1
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Lyu Y, Tschulakow AV, Wang K, Brash DE, Schraermeyer U. Chemiexcitation and melanin in photoreceptor disc turnover and prevention of macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2216935120. [PMID: 37155898 PMCID: PMC10194005 DOI: 10.1073/pnas.2216935120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2•-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2•- or nitric oxide (•NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2•- plus •NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Collapse
Affiliation(s)
- Yanan Lyu
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520-8040
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT06520-8028
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| |
Collapse
|
3
|
Carmon H, Haley EC, Parikh V, Tronson NC, Sarter M. Neuro-Immune Modulation of Cholinergic Signaling in an Addiction Vulnerability Trait. eNeuro 2023; 10:ENEURO.0023-23.2023. [PMID: 36810148 PMCID: PMC9997697 DOI: 10.1523/eneuro.0023-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Sign-tracking (ST) describes the propensity to approach and contact a Pavlovian reward cue. By contrast, goal-trackers (GTs) respond to such a cue by retrieving the reward. These behaviors index the presence of opponent cognitive-motivational traits, with STs exhibiting attentional control deficits, behavior dominated by incentive motivational processes, and vulnerability for addictive drug taking. Attentional control deficits in STs were previously attributed to attenuated cholinergic signaling, resulting from deficient translocation of intracellular choline transporters (CHTs) into synaptosomal plasma membrane. Here, we investigated a posttranslational modification of CHTs, poly-ubiquitination, and tested the hypothesis that elevated cytokine signaling in STs contributes to CHT modification. We demonstrated that intracellular CHTs, but not plasma membrane CHTs, are highly ubiquitinated in male and female sign-tracking rats when compared with GTs. Moreover, levels of cytokines measured in cortex and striatum, but not spleen, were higher in STs than in GTs. Activation of the innate immune system by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) elevated ubiquitinated CHT levels in cortex and striatum of GTs only, suggesting ceiling effects in STs. In spleen, LPS increased levels of most cytokines in both phenotypes. In cortex, LPS particularly robustly increased levels of the chemokines CCL2 and CXCL10. Phenotype-specific increases were restricted to GTs, again suggesting ceiling effects in STs. These results indicate that interactions between elevated brain immune modulator signaling and CHT regulation are essential components of the neuronal underpinnings of the addiction vulnerability trait indexed by sign-tracking.
Collapse
Affiliation(s)
- Hanna Carmon
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Evan C Haley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
5
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Ojiakor O, Rylett R. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem Int 2020; 140:104810. [DOI: 10.1016/j.neuint.2020.104810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
|
7
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Han HH, Sedgwick AC, Shang Y, Li N, Liu T, Li BH, Yu K, Zang Y, Brewster JT, Odyniec ML, Weber M, Bull SD, Li J, Sessler JL, James TD, He XP, Tian H. Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chem Sci 2019; 11:1107-1113. [PMID: 34084367 PMCID: PMC8145178 DOI: 10.1039/c9sc03961a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report a protein-based hybridization strategy that exploits the host-guest chemistry of HSA (human serum albumin) to solubilize the otherwise cell impermeable ONOO- fluorescent probe Pinkment-OAc. Formation of a HSA/Pinkment-OAc supramolecular hybrid was confirmed by SAXS and solution-state analyses. This HSA/Pinkment-OAc hybrid provided an enhanced fluorescence response towards ONOO- versus Pinkment-OAc alone, as determined by in vitro experiments. The HSA/Pinkment-OAc hybrid was also evaluated in RAW 264.7 macrophages and HeLa cancer cell lines, which displayed an enhanced cell permeability enabling the detection of SIN-1 and LPS generated ONOO- and the in vivo imaging of acute inflammation in LPS-treated mice. A remarkable 5.6 fold (RAW 264.7), 8.7-fold (HeLa) and 2.7-fold increased response was seen relative to Pinkment-OAc alone at the cellular level and in vivo, respectively. We anticipate that HSA/fluorescent probe hybrids will soon become ubiquitous and routinely applied to overcome solubility issues associated with hydrophobic fluorescent imaging agents designed to detect disease related biomarkers.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China .,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Adam C Sedgwick
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Ying Shang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory Shanghai 201210 P. R. China
| | - Tingting Liu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Bo-Han Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Kunqian Yu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - James T Brewster
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | | | - Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA .,Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Stojanovska V, McQuade RM, Miller S, Nurgali K. Effects of Oxaliplatin Treatment on the Myenteric Plexus Innervation and Glia in the Murine Distal Colon. J Histochem Cytochem 2018; 66:723-736. [PMID: 29741434 DOI: 10.1369/0022155418774755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin (platinum-based chemotherapeutic agent) is a first-line treatment of colorectal malignancies; its use associates with peripheral neuropathies and gastrointestinal side effects. These gastrointestinal dysfunctions might be due to toxic effects of oxaliplatin on the intestinal innervation and glia. Male Balb/c mice received intraperitoneal injections of sterile water or oxaliplatin (3 mg/kg/d) triweekly for 2 weeks. Colon tissues were collected for immunohistochemical assessment at day 14. The density of sensory, adrenergic, and cholinergic nerve fibers labeled with calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), and vesicular acetylcholine transporter (VAChT), respectively, was assessed within the myenteric plexus of the distal colon. The number and proportion of excitatory neurons immunoreactive (IR) against choline acetyltransferase (ChAT) were counted, and the density of glial subpopulations was determined by using antibodies specific for glial fibrillary acidic protein (GFAP) and s100β protein. Oxaliplatin treatment induced significant reduction of sensory and adrenergic innervations, as well as the total number and proportion of ChAT-IR neurons, and GFAP-IR glia, but increased s100β expression within the myenteric plexus of the distal colon. Treatment with oxaliplatin significantly alters nerve fibers and glial cells in the colonic myenteric plexus, which could contribute to long-term gastrointestinal side effects following chemotherapeutic treatment.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Rachel M McQuade
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Sarah Miller
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Cuddy LK, Seah C, Pasternak SH, Rylett RJ. Amino-Terminal β-Amyloid Antibody Blocks β-Amyloid-Mediated Inhibition of the High-Affinity Choline Transporter CHT. Front Mol Neurosci 2017; 10:361. [PMID: 29163036 PMCID: PMC5681948 DOI: 10.3389/fnmol.2017.00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disorder that is characterized by progressive cognitive decline. The deficits in cognition and attentional processing that are observed clinically in AD are linked to impaired function of cholinergic neurons that release the neurotransmitter acetylcholine (ACh). The high-affinity choline transporter (CHT) is present at the presynaptic cholinergic nerve terminal and is responsible for the reuptake of choline produced by hydrolysis of ACh following its release. Disruption of CHT function leads to decreased choline uptake and ACh synthesis, leading to impaired cholinergic neurotransmission. We report here that cell-derived β-amyloid peptides (Aβ) decrease choline uptake activity and cell surface CHT protein levels in SH-SY5Y neural cells. Moreover, we make the novel observation that the amount of CHT protein localizing to early endosomes and lysosomes is decreased significantly in cells that have been treated with cell culture medium that contains Aβ peptides released from neural cells. The Aβ-mediated loss of CHT proteins from lysosomes is prevented by blocking lysosomal degradation of CHT with the lysosome inhibitor bafilomycin A1 (BafA1). BafA1 also attenuated the Aβ-mediated decrease in CHT cell surface expression. Interestingly, however, lysosome inhibition did not block the effect of Aβ on CHT activity. Importantly, neutralizing Aβ using an anti-Aβ antibody directed at the N-terminal amino acids 1-16 of Aβ, but not by an antibody directed at the mid-region amino acids 22-35 of Aβ, attenuates the effect of Aβ on CHT activity and trafficking. This indicates that a specific N-terminal Aβ epitope, or specific conformation of soluble Aβ, may impair CHT activity. Therefore, Aβ immunotherapy may be a more effective therapeutic strategy for slowing the progression of cognitive decline in AD than therapies designed to promote CHT cell surface levels.
Collapse
Affiliation(s)
- Leah K Cuddy
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Claudia Seah
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stephen H Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Choudhary P, Armstrong EJ, Jorgensen CC, Piotrowski M, Barthmes M, Torella R, Johnston SE, Maruyama Y, Janiszewski JS, Storer RI, Skerratt SE, Benn CL. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter. Front Mol Neurosci 2017; 10:40. [PMID: 28289374 PMCID: PMC5326799 DOI: 10.3389/fnmol.2017.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/03/2017] [Indexed: 01/09/2023] Open
Abstract
Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Maruyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd. Nagano, Japan
| | | | - R Ian Storer
- Pfizer, Worldwide Medicinal Chemistry Cambridge, UK
| | | | | |
Collapse
|
12
|
Unresponsive Choline Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional Biases. J Neurosci 2017; 37:2947-2959. [PMID: 28193693 DOI: 10.1523/jneurosci.3499-16.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/16/2023] Open
Abstract
Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction.SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior.
Collapse
|
13
|
Ennis EA, Blakely RD. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:175-213. [PMID: 27288078 DOI: 10.1016/bs.apha.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics.
Collapse
Affiliation(s)
- E A Ennis
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - R D Blakely
- Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
14
|
Insulin Regulates the Activity of the High-Affinity Choline Transporter CHT. PLoS One 2015; 10:e0132934. [PMID: 26161852 PMCID: PMC4498808 DOI: 10.1371/journal.pone.0132934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Studies in humans and animal models show that neuronal insulin resistance increases the risk of developing Alzheimer’s Disease (AD), and that insulin treatment may promote memory function. Cholinergic neurons play a critical role in cognitive and attentional processing and their dysfunction early in AD pathology may promote the progression of AD pathology. Synthesis and release of the neurotransmitter acetylcholine (ACh) is closely linked to the activity of the high-affinity choline transporter protein (CHT), but the impact of insulin receptor signaling and neuronal insulin resistance on these aspects of cholinergic function are unknown. In this study, we used differentiated SH-SY5Y cells stably-expressing CHT proteins to study the effect of insulin signaling on CHT activity and function. We find that choline uptake activity measured after acute addition of 20 nM insulin is significantly lower in cells that were grown for 24 h in media containing insulin compared to cells grown in the absence of insulin. This coincides with loss of ability to increase phospho-Protein Kinase B (PKB)/Akt levels in response to acute insulin stimulation in the chronic insulin-treated cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-kinase) in cells significantly lowers phospho-PKB/Akt levels and decreases choline uptake activity. We show total internal reflection microscopy (TIRF) imaging of the dynamic movement of CHT proteins in live cells in response to depolarization and drug treatments. These data show that acute exposure of depolarized cells to insulin is coupled to transiently increased levels of CHT proteins at the cell surface, and that this is attenuated by chronic insulin exposure. Moreover, prolonged inhibition of PI3-kinase results in enhanced levels of CHT proteins at the cell surface by decreasing their rate of internalization.
Collapse
|
15
|
Cuddy LK, Seah C, Pasternak SH, Rylett RJ. Differential regulation of the high-affinity choline transporter by wild-type and Swedish mutant amyloid precursor protein. J Neurochem 2015; 134:769-82. [DOI: 10.1111/jnc.13167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Leah K. Cuddy
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| | - Claudia Seah
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
| | - Stephen H. Pasternak
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Rebecca Jane Rylett
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| |
Collapse
|
16
|
An JM, Moon SA, Hong SY, Kang JW, Seo JT. Neuroprotective effect of 3-morpholinosydnonimine against Zn2+-induced PC12 cell death. Eur J Pharmacol 2015; 748:37-44. [DOI: 10.1016/j.ejphar.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
|
17
|
Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M, Boukherroub R, Szunerits S. Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 2015. [DOI: 10.1039/c4ra09781e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrocatalytic properties of cobalt phthalocyanine modified reduced graphene oxide for peroxynitrite and hydrogen peroxide are investigated.
Collapse
|
18
|
Bone DB, Antic M, Vilas G, Hammond JR. Oxidative stress modulates nucleobase transport in microvascular endothelial cells. Microvasc Res 2014; 95:68-75. [DOI: 10.1016/j.mvr.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
|
19
|
Peteu SF, Boukherroub R, Szunerits S. Nitro-oxidative species in vivo biosensing: Challenges and advances with focus on peroxynitrite quantification. Biosens Bioelectron 2014; 58:359-73. [DOI: 10.1016/j.bios.2014.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
|
20
|
Hartnett S, Zhang F, Abitz A, Li Y. Ubiquitin C-terminal hydrolase L1 interacts with choline transporter in cholinergic cells. Neurosci Lett 2014; 564:115-9. [PMID: 24525247 DOI: 10.1016/j.neulet.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 02/02/2023]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme, which is highly expressed in neuronal cells. Previous studies have indicated that UCHL1 is involved in cognitive function, neurodegenerative diseases, and neuromuscular junction development. Acetylcholine (Ach) is a critical neurotransmitter in these functions. Yet, the effect of UCHL1 on the cholinergic system has not been reported. In this study, using a cholinergic neuronal cell line, SN56, as an invitro model, we detected the physical interaction of UCHL1 and high affinity choline transporter (CHT), which is a key protein regulating Ach re-synthesis. Reduction of UCHL1 by siRNA gene knockdown significantly increased poly-ubiquitinated CHT and decreased native CHT protein level, but did not affect CHT mRNA expression. Biotinylation assay showed that UCHL1 is localized only in the cytosol of the cells and that the gene knockdown of UCHL1 significantly reduced cytosolic CHT but had no significant effect on membrane CHT level. These data provide novel and potentially important evidence that UCHL1 may play a role in the regulation of cholinergic function by affecting CHT ubiquitination and degradation.
Collapse
Affiliation(s)
- Sigurd Hartnett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Fan Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Allison Abitz
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
21
|
Cuddy LK, Winick-Ng W, Rylett RJ. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts. J Neurochem 2013; 128:725-40. [PMID: 24127780 DOI: 10.1111/jnc.12490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.
Collapse
Affiliation(s)
- Leah K Cuddy
- Molecular Brain Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
22
|
Karki R, Igwe OJ. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress. PLoS One 2013; 8:e73840. [PMID: 24058497 PMCID: PMC3776800 DOI: 10.1371/journal.pone.0073840] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| | - Orisa J. Igwe
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| |
Collapse
|
23
|
Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem 2013; 126:451-61. [PMID: 23651124 DOI: 10.1111/jnc.12298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na(+) -dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family choline-transporter like protein (CTL)1-5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na(+) -independent and CTL1-5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amiya E, Watanabe M, Takeda N, Saito T, Shiga T, Hosoya Y, Nakao T, Imai Y, Manabe I, Nagai R, Komuro I, Maemura K. Angiotensin II impairs endothelial nitric-oxide synthase bioavailability under free cholesterol-enriched conditions via intracellular free cholesterol-rich membrane microdomains. J Biol Chem 2013; 288:14497-14509. [PMID: 23548909 DOI: 10.1074/jbc.m112.448522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial function is impaired in hypercholesterolemia partly because of injury by modified LDL. In addition to modified LDL, free cholesterol (FC) is thought to play an important role in the development of endothelial dysfunction, although the precise mechanisms remain to be elucidated. The aim of this study was to clarify the mechanisms of endothelial dysfunction induced by an FC-rich environment. Loading cultured human aortic endothelial cells with FC induced the formation of vesicular structures composed of FC-rich membranes. Raft proteins such as phospho-caveolin-1 (Tyr-14) and small GTPase Rac were accumulated toward FC-rich membranes around vesicular structures. In the presence of these vesicles, angiotensin II-induced production of reactive oxygen species (ROS) was considerably enhanced. This ROS shifted endothelial NOS (eNOS) toward vesicle membranes and vesicles with a FC-rich domain trafficked toward perinuclear late endosomes/lysosomes, which resulted in the deterioration of eNOS Ser-1177 phosphorylation and NO production. Angiotensin II-induced ROS decreased the bioavailability of eNOS under the FC-enriched condition.
Collapse
Affiliation(s)
- Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Masafumi Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuya Saito
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Taro Shiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Yumiko Hosoya
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Imai
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan; Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan; Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan.
| |
Collapse
|
25
|
Cui L, Ye W, Prestwich EG, Wishnok JS, Taghizadeh K, Dedon PC, Tannenbaum SR. Comparative analysis of four oxidized guanine lesions from reactions of DNA with peroxynitrite, singlet oxygen, and γ-radiation. Chem Res Toxicol 2013; 26:195-202. [PMID: 23140136 PMCID: PMC3578445 DOI: 10.1021/tx300294d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Oxidative damage to DNA has many origins, including irradiation,
inflammation, and oxidative stress, but the chemistries are not the
same. The most oxidizable base in DNA is 2-deoxyguanosine (dG), and
the primary oxidation products are 8-oxodG and 2-amino-imidazolone.
The latter rapidly converts to 2,2-diamino-oxazolone (Ox), and 8-oxodG
is further oxidized to spiroiminodihydantoin (Sp) and guanidinohydantoin
(Gh). In this study, we have examined the dose–response relationship
for the formation of the above four products arising in calf thymus
DNA exposed to gamma irradiation, photoactivated rose bengal, and
two sources of peroxynitrite. In order to carry out these experiments,
we developed a chromatographic system and synthesized isotopomeric
internal standards to enable accurate and precise analysis based upon
selected reaction monitoring mass spectrometry. 8-OxodG was the most
abundant products in all cases, but its accumulation was highly dependent
on the nature of the oxidizing agent and the subsequent conversion
to Sp and Gh. Among the other oxidation products, Ox was the most
abundant, and Sp was formed in significantly greater yield than Gh.
Collapse
Affiliation(s)
- Liang Cui
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|