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem 2013; 289:4490-502. [PMID: 24375412 DOI: 10.1074/jbc.m113.542159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.
Collapse
Affiliation(s)
- Christopher M Tracy
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | | | | | | | | | | | | | | | | | | |
Collapse
|