1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Asadpour A, Tan H, Lenfesty B, Wong-Lin K. Of Rodents and Primates: Time-Variant Gain in Drift-Diffusion Decision Models. COMPUTATIONAL BRAIN & BEHAVIOR 2024; 7:195-206. [PMID: 38798787 PMCID: PMC11111503 DOI: 10.1007/s42113-023-00194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 05/29/2024]
Abstract
Sequential sampling models of decision-making involve evidence accumulation over time and have been successful in capturing choice behaviour. A popular model is the drift-diffusion model (DDM). To capture the finer aspects of choice reaction times (RTs), time-variant gain features representing urgency signals have been implemented in DDM that can exhibit slower error RTs than correct RTs. However, time-variant gain is often implemented on both DDM's signal and noise features, with the assumption that increasing gain on the drift rate (due to urgency) is similar to DDM with collapsing decision bounds. Hence, it is unclear whether gain effects on just the signal or noise feature can lead to a different choice behaviour. This work presents an alternative DDM variant, focusing on the implications of time-variant gain mechanisms, constrained by model parsimony. Specifically, using computational modelling of choice behaviour of rats, monkeys, and humans, we systematically showed that time-variant gain only on the DDM's noise was sufficient to produce slower error RTs, as in monkeys, while time-variant gain only on drift rate leads to faster error RTs, as in rodents. We also found minimal effects of time-variant gain in humans. By highlighting these patterns, this study underscores the utility of group-level modelling in capturing general trends and effects consistent across species. Thus, time-variant gain on DDM's different components can lead to different choice behaviours, shed light on the underlying time-variant gain mechanisms for different species, and can be used for systematic data fitting. Supplementary Information The online version contains supplementary material available at 10.1007/s42113-023-00194-1.
Collapse
Affiliation(s)
- Abdoreza Asadpour
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland UK
| | - Hui Tan
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland UK
- Département Electronique et Technologies Numériques, Polytech Nantes, Nantes Université, Nantes, France
| | - Brendan Lenfesty
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland UK
| |
Collapse
|
3
|
Iwamoto M, Yonekura S, Atsumi N, Hirabayashi S, Kanazawa H, Kuniyoshi Y. Respiratory entrainment of the locus coeruleus modulates arousal level to avoid physical risks from external vibration. Sci Rep 2023; 13:7069. [PMID: 37127727 PMCID: PMC10151378 DOI: 10.1038/s41598-023-32995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Slow rocking chairs can easily put people to sleep, while violent shaking, such as during earthquakes, may lead to rapid awakening. However, the influence of external body vibrations on arousal remains unclear. Herein, a computational model of a locus coeruleus (LC)-norepinephrine (NE) system and cardio-respiratory system were used to show that respiratory entrainment of the LC modulates arousal levels, which is an adaptation to avoid physical risks from external vibration. External vibrations of sinusoidal waves with different frequencies ranging from 0.1 to 20 [Hz] were applied to the LC based on the results of previous studies. We found that respiratory entrainment of the LC decreased the breathing rate (BR) and heart rate (HR) to maintain the HR within its normal range. Furthermore, 1:1 phase locking enhanced arousal level while phase-amplitude coupling decreased it for larger vibration stimuli. These findings suggest that respiratory entrainment of the LC might automatically modulate cardio-respiratory system homeostasis and arousal levels for performance readiness (fight/flight or freeze) to avoid physical risks from larger external vibrations.
Collapse
Affiliation(s)
- Masami Iwamoto
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Shogo Yonekura
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Noritoshi Atsumi
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Satoko Hirabayashi
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Hoshinori Kanazawa
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuo Kuniyoshi
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Zerekidze A, Li M, Javaheripour N, Huff L, Weiss T, Walter M, Wagner G. Neural Correlates of Impaired Cognitive Control in Individuals with Methamphetamine Dependence: An fMRI Study. Brain Sci 2023; 13:brainsci13020197. [PMID: 36831741 PMCID: PMC9954217 DOI: 10.3390/brainsci13020197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Impaired cognitive and behavioral control has often been observed in people who use methamphetamine (MA). However, a comprehensive understanding of the neural substrates underlying these impairments is still lacking. The goal of the present study was to study the neural correlates of impaired cognitive control in individuals with MA dependence according to DSM-IV criteria. Eighteen individuals with MA dependence and 21 healthy controls were investigated using Stroop task, fMRI, and an impulsivity questionnaire. Overall, patients were found to have significantly poorer accuracy on the Stroop task and higher self-rated impulsivity. Comparing brain activations during the task, decreased activation in the dorsolateral prefrontal cortex (DLPFC), anterior midcingulate cortex (aMCC), and dorsal striatum was observed in individuals with MA dependence, compared to healthy controls. Altered fMRI signal in DLPFC and aMCC significantly correlated with impaired behavioral task performance in individuals with MA dependence. Furthermore, significantly lower and pronounced brain activations in the MA group were additionally detected in several sensory cortical regions, i.e., in the visual, auditory, and somatosensory cortices. The results of the current study provide evidence for the negative impact of chronic crystal meth consumption on the proper functioning of the fronto-cingulate and striatal brain regions, presumably underlying the often-observed deficits in executive functions in individuals with MA use disorder. As a new finding, we also revealed abnormal activation in several sensory brain regions, suggesting the negative effect of MA use on the proper neural activity of these regions. This blunted activation could be the cause of the observed deficits in executive functions and the associated altered brain activation in higher-level brain networks.
Collapse
Affiliation(s)
- Ani Zerekidze
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Laura Huff
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
5
|
Roach JP, Churchland AK, Engel TA. Choice selective inhibition drives stability and competition in decision circuits. Nat Commun 2023; 14:147. [PMID: 36627310 PMCID: PMC9832138 DOI: 10.1038/s41467-023-35822-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
During perceptual decision-making, the firing rates of cortical neurons reflect upcoming choices. Recent work showed that excitatory and inhibitory neurons are equally selective for choice. However, the functional consequences of inhibitory choice selectivity in decision-making circuits are unknown. We developed a circuit model of decision-making which accounts for the specificity of inputs to and outputs from inhibitory neurons. We found that selective inhibition expands the space of circuits supporting decision-making, allowing for weaker or stronger recurrent excitation when connected in a competitive or feedback motif. The specificity of inhibitory outputs sets the trade-off between speed and accuracy of decisions by either stabilizing or destabilizing the saddle-point dynamics underlying decisions in the circuit. Recurrent neural networks trained to make decisions display the same dependence on inhibitory specificity and the strength of recurrent excitation. Our results reveal two concurrent roles for selective inhibition in decision-making circuits: stabilizing strongly connected excitatory populations and maximizing competition between oppositely selective populations.
Collapse
Affiliation(s)
- James P Roach
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne K Churchland
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Esnaola-Acebes JM, Roxin A, Wimmer K. Flexible integration of continuous sensory evidence in perceptual estimation tasks. Proc Natl Acad Sci U S A 2022; 119:e2214441119. [PMID: 36322720 PMCID: PMC9659402 DOI: 10.1073/pnas.2214441119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Temporal accumulation of evidence is crucial for making accurate judgments based on noisy or ambiguous sensory input. The integration process leading to categorical decisions is thought to rely on competition between neural populations, each encoding a discrete categorical choice. How recurrent neural circuits integrate evidence for continuous perceptual judgments is unknown. Here, we show that a continuous bump attractor network can integrate a circular feature, such as stimulus direction, nearly optimally. As required by optimal integration, the population activity of the network unfolds on a two-dimensional manifold, in which the position of the network's activity bump tracks the stimulus average, and, simultaneously, the bump amplitude tracks stimulus uncertainty. Moreover, the temporal weighting of sensory evidence by the network depends on the relative strength of the stimulus compared to the internally generated bump dynamics, yielding either early (primacy), uniform, or late (recency) weighting. The model can flexibly switch between these regimes by changing a single control parameter, the global excitatory drive. We show that this mechanism can quantitatively explain individual temporal weighting profiles of human observers, and we validate the model prediction that temporal weighting impacts reaction times. Our findings point to continuous attractor dynamics as a plausible neural mechanism underlying stimulus integration in perceptual estimation tasks.
Collapse
Affiliation(s)
- Jose M. Esnaola-Acebes
- Computational Neuroscience Group, Centre de Recerca Matemàtica, 08193 Bellaterra (Barcelona), Spain
| | - Alex Roxin
- Computational Neuroscience Group, Centre de Recerca Matemàtica, 08193 Bellaterra (Barcelona), Spain
| | - Klaus Wimmer
- Computational Neuroscience Group, Centre de Recerca Matemàtica, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
7
|
Derosiere G, Thura D, Cisek P, Duque J. Hasty sensorimotor decisions rely on an overlap of broad and selective changes in motor activity. PLoS Biol 2022; 20:e3001598. [PMID: 35389982 PMCID: PMC9017893 DOI: 10.1371/journal.pbio.3001598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Humans and other animals are able to adjust their speed–accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context. Many have argued that the regulation of the speed-accuracy tradeoff relies on an urgency signal, which implements "collapsing decision thresholds" by tuning neural activity in a global manner in decision-related structures. This study indicates that the reality is more subtle, with several aspects of "urgency" being specifically targeted to particular corticospinal populations within the motor system.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Laboratory of Neurophysiology, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| | - David Thura
- Lyon Neuroscience Research Center–Impact Team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Paul Cisek
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Julie Duque
- Institute of Neuroscience, Laboratory of Neurophysiology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Hernández-Navarro L, Hermoso-Mendizabal A, Duque D, de la Rocha J, Hyafil A. Proactive and reactive accumulation-to-bound processes compete during perceptual decisions. Nat Commun 2021; 12:7148. [PMID: 34880219 PMCID: PMC8655090 DOI: 10.1038/s41467-021-27302-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Standard models of perceptual decision-making postulate that a response is triggered in reaction to stimulus presentation when the accumulated stimulus evidence reaches a decision threshold. This framework excludes however the possibility that informed responses are generated proactively at a time independent of stimulus. Here, we find that, in a free reaction time auditory task in rats, reactive and proactive responses coexist, suggesting that choice selection and motor initiation, commonly viewed as serial processes, are decoupled in general. We capture this behavior by a novel model in which proactive and reactive responses are triggered whenever either of two competing processes, respectively Action Initiation or Evidence Accumulation, reaches a bound. In both types of response, the choice is ultimately informed by the Evidence Accumulation process. The Action Initiation process readily explains premature responses, contributes to urgency effects at long reaction times and mediates the slowing of the responses as animals get satiated and tired during sessions. Moreover, it successfully predicts reaction time distributions when the stimulus was either delayed, advanced or omitted. Overall, these results fundamentally extend standard models of evidence accumulation in decision making by showing that proactive and reactive processes compete for the generation of responses.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Hyafil
- Center for Brain and Cognition, Universitat Pompeu Fabra, Ramón Trias Fargas, 25, 08018, Barcelona, Spain.
- Center of Mathematical Research, Campus UAB Edifici C, 08193, Bellaterra (Barcelona), Spain.
| |
Collapse
|
9
|
Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments. Nat Neurosci 2021; 24:987-997. [PMID: 33903770 DOI: 10.1038/s41593-021-00839-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023]
Abstract
Many decisions under uncertainty entail the temporal accumulation of evidence that informs about the state of the environment. When environments are subject to hidden changes in their state, maximizing accuracy and reward requires non-linear accumulation of evidence. How this adaptive, non-linear computation is realized in the brain is unknown. We analyzed human behavior and cortical population activity (measured with magnetoencephalography) recorded during visual evidence accumulation in a changing environment. Behavior and decision-related activity in cortical regions involved in action planning exhibited hallmarks of adaptive evidence accumulation, which could also be implemented by a recurrent cortical microcircuit. Decision dynamics in action-encoding parietal and frontal regions were mirrored in a frequency-specific modulation of the state of the visual cortex that depended on pupil-linked arousal and the expected probability of change. These findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related feedback to the sensory cortex.
Collapse
|
10
|
Prat-Ortega G, Wimmer K, Roxin A, de la Rocha J. Flexible categorization in perceptual decision making. Nat Commun 2021; 12:1283. [PMID: 33627643 PMCID: PMC7904789 DOI: 10.1038/s41467-021-21501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Perceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.
Collapse
Affiliation(s)
- Genís Prat-Ortega
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
| | - Klaus Wimmer
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics, Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics, Barcelona, Spain
| | - Jaime de la Rocha
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
| |
Collapse
|
11
|
Joshi A, Wang DH, Watterson S, McClean PL, Behera CK, Sharp T, Wong-Lin K. Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer's disease. Neuropharmacology 2020; 174:108118. [PMID: 32380022 PMCID: PMC7322519 DOI: 10.1016/j.neuropharm.2020.108118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-specific neurodegenerative disease that compromises cognitive functioning and impacts the quality of life of an individual. Pathologically, AD is characterised by abnormal accumulation of beta-amyloid (Aβ) and hyperphosphorylated tau protein. Despite research advances over the last few decades, there is currently still no cure for AD. Although, medications are available to control some behavioural symptoms and slow the disease's progression, most prescribed medications are based on cholinesterase inhibitors. Over the last decade, there has been increased attention towards novel drugs, targeting alternative neurotransmitter pathways, particularly those targeting serotonergic (5-HT) system. In this review, we focused on 5-HT receptor (5-HTR) mediated signalling and drugs that target these receptors. These pathways regulate key proteins and kinases such as GSK-3 that are associated with abnormal levels of Aβ and tau in AD. We then review computational studies related to 5-HT signalling pathways with the potential for providing deeper understanding of AD pathologies. In particular, we suggest that multiscale and multilevel modelling approaches could potentially provide new insights into AD mechanisms, and towards discovering novel 5-HTR based therapeutic targets.
Collapse
Affiliation(s)
- Alok Joshi
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK.
| | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; School of System Science, Beijing Normal University, Beijing, China
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Chandan K Behera
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK.
| |
Collapse
|
12
|
Naber M, Murphy P. Pupillometric investigation into the speed-accuracy trade-off in a visuo-motor aiming task. Psychophysiology 2019; 57:e13499. [PMID: 31736089 PMCID: PMC7027463 DOI: 10.1111/psyp.13499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Convergent lines of evidence suggest that fluctuations in the size of the pupil may be associated with the trade‐off between the speed (adrenergic, sympathetic) and accuracy (cholinergic, parasympathetic) of behavior across a variety of task contexts. Here, we explored whether pupil size was related to this trade‐off during a visuospatial motor aiming task. Participants were shown visual targets at random locations on a screen and were instructed and incentivized to move a computer mouse‐controlled cursor to the center of the targets, either as fast as possible, as accurately as possible, or to strike a balance between the two. Behavioral results showed that these instructions led to typical speed‐accuracy trade‐off effects on movement reaction times and hit distances to target centers. Pupillometric analyses revealed that movements were faster and less accurate when participants had relatively large baseline pupil sizes, as measured before target onset. Furthermore, trial‐evoked pupil dilation was related specifically to a bias toward speed in the trade‐off and the speed of the ballistic and error‐correction phases of the motor responses such that larger pupils predicted shorter latencies and higher movement speeds. Pupil responses were also associated with performance in a manner that may reflect the combined influence of a number of factors, including the generation of dynamic urgency and an arousal response to negative feedback. Our results generally support a role for pupil‐linked arousal in regulating the trade‐off between speed and accuracy, while also highlighting how the trial‐related pupil response can exhibit multifaceted, temporally discrete associations with behavior. The eye’s pupil has been considered a “window into the soul” as its dynamics are related to a wide variety of cognitive processes. Here, we present convergent evidence that both slow, prestimulus fluctuations and fast, event‐related changes in pupil diameter are sensitive to a fundamental trade‐off between the speed and accuracy of visuo‐motor actions—an association that holds for both instructed and endogenous variation in this trade‐off. This finding complements a growing literature linking pupil size to adaptive, contextually appropriate changes in behavior.
Collapse
Affiliation(s)
- Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Vision Sciences Laboratory, Harvard University, Cambridge, Massachusetts
| | - Peter Murphy
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Regulation of evidence accumulation by pupil-linked arousal processes. Nat Hum Behav 2019; 3:636-645. [PMID: 31190022 DOI: 10.1038/s41562-019-0551-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022]
Abstract
Effective decision-making requires integrating evidence over time. For simple perceptual decisions, previous work suggests that humans and animals can integrate evidence over time, but not optimally. This suboptimality could arise from sources including neuronal noise, weighting evidence unequally over time (that is, the 'integration kernel'), previous trial effects and an overall bias. Here, using an auditory evidence accumulation task in humans, we report that people exhibit all four suboptimalities, some of which covary across the population. Pupillometry shows that only noise and the integration kernel are related to the change in pupil response. Moreover, these two different suboptimalities were related to different aspects of the pupil signal, with the individual differences in pupil response associated with individual differences in the integration kernel, while trial-by-trial fluctuations in pupil response were associated with trial-by-trial fluctuations in noise. These results suggest that different suboptimalities relate to distinct pupil-linked processes, possibly related to tonic and phasic norepinephrine activity.
Collapse
|
14
|
Guedj C, Reynaud A, Monfardini E, Salemme R, Farnè A, Meunier M, Hadj-Bouziane F. Atomoxetine modulates the relationship between perceptual abilities and response bias. Psychopharmacology (Berl) 2019; 236:3641-3653. [PMID: 31384989 PMCID: PMC6954008 DOI: 10.1007/s00213-019-05336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
Elucidation of how neuromodulators influence motivated behaviors is a major challenge of neuroscience research. It has been proposed that the locus-cœruleus-norepinephrine system promotes behavioral flexibility and provides resources required to face challenges in a wide range of cognitive processes. Both theoretical models and computational models suggest that the locus-cœruleus-norepinephrine system tunes neural gain in brain circuits to optimize behavior. However, to the best of our knowledge, empirical proof demonstrating the role of norepinephrine in performance optimization is scarce. Here, we modulated norepinephrine transmission in monkeys performing a Go/No-Go discrimination task using atomoxetine, a norepinephrine-reuptake inhibitor. We tested the optimization hypothesis by assessing perceptual sensitivity, response bias, and their functional relationship within the framework of the signal detection theory. We also manipulated the contingencies of the task (level of stimulus discriminability, target stimulus frequency, and decision outcome values) to modulate the relationship between sensitivity and response bias. We found that atomoxetine increased the subject's perceptual sensitivity to discriminate target stimuli regardless of the task contingency. Atomoxetine also improved the functional relationship between sensitivity and response bias, leading to a closer fit with the optimal strategy in different contexts. In addition, atomoxetine tended to reduce reaction time variability. Taken together, these findings support a role of norepinephrine transmission in optimizing response strategy.
Collapse
Affiliation(s)
- Carole Guedj
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, 16 Avenue Doyen Lépine, 69500, Bron, France. .,University UCBL Lyon 1, F-69000, Villeurbanne, France.
| | - Amélie Reynaud
- Present Address: INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct
Team, 16 Avenue Doyen Lépine, 69500 Bron, France ,University UCBL Lyon 1, F-69000 Villeurbanne, France
| | - Elisabetta Monfardini
- Present Address: INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct
Team, 16 Avenue Doyen Lépine, 69500 Bron, France ,University UCBL Lyon 1, F-69000 Villeurbanne, France
| | - Romeo Salemme
- Present Address: INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct
Team, 16 Avenue Doyen Lépine, 69500 Bron, France ,University UCBL Lyon 1, F-69000 Villeurbanne, France
| | - Alessandro Farnè
- Present Address: INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct
Team, 16 Avenue Doyen Lépine, 69500 Bron, France ,University UCBL Lyon 1, F-69000 Villeurbanne, France
| | - Martine Meunier
- Present Address: INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct
Team, 16 Avenue Doyen Lépine, 69500 Bron, France ,University UCBL Lyon 1, F-69000 Villeurbanne, France
| | - Fadila Hadj-Bouziane
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, 16 Avenue Doyen Lépine, 69500, Bron, France. .,University UCBL Lyon 1, F-69000, Villeurbanne, France.
| |
Collapse
|
15
|
O'Connell RG, Shadlen MN, Wong-Lin K, Kelly SP. Bridging Neural and Computational Viewpoints on Perceptual Decision-Making. Trends Neurosci 2018; 41:838-852. [PMID: 30007746 PMCID: PMC6215147 DOI: 10.1016/j.tins.2018.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
Sequential sampling models have provided a dominant theoretical framework guiding computational and neurophysiological investigations of perceptual decision-making. While these models share the basic principle that decisions are formed by accumulating sensory evidence to a bound, they come in many forms that can make similar predictions of choice behaviour despite invoking fundamentally different mechanisms. The identification of neural signals that reflect some of the core computations underpinning decision formation offers new avenues for empirically testing and refining key model assumptions. Here, we highlight recent efforts to explore these avenues and, in so doing, consider the conceptual and methodological challenges that arise when seeking to infer decision computations from complex neural data.
Collapse
Affiliation(s)
- Redmond G O'Connell
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland.
| | - Michael N Shadlen
- Howard Hughes Medical Institute and Department of Neuroscience, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behaviour Institute and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, Derry, BT48 7JL, UK
| | - Simon P Kelly
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Steinemann NA, O'Connell RG, Kelly SP. Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy. Nat Commun 2018; 9:3627. [PMID: 30194305 PMCID: PMC6128824 DOI: 10.1038/s41467-018-06117-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 08/09/2018] [Indexed: 01/10/2023] Open
Abstract
When decisions are made under speed pressure, "urgency" signals elevate neural activity toward action-triggering thresholds independent of the sensory evidence, thus incurring a cost to choice accuracy. While urgency signals have been observed in brain circuits involved in preparing actions, their influence at other levels of the sensorimotor pathway remains unknown. We used a novel contrast-comparison paradigm to simultaneously trace the dynamics of sensory evidence encoding, evidence accumulation, motor preparation, and muscle activation in humans. Results indicate speed pressure impacts multiple sensorimotor levels but in crucially distinct ways. Evidence-independent urgency was applied to cortical action-preparation signals and downstream muscle activation, but not directly to upstream levels. Instead, differential sensory evidence encoding was enhanced in a way that partially countered the negative impact of motor-level urgency on accuracy, and these opposing sensory-boost and motor-urgency effects had knock-on effects on the buildup and pre-response amplitude of a motor-independent representation of cumulative evidence.
Collapse
Affiliation(s)
- Natalie A Steinemann
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, 10031, USA.
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, 2, Ireland
| | - Simon P Kelly
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, 10031, USA.
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, 4, Ireland.
| |
Collapse
|
17
|
Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines. J Neurosci 2018; 38:7476-7491. [PMID: 30037827 PMCID: PMC6104304 DOI: 10.1523/jneurosci.0514-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females, 5 males) at “rest” under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α1 norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), D2-like dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics. SIGNIFICANCE STATEMENT The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at “rest.” We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.
Collapse
|
18
|
Pfeffer T, Avramiea AE, Nolte G, Engel AK, Linkenkaer-Hansen K, Donner TH. Catecholamines alter the intrinsic variability of cortical population activity and perception. PLoS Biol 2018; 16:e2003453. [PMID: 29420565 PMCID: PMC5821404 DOI: 10.1371/journal.pbio.2003453] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/21/2018] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of "scale-free" population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation-inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arthur-Ervin Avramiea
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Linkenkaer-Hansen
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Tobias H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Joshi A, Youssofzadeh V, Vemana V, McGinnity TM, Prasad G, Wong-Lin K. An integrated modelling framework for neural circuits with multiple neuromodulators. J R Soc Interface 2017; 14:rsif.2016.0902. [PMID: 28100828 PMCID: PMC5310738 DOI: 10.1098/rsif.2016.0902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies.
Collapse
Affiliation(s)
- Alok Joshi
- School of Computer Science, University of Manchester, Manchester, UK
| | - Vahab Youssofzadeh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vinith Vemana
- Computer Science and Engineering, Indian Institute of Technology (IIT) Jodhpur, Jodhpur, India
| | - T M McGinnity
- Intelligent Systems Research Centre (ISRC), University of Ulster, Derry-Londonderry, UK.,College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Girijesh Prasad
- Intelligent Systems Research Centre (ISRC), University of Ulster, Derry-Londonderry, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre (ISRC), University of Ulster, Derry-Londonderry, UK
| |
Collapse
|
20
|
Wong-Lin K, Wang DH, Moustafa AA, Cohen JY, Nakamura K. Toward a multiscale modeling framework for understanding serotonergic function. J Psychopharmacol 2017; 31:1121-1136. [PMID: 28417684 PMCID: PMC5606304 DOI: 10.1177/0269881117699612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin.
Collapse
Affiliation(s)
- KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Derry~Londonderry, UK
| | - Da-Hui Wang
- School of Systems Science, and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, and Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, Australia
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
21
|
Cognitive control, dynamic salience, and the imperative toward computational accounts of neuromodulatory function. Behav Brain Sci 2017; 39:e227. [DOI: 10.1017/s0140525x15001983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe draw attention to studies indicating that phasic arousal increases interference effects in tasks necessitating the recruitment of cognitive control. We suggest that arousal-biased competition models such as GANE (glutamate amplifies noradrenergic effects) may be able to explain these findings by taking into account dynamic, within-trial changes in the relative salience of task-relevant and task-irrelevant features. However, testing this hypothesis requires a computational model.
Collapse
|
22
|
Murphy PR, Boonstra E, Nieuwenhuis S. Global gain modulation generates time-dependent urgency during perceptual choice in humans. Nat Commun 2016; 7:13526. [PMID: 27882927 PMCID: PMC5123079 DOI: 10.1038/ncomms13526] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
Decision-makers must often balance the desire to accumulate information with the costs of protracted deliberation. Optimal, reward-maximizing decision-making can require dynamic adjustment of this speed/accuracy trade-off over the course of a single decision. However, it is unclear whether humans are capable of such time-dependent adjustments. Here, we identify several signatures of time-dependency in human perceptual decision-making and highlight their possible neural source. Behavioural and model-based analyses reveal that subjects respond to deadline-induced speed pressure by lowering their criterion on accumulated perceptual evidence as the deadline approaches. In the brain, this effect is reflected in evidence-independent urgency that pushes decision-related motor preparation signals closer to a fixed threshold. Moreover, we show that global modulation of neural gain, as indexed by task-related fluctuations in pupil diameter, is a plausible biophysical mechanism for the generation of this urgency. These findings establish context-sensitive time-dependency as a critical feature of human decision-making. Decision-making balances the benefits of additional information with the cost of time, but it is unclear whether humans adjust this balance within individual decisions. Here, authors show that we do make such adjustments to suit contextual demands and suggest that these are driven by modulation of neural gain.
Collapse
Affiliation(s)
- Peter R Murphy
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, The Netherlands.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Evert Boonstra
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, The Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, The Netherlands
| |
Collapse
|
23
|
Iglesias S, Tomiello S, Schneebeli M, Stephan KE. Models of neuromodulation for computational psychiatry. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 27653804 DOI: 10.1002/wcs.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
Abstract
Psychiatry faces fundamental challenges: based on a syndrome-based nosology, it presently lacks clinical tests to infer on disease processes that cause symptoms of individual patients and must resort to trial-and-error treatment strategies. These challenges have fueled the recent emergence of a novel field-computational psychiatry-that strives for mathematical models of disease processes at physiological and computational (information processing) levels. This review is motivated by one particular goal of computational psychiatry: the development of 'computational assays' that can be applied to behavioral or neuroimaging data from individual patients and support differential diagnosis and guiding patient-specific treatment. Because the majority of available pharmacotherapeutic approaches in psychiatry target neuromodulatory transmitters, models that infer (patho)physiological and (patho)computational actions of different neuromodulatory transmitters are of central interest for computational psychiatry. This article reviews the (many) outstanding questions on the computational roles of neuromodulators (dopamine, acetylcholine, serotonin, and noradrenaline), outlines available evidence, and discusses promises and pitfalls in translating these findings to clinical applications. WIREs Cogn Sci 2017, 8:e1420. doi: 10.1002/wcs.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Sara Tomiello
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Maya Schneebeli
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
24
|
Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond. Behav Brain Res 2016; 311:110-121. [DOI: 10.1016/j.bbr.2016.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
|
25
|
Abstract
In spite of the increasing number of studies on insight in psychiatry and also in neurology and psychology, its nature is still elusive. It encompasses at least three fundamental characteristics: the awareness of suffering from an illness, an understanding of the cause and source of this suffering, and an acknowledgment of the need for treatment. As such, insight is fundamental for patients' management, prognosis, and treatment. Not surprisingly, the majority of available data, which have been gathered on schizophrenia, show a relationship between low insight and poorer outcomes. For mood disorders, however, insight is associated with less positive results. For other psychiatric disorders, insight has rarely been investigated. In neurology, the impaired ability to recognize the presence of sensory, perceptual, motor, affective, or cognitive functioning-referred to as anosognosia-has been related to damage of specific brain regions. This article provides a comprehensive review of insight in different psychiatric and neurological disorders, with a special focus on brain areas and neurotransmitters that serve as the substrate for this complex phenomenon.
Collapse
|
26
|
Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016; 1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
| | | | - Marco Atzori
- Universidad Autónoma de San Luis Potosí, México.
| |
Collapse
|
27
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
28
|
Holmes P, Cohen JD. Optimality and some of its discontents: successes and shortcomings of existing models for binary decisions. Top Cogn Sci 2014; 6:258-78. [PMID: 24648411 PMCID: PMC5426365 DOI: 10.1111/tops.12084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/25/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
Abstract
We review how leaky competing accumulators (LCAs) can be used to model decision making in two-alternative, forced-choice tasks, and we show how they reduce to drift diffusion (DD) processes in special cases. As continuum limits of the sequential probability ratio test, DD processes are optimal in producing decisions of specified accuracy in the shortest possible time. Furthermore, the DD model can be used to derive a speed-accuracy trade-off that optimizes reward rate for a restricted class of two alternative forced-choice decision tasks. We review findings that compare human performance with this benchmark, and we reveal both approximations to and deviations from optimality. We then discuss three potential sources of deviations from optimality at the psychological level--avoidance of errors, poor time estimation, and minimization of the cost of control--and review recent theoretical and empirical findings that address these possibilities. We also discuss the role of cognitive control in changing environments and in modulating exploitation and exploration. Finally, we consider physiological factors in which nonlinear dynamics may also contribute to deviations from optimality.
Collapse
Affiliation(s)
- Philip Holmes
- Department of Mechanical and Aerospace Engineering, Princeton University; Program in Applied and Computational Mathematics, Princeton University; Princeton Neuroscience Institute, Princeton University
| | | |
Collapse
|
29
|
He Z, Cui L, He B, Ferguson SA, Paule MG. A common genetic mechanism underlying susceptibility to posttraumatic stress disorder. World J Neurol 2013; 3:14-24. [DOI: 10.5316/wjn.v3.i3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/27/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
We hypothesize that susceptibility to post-traumatic stress disorder (PTSD) may be determined in part by aberrant microtubule-associated protein tau expression in neurons of critical brain structures. The following lines of evidence support this hypothesis. First, epidemiologic data suggest the involvement of genetic factors in the susceptibility to PTSD. Second, the common features of both abnormal tau expression and PTSD include amygdalar and hippocampal atrophy, upregulation of norepinephrine biosynthetic capacity in the surviving locus coeruleus neurons and dysfunction of N-methyl-D-aspartate-receptors. Finally, our experiments using rTg4510 mice, a model that over-expresses human mutant tau and develops age-dependent tauopathy, demonstrate that these animals display circling behavior thought to be related to states of anxiety. To detect the potential molecular mechanisms underlying PTSD episodes, laser-assisted/capture microdissection can be used with microarray analysis as an alternative approach to identify changes in gene expression in excitatory and/or inhibitory neurons in critical brain structures (i.e., hippocampus and amygdala) in response to the onset of PTSD.
Collapse
|
30
|
Cano-Colino M, Almeida R, Compte A. Serotonergic modulation of spatial working memory: predictions from a computational network model. Front Integr Neurosci 2013; 7:71. [PMID: 24133418 PMCID: PMC3783948 DOI: 10.3389/fnint.2013.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) receptors of types 1A and 2A are strongly expressed in prefrontal cortex (PFC) neurons, an area associated with cognitive function. Hence, 5-HT could be effective in modulating prefrontal-dependent cognitive functions, such as spatial working memory (SWM). However, a direct association between 5-HT and SWM has proved elusive in psycho-pharmacological studies. Recently, a computational network model of the PFC microcircuit was used to explore the relationship between 5-HT and SWM (Cano-Colino et al., 2013). This study found that both excessive and insufficient 5-HT levels lead to impaired SWM performance in the network, and it concluded that analyzing behavioral responses based on confidence reports could facilitate the experimental identification of SWM behavioral effects of 5-HT neuromodulation. Such analyses may have confounds based on our limited understanding of metacognitive processes. Here, we extend these results by deriving three additional predictions from the model that do not rely on confidence reports. Firstly, only excessive levels of 5-HT should result in SWM deficits that increase with delay duration. Secondly, excessive 5-HT baseline concentration makes the network vulnerable to distractors at distances that were robust to distraction in control conditions, while the network still ignores distractors efficiently for low 5-HT levels that impair SWM. Finally, 5-HT modulates neuronal memory fields in neurophysiological experiments: Neurons should be better tuned to the cued stimulus than to the behavioral report for excessive 5-HT levels, while the reverse should happen for low 5-HT concentrations. In all our simulations agonists of 5-HT1A receptors and antagonists of 5-HT2A receptors produced behavioral and physiological effects in line with global 5-HT level increases. Our model makes specific predictions to be tested experimentally and advance our understanding of the neural basis of SWM and its neuromodulation by 5-HT receptors.
Collapse
Affiliation(s)
- Maria Cano-Colino
- Systems Neuroscience Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | | | | |
Collapse
|
31
|
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making. PLoS Comput Biol 2013; 9:e1003099. [PMID: 23825935 PMCID: PMC3694816 DOI: 10.1371/journal.pcbi.1003099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. Perceptual decision-making involves not only simple transformation of sensory information to a motor decision, but can also be modulated by high-level cognition. For example, the latter may include strategic allocation of limited attentional resources over time in a decision task to improve performance. At the neurophysiological level, there is evidence supporting attention-induced neuronal gain modulation of both excitatory and inhibitory cortical neurons. In the context of perceptual discrimination tasks performed by animals, we make use of a biologically inspired computational model of decision-making to understand the computational capabilities of such co-modulation of neuronal gains. We find that dynamic co-modulation of both excitatory and inhibitory neurons is important for flexible, and cognitively demanding decision-making while also enhancing robustness in the decision circuit's functions. Our model captures the neuronal activity and behavioural data in the animal experiments remarkably well. Decision performance in a reaction time task can be optimized, maximizing the rate of receiving reward by using fast gain recruitment. Our experimentally fitted timescale is near the optimal one, suggesting that the animals performed almost optimally. By providing both computational simulations and theoretical analyses, our computational model sheds light into the multiple functions of rapid co-modulation of neuronal gains during decision-making.
Collapse
|
32
|
Ossmy O, Moran R, Pfeffer T, Tsetsos K, Usher M, Donner TH. The timescale of perceptual evidence integration can be adapted to the environment. Curr Biol 2013; 23:981-6. [PMID: 23684972 DOI: 10.1016/j.cub.2013.04.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
A key computation underlying perceptual decisions is the temporal integration of "evidence" in favor of different states of the world. Studies from psychology and neuroscience have shown that observers integrate multiple samples of noisy perceptual evidence over time toward a decision. An influential model posits perfect evidence integration (i.e., without forgetting), enabling optimal decisions based on stationary evidence. However, in real-life environments, the perceptual evidence typically changes continuously. We used a computational model to show that, under such conditions, performance can be improved by means of leaky (forgetful) integration, if the integration timescale is adapted toward the predominant signal duration. We then tested whether human observers employ such an adaptive integration process. Observers had to detect visual luminance "signals" of variable strength, duration, and onset latency, embedded within longer streams of noise. Different sessions entailed predominantly short or long signals. The rate of performance improvement as a function of signal duration indicated that observers indeed changed their integration timescale with the predominant signal duration, in accordance with the adaptive integration account. Our findings establish that leaky integration of perceptual evidence is flexible and that cognitive control mechanisms can exploit this flexibility for optimizing the decision process.
Collapse
Affiliation(s)
- Ori Ossmy
- School of Psychology, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Desseilles M. [Predicting suicide or predicting the unpredictable in an uncertain world: Reinforcement Learning Model-Based analysis]. SANTE MENTALE AU QUEBEC 2013; 37:107-27. [PMID: 23666284 DOI: 10.7202/1014947ar] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In general, it appears that the suicidal act is highly unpredictable with the current scientific means available. In this article, the author submits the hypothesis that predicting suicide is complex because it results in predicting a choice, in itself unpredictable. The article proposes a Reinforcement learning model-based analysis. In this model, we integrate on the one hand, four ascending modulatory neurotransmitter systems (acetylcholine, noradrenalin, serotonin, and dopamine) with their regions of respective projections and afferences, and on the other hand, various observations of brain imaging identified until now in the suicidal process.
Collapse
Affiliation(s)
- Martin Desseilles
- Faculté de Médecine de l'Université de Namur; Clinique Psychiatrique des Frères Alexiens, Château de Ruyff, Henri-Chapelle, Belgique.
| |
Collapse
|
34
|
Geng JJ, Soosman S, Sun Y, DiQuattro NE, Stankevitch B, Minzenberg MJ. A Match Made by Modafinil: Probability Matching in Choice Decisions and Spatial Attention. J Cogn Neurosci 2013. [DOI: 10.1162/jocn_a_00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
When predicting where a target or reward will be, participants tend to choose each location commensurate with the true underlying probability (i.e., probability match). The strategy of probability matching involves independent sampling of high and low probability locations on separate trials. In contrast, models of probabilistic spatial attention hypothesize that on any given trial attention will either be weighted toward the high probability location or be distributed equally across all locations. Thus, the strategies of probabilistic sampling by choice decisions and spatial attention appear to differ with regard to low-probability events. This distinction is somewhat surprising because similar brain mechanisms (e.g., pFC-mediated cognitive control) are thought to be important in both functions. Thus, the goal of the current study was to examine the relationship between choice decisions and attentional selection within single trials to test for any strategic differences, then to determine whether that relationship is malleable to manipulations of catecholamine-modulated cognitive control with the drug modafinil. Our results demonstrate that spatial attention and choice decisions followed different strategies of probabilistic information selection on placebo, but that modafinil brought the pattern of spatial attention into alignment with that of predictive choices. Modafinil also produced earlier learning of the probability distribution. Together, these results suggest that enhancing cognitive control mechanisms (e.g., through prefrontal cortical function) leads spatial attention to follow choice decisions in selecting information according to rule-based expectations.
Collapse
|
35
|
Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits. J Comput Neurosci 2013; 35:261-94. [PMID: 23608921 PMCID: PMC3825033 DOI: 10.1007/s10827-013-0452-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/31/2022]
Abstract
Animals choose actions based on imperfect, ambiguous data. “Noise” inherent in neural processing adds further variability to this already-noisy input signal. Mathematical analysis has suggested that the optimal apparatus (in terms of the speed/accuracy trade-off) for reaching decisions about such noisy inputs is perfect accumulation of the inputs by a temporal integrator. Thus, most highly cited models of neural circuitry underlying decision-making have been instantiations of a perfect integrator. Here, in accordance with a growing mathematical and empirical literature, we describe circumstances in which perfect integration is rendered suboptimal. In particular we highlight the impact of three biological constraints: (1) significant noise arising within the decision-making circuitry itself; (2) bounding of integration by maximal neural firing rates; and (3) time limitations on making a decision. Under conditions (1) and (2), an attractor system with stable attractor states can easily best an integrator when accuracy is more important than speed. Moreover, under conditions in which such stable attractor networks do not best the perfect integrator, a system with unstable initial states can do so if readout of the system’s final state is imperfect. Ubiquitously, an attractor system with a nonselective time-dependent input current is both more accurate and more robust to imprecise tuning of parameters than an integrator with such input. Given that neural responses that switch stochastically between discrete states can “masquerade” as integration in single-neuron and trial-averaged data, our results suggest that such networks should be considered as plausible alternatives to the integrator model.
Collapse
|
36
|
Standage D, You H, Wang DH, Dorris MC. Trading speed and accuracy by coding time: a coupled-circuit cortical model. PLoS Comput Biol 2013; 9:e1003021. [PMID: 23592967 PMCID: PMC3617027 DOI: 10.1371/journal.pcbi.1003021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. Studies in neuroscience have characterized how the brain represents objects in space and how these objects are selected for detailed perceptual processing. The selection process entails a decision about which object is favoured by the available evidence over time. This period of time is typically in the range of hundreds of milliseconds and is widely believed to be crucial for decisions, allowing neurons to filter noise in the evidence. Despite the widespread belief that time plays this role in decisions and the growing recognition that the brain estimates elapsed time during perceptual tasks, few studies have considered how the encoding of time effects decision making. We propose that neurons encode time in this range by the same general mechanisms used to select objects for detailed processing, and that these temporal representations determine how long evidence is filtered. To this end, we simulate a perceptual decision by coupling two instances of a neural network widely used to simulate localized regions of the cerebral cortex. One network encodes the passage of time and the other makes decisions based on noisy evidence. The former influences the performance of the latter, reproducing signature characteristics of temporal estimates and perceptual decisions.
Collapse
Affiliation(s)
- Dominic Standage
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- * E-mail: (DS); (DHW)
| | - Hongzhi You
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Da-Hui Wang
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (DS); (DHW)
| | - Michael C. Dorris
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Computational models of decision making: integration, stability, and noise. Curr Opin Neurobiol 2012; 22:1047-53. [PMID: 22591667 DOI: 10.1016/j.conb.2012.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
Abstract
Decision making demands the accumulation of sensory evidence over time. Questions remain about how this occurs, but recent years have seen progress on several fronts. The first concerns when optimal accumulation of evidence coincides with the simplest method of accumulating neural activity: summation over time. The second involves what computations the brain might perform when summation is difficult due to imprecision in neural circuits or is suboptimal due to uncertainty or variability in how evidence arrives. Finally, the third concerns sources of noise in decision circuits. Empirical studies have better constrained the extent of this noise, and modeling work is helping to clarify its possible origins.
Collapse
|
38
|
Berridge CW, Devilbiss DM. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69:e101-11. [PMID: 20875636 PMCID: PMC3012746 DOI: 10.1016/j.biopsych.2010.06.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/24/2010] [Indexed: 12/22/2022]
Abstract
Psychostimulants exert behavioral-calming and cognition-enhancing actions in the treatment of attention-deficit/hyperactivity disorder (ADHD). Contrary to early views, extensive research demonstrates that these actions are not unique to ADHD. Specifically, when administered at low and clinically relevant doses, psychostimulants improve a variety of behavioral and cognitive processes dependent on the prefrontal cortex (PFC) in subjects with and without ADHD. Despite the longstanding clinical use of these drugs, the neural mechanisms underlying their cognition-enhancing/therapeutic actions have only recently begun to be examined. At behaviorally activating doses, psychostimulants produce large and widespread increases in extracellular levels of brain catecholamines. In contrast, cognition-enhancing doses of psychostimulants exert regionally restricted actions, elevating extracellular catecholamine levels and enhancing neuronal signal processing preferentially within the PFC. Additional evidence suggests a prominent role of PFC α(2) and D1 receptors in the behavioral and electrophysiological actions of low-dose psychostimulants. These and other observations indicate a pivotal role of PFC catecholamines in the cognition-enhancing and therapeutic actions of psychostimulants, as well as other drugs used in the treatment of ADHD. This information may be particularly relevant for the development of novel pharmacological treatments for ADHD and other conditions associated with PFC dysregulation.
Collapse
Affiliation(s)
- Craig W Berridge
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
39
|
Standage D, You H, Wang DH, Dorris MC. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit. Front Comput Neurosci 2011; 5:7. [PMID: 21415911 PMCID: PMC3042674 DOI: 10.3389/fncom.2011.00007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 01/26/2011] [Indexed: 11/13/2022] Open
Abstract
The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.
Collapse
Affiliation(s)
- Dominic Standage
- Canadian Institutes of Health Research Group in Sensory-Motor Integration, Department of Physiology, Queen's University Kingston, ON, Canada
| | | | | | | |
Collapse
|
40
|
Eckhoff P, Wong-Lin K, Holmes P. Dimension Reduction and Dynamics of a Spiking Neural Network Model for Decision Making under Neuromodulation(). SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2011; 10:148-188. [PMID: 22768006 PMCID: PMC3388156 DOI: 10.1137/090770096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous models of neuromodulation in cortical circuits have used either physiologically based networks of spiking neurons or simplified gain adjustments in low-dimensional connectionist models. Here we reduce a high-dimensional spiking neuronal network model, first to a four-population mean-field model and then to a two-population model. This provides a realistic implementation of neuromodulation in low-dimensional decision-making models, speeds up simulations by three orders of magnitude, and allows bifurcation and phase-plane analyses of the reduced models that illuminate neuromodulatory mechanisms. As modulation of excitation-inhibition varies, the network can move from unaroused states, through optimal performance to impulsive states, and eventually lose inhibition-driven winner-take-all behavior: all are clear outcomes of the bifurcation structure. We illustrate the value of reduced models by a study of the speed-accuracy tradeoff in decision making. The ability of such models to recreate neuromodulatory dynamics of the spiking network will accelerate the pace of future experiments linking behavioral data to cellular neurophysiology.
Collapse
Affiliation(s)
- Philip Eckhoff
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (). This author benefited from a Fannie and John Hertz and NSF coordinated graduate fellowship
| | - KongFatt Wong-Lin
- Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 ()
| | - Philip Holmes
- Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 ()
| |
Collapse
|
41
|
Devilbiss DM, Waterhouse BD. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J Neurophysiol 2010; 105:69-87. [PMID: 20980542 DOI: 10.1152/jn.00445.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the nucleus locus coeruleus (LC) discharge with phasic bursts of activity superimposed on highly regular tonic discharge rates. Phasic bursts are elicited by bottom-up input mechanisms involving novel/salient sensory stimuli and top-down decision making processes; whereas tonic rates largely fluctuate according to arousal levels and behavioral states. Although it is generally believed that these two modes of activity differentially modulate information processing in LC targets, the unique role of phasic versus tonic LC output on signal processing in cells, circuits, and neural networks of waking animals is not well understood. In the current study, simultaneous recordings of individual neurons within ventral posterior medial thalamus and barrel field cortex of conscious rats provided evidence that each mode of LC output produces a unique modulatory impact on single neuron responsiveness to sensory-driven synaptic input and representations of sensory information across ensembles of simultaneously recorded cells. Each mode of LC activation specifically modulated the relationship between sensory-stimulus intensity and the subsequent responses of individual neurons and neural ensembles. Overall these results indicate that phasic versus tonic modes of LC discharge exert fundamentally different modulatory effects on target neuronal circuits within the rodent trigeminal somatosensory system. As such, each mode of LC output may differentially influence signal processing as a means of optimizing behaviorally relevant neural computations within this sensory network. Likely the ability of the LC system to differentially regulate neural responses and local circuit operations according to behavioral demands extends to other brain regions including those involved in higher cognitive functions.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
42
|
Certel SJ, Leung A, Lin CY, Perez P, Chiang AS, Kravitz EA. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010; 5:e13248. [PMID: 20967276 PMCID: PMC2953509 DOI: 10.1371/journal.pone.0013248] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/05/2010] [Indexed: 11/18/2022] Open
Abstract
Situations requiring rapid decision-making in response to dynamic environmental demands occur repeatedly in natural environments. Neuromodulation can offer important flexibility to the output of neural networks in coping with changing conditions, but the contribution of individual neuromodulatory neurons in social behavior networks remains relatively unknown. Here we manipulate the Drosophila octopaminergic system and assay changes in adult male decision-making in courtship and aggression paradigms. When the functional state of OA neural circuits is enhanced, males exhibit elevated courtship behavior towards other males in both behavioral contexts. Eliminating the expression of the male form of the neural sex determination factor, Fruitless (Fru(M)), in three OA suboesophageal ganglia (SOG) neurons also leads to increased male-male courtship behavior in these same contexts. We analyzed the fine anatomical structure through confocal examination of labeled single neurons to determine the arborization patterns of each of the three Fru(M)-positive OA SOG neurons. These neurons send processes that display mirror symmetric, widely distributed arbors of endings within brain regions including the ventrolateral protocerebra, the SOG and the peri-esophageal complex. The results suggest that a small subset of OA neurons have the potential to provide male selective modulation of behavior at a single neuron level.
Collapse
Affiliation(s)
- Sarah J Certel
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances as palatable or nonpalatable, and the corresponding behavioral responses of "spit" or "swallow". We evaluate the performance of the network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation: deterministic integration ("ramping") versus stochastic decision-making ("jumping"), the latter of which relies on state-to-state transitions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode, addition of random noise to each input can improve optimal performance when decisions must be made in limited time.
Collapse
|
44
|
Goto N, Yoshimura R, Kakeda S, Moriya J, Hayashi K, Ikenouchi-Sugita A, Umene-Nakano W, Hori H, Ueda N, Korogi Y, Nakamura J. Associations between plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early-stage schizophrenia. Hum Psychopharmacol 2009; 24:639-45. [PMID: 19946939 DOI: 10.1002/hup.1070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenic patients demonstrate a variety of cognitive deficits, including attention, executive functions, and working memory, even in the early stage of disease. In the present study, we examined the association between blood levels of 3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), or brain-derived neurotrophic factor (BDNF) and scores on the Wisconsin Card Sorting Test (WCST) in patients with early-stage schizophrenia. We also investigated the association between frontal GABA levels using 1H-magnetic resonance spectroscopy (MRS) at 3T and scores on the WCST in the same patients. Blood levels of BDNF and catecholamine metabolites and brain GABA levels using 1H-MRS were measured in 18 schizophrenic patients (nine males, nine females; age range 13-52 year). A significantly positive correlation was observed between plasma MHPG levels and %PEM (rho = -0.686, p = 0.0047). A trend toward negative correlation was found between frontal lobe GABA levels and the per cent of preservation error (%PEM) in the early stage of schizophrenia (rho = -0.420, p = 0.0836). These results suggest that noradrenergic neurons might be involved in neuropsychological functions in early-stage of schizophrenia.
Collapse
Affiliation(s)
- Naoki Goto
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|