1
|
Sun Y, An P, Cai Y, Yang W, Fang Y, Liu H, Zhang G, Shan Y, Wang J, Zhang Y, Zhou X. Environmental enrichment reverses noise induced impairments in learning and memory associated with the hippocampus in female rats. Sci Rep 2025; 15:11509. [PMID: 40181175 PMCID: PMC11968901 DOI: 10.1038/s41598-025-96119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Environmental enrichment (EE) has positive effects on brain function and behavior in both healthy and behaviorally impaired animals. In earlier studies, we showed that rats exposed to noise during early development exhibited deficits in learning and memory associated with the hippocampus. In this study, we investigated whether EE provided during adulthood can reverse such noise-induced impairments. We found that four weeks of EE substantially improved learning and memory in adult female rats exposed to noise during early development. The behavioral changes observed after EE were accompanied by the restoration of parvalbumin-positive (PV+) inhibitory interneurons in the hippocampal subregions. EE also reversed noise-induced reductions in hippocampal long-term potentiation (LTP) of synaptic connections, a mechanism essential for learning and memory processing. However, an enriched environment that lacked social interaction had little effect on restoring LTP in noise-exposed rats. These findings suggest that EE effectively mitigates hippocampal impairments that stem from early noise exposure, with social interaction playing a crucial role in this recovery process.
Collapse
Affiliation(s)
- Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yongjian Cai
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Wenjing Yang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Wuhu Hospital, East China Normal University, Wuhu, 241000, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
2
|
An P, Fang Y, Cheng Y, Liu H, Yang W, Shan Y, de Villers-Sidani E, Zhang G, Zhou X. Acoustic enrichment prevents early life stress-induced disruptions in sound azimuth processing. J Neurosci 2025; 45:e2287242025. [PMID: 40127935 PMCID: PMC12044033 DOI: 10.1523/jneurosci.2287-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
Early life stress (ELS) has been shown to disrupt cognitive and limbic functions, yet its impact on sensory systems, particularly the auditory system, remains insufficiently understood. In this study, we investigated the enduring effects of ELS induced by neonatal maternal separation (MS) on behavioral and cortical processing of sound azimuth in adult male rats. We found that MS significantly impairs sound-azimuth discrimination, paralleled by broader azimuth tuning and reduced dendritic branching and spine density in neurons within the primary auditory cortex. Notably, exposure to an enriched acoustic environment during the stress period effectively protects against these MS-induced alterations, restoring behavioral performance, cortical tuning, and dendritic spine density of neurons to levels comparable to controls. Further analyses reveal that epigenetic regulation of cortical brain-derived neurotrophic factor by histone H3 lysine 9 dimethylation may underlie the observed changes in cortical structure and function. These results underscore the profound and lasting impact of MS-induced ELS on auditory processing, particularly within cortical circuits involved in spatial processing. They suggest that sensory enrichment is a potential therapeutic strategy to ameliorate the adverse effects of ELS on sensory processing, with broader implications for understanding and treating sensory deficits in stress-related disorders.Significance Statement The contribution of early life stress (ELS) to sensory deficits in stress-related disorders remains largely unexplored. Here we show that ELS induced by neonatal maternal separation (MS) disrupts behavioral and cortical processing of sound azimuth in adult rats. Moreover, pairing MS with enriched acoustic exposure during the stress period alleviates these deficits in maternally separated rats. Epigenetic modulation of brain-derived neurotrophic factor gene expression by histone H3 lysine 9 dimethylation in the cortex may underlie the MS-effects and their reversal through acoustic enrichment. These findings reveal the enduring effects of ELS on sensory processing, emphasizing its broader implications for understanding stress-related disorders. Importantly, they highlight sensory enrichment as a promising therapeutic strategy to prevent sensory deficits associated with such conditions.
Collapse
Affiliation(s)
- Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Wenjing Yang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai 200062, China
| |
Collapse
|
3
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
4
|
Malhotra AS, Kulesza R. Abnormal auditory brainstem responses in an animal model of autism spectrum disorder. Hear Res 2023; 436:108816. [PMID: 37285705 DOI: 10.1016/j.heares.2023.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Auditory dysfunction is a common feature of autism spectrum disorder (ASD) and ranges from deafness to hypersensitivity. The auditory brainstem response (ABR) permits study of the amplitude and latency of synchronized electrical activity along the ascending auditory pathway in response to clicks and pure tone stimuli. Indeed, numerous studies have shown that subjects with ASD have ABR abnormalities. In utero exposure to the antiepileptic drug valproic acid (VPA) is associated with human cases of ASD and is used as an animal model of ASD. Previous studies have shown that VPA-exposed animals have significantly fewer neurons in the auditory brainstem and thalamus, reduced ascending projections to the auditory midbrain and thalamus and increased neuronal activation in response to pure tone stimuli. Accordingly, we hypothesized that VPA-exposed animals would have abnormal ABRs throughout their lifespans. We approached this hypothesis in two cohorts. First, we examined ABRs from both ears on postnatal day 22 (P22). Then, we examined monaural ABRs in animals at P28, 60, 120, 180, 240, 300 and 360. Our results suggest that at P22, VPA-exposed animals have elevated thresholds and increased peak latencies. However, by P60 these differences largely normalize with differences appearing only near hearing threshold. Additionally, our analysis revealed that maturation of ABR waves occurred at different trajectories in control and VPA-exposed animals. These results, together with our previous work, suggest that VPA exposure not only impacts total neuron number and connectivity, but also auditory evoked responses. Finally, our longitudinal analysis suggests that delayed maturation of auditory brainstem circuits may impact ABRs throughout the lifespan of the animal.
Collapse
Affiliation(s)
- Arjun S Malhotra
- Department of Anatomy Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA; Millcreek Community Hospital LECOM Health, Department of Orthopedic Surgery, Erie, Pennsylvania, USA
| | - Randy Kulesza
- Department of Anatomy Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA.
| |
Collapse
|
5
|
Cheng Y, Chen R, Su B, Zhang G, Sun Y, An P, Fang Y, Zhang Y, Shan Y, de Villers-Sidani É, Wang Y, Zhou X. Pairing with Enriched Sound Exposure Restores Auditory Processing Degraded by an Antidepressant. J Neurosci 2023; 43:2850-2859. [PMID: 36948582 PMCID: PMC10124948 DOI: 10.1523/jneurosci.2027-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Antidepressants, while effective in treating depression and anxiety disorders, also induce deficits in sensory (particularly auditory) processing, which in turn may exacerbate psychiatric symptoms. How antidepressants cause auditory signature deficits remains largely unknown. Here, we found that fluoxetine-treated adult female rats were significantly less accurate when performing a tone-frequency discrimination task compared with age-matched control rats. Their cortical neurons also responded less selectively to sound frequencies. The degraded behavioral and cortical processing was accompanied by decreased cortical perineuronal nets, particularly those wrapped around parvalbumin-expressing inhibitory interneurons. Furthermore, fluoxetine induced critical period-like plasticity in their already mature auditory cortices; therefore, a brief rearing of these drug-treated rats under an enriched acoustic environment renormalized auditory processing degraded by fluoxetine. The altered cortical expression of perineuronal nets was also reversed as a result of enriched sound exposure. These findings suggest that the adverse effects of antidepressants on auditory processing, possibly because of a reduction in intracortical inhibition, can be substantially alleviated by simply pairing drug treatment with passive, enriched sound exposure. They have important implications for understanding the neurobiological basis of antidepressant effects on hearing and for designing novel pharmacological treatment strategies for psychiatric disorders.SIGNIFICANCE STATEMENT Clinical experience suggests that antidepressants adversely affect sensory (particularly auditory) processing, which can exacerbate patients' psychiatric symptoms. Here, we show that the antidepressant fluoxetine reduces cortical inhibition in adult rats, leading to degraded behavioral and cortical spectral processing of sound. Importantly, fluoxetine induces a critical period-like state of plasticity in the mature cortex; therefore, a brief rearing under an enriched acoustic environment is sufficient to reverse the changes in auditory processing caused by the administration of fluoxetine. These results provide a putative neurobiological basis for the effects of antidepressants on hearing and indicate that antidepressant treatment combined with enriched sensory experiences could optimize clinical outcomes.
Collapse
Affiliation(s)
- Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Ruru Chen
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Bowen Su
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec Canada
| | - Yunfeng Wang
- ENT institute and Department of Otorhinolaryngology of Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, 200062, China
| |
Collapse
|
6
|
Tang B, Li K, Cheng Y, Zhang G, An P, Sun Y, Fang Y, Liu H, Shen Y, Zhang Y, Shan Y, de Villers-Sidani É, Zhou X. Developmental Exposure to Bisphenol a Degrades Auditory Cortical Processing in Rats. Neurosci Bull 2022; 38:1292-1302. [PMID: 35670954 PMCID: PMC9672238 DOI: 10.1007/s12264-022-00891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022] Open
Abstract
Developmental exposure to bisphenol A (BPA), an endocrine-disrupting contaminant, impairs cognitive function in both animals and humans. However, whether BPA affects the development of primary sensory systems, which are the first to mature in the cortex, remains largely unclear. Using the rat as a model, we aimed to record the physiological and structural changes in the primary auditory cortex (A1) following lactational BPA exposure and their possible effects on behavioral outcomes. We found that BPA-exposed rats showed significant behavioral impairments when performing a sound temporal rate discrimination test. A significant alteration in spectral and temporal processing was also recorded in their A1, manifested as degraded frequency selectivity and diminished stimulus rate-following by neurons. These post-exposure effects were accompanied by changes in the density and maturity of dendritic spines in A1. Our findings demonstrated developmental impacts of BPA on auditory cortical processing and auditory-related discrimination, particularly in the temporal domain. Thus, the health implications for humans associated with early exposure to endocrine disruptors such as BPA merit more careful examination.
Collapse
Affiliation(s)
- Binliang Tang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Kailin Li
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yang Shen
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
7
|
Xiao J, He Y, Yu T, Pan J, Xie Q, Cao C, Zheng H, Huang W, Gu Z, Yu Z, Li Y. Towards Assessment of Sound Localization in Disorders of Consciousness Using a Hybrid Audiovisual Brain-Computer Interface. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1422-1432. [PMID: 35584066 DOI: 10.1109/tnsre.2022.3176354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavioral assessment of sound localization in the Coma Recovery Scale-Revised (CRS-R) poses a significant challenge due to motor disability in patients with disorders of consciousness (DOC). Brain-computer interfaces (BCIs), which can directly detect brain activities related to external stimuli, may thus provide an approach to assess DOC patients without the need for any physical behavior. In this study, a novel audiovisual BCI system was developed to simulate sound localization evaluation in CRS-R. Specifically, there were two alternatively flashed buttons on the left and right sides of the graphical user interface, one of which was randomly chosen as the target. The auditory stimuli of bell sounds were simultaneously presented by the ipsilateral loudspeaker during the flashing of the target button, which prompted patients to selectively attend to the target button. The recorded electroencephalography data were analyzed in real time to detect event-related potentials evoked by the target and further to determine whether the target was attended to or not. A significant BCI accuracy for a patient implied that he/she had sound localization. Among eighteen patients, eleven and four showed sound localization in the BCI and CRS-R, respectively. Furthermore, all patients showing sound localization in the CRS-R were among those detected by our BCI. The other seven patients who had no sound localization behavior in CRS-R were identified by the BCI assessment, and three of them showed improvements in the second CRS-R assessment after the BCI experiment. Thus, the proposed BCI system is promising for assisting the assessment of sound localization and improving the clinical diagnosis of DOC patients.
Collapse
|
8
|
Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats. Neural Plast 2021; 2021:6611922. [PMID: 33777134 PMCID: PMC7979287 DOI: 10.1155/2021/6611922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Throughout life, sensory systems adapt to the sensory environment to provide optimal responses to relevant tasks. In the case of a developing system, sensory inputs induce changes that are permanent and detectable up to adulthood. Previously, we have shown that rearing rat pups in a complex acoustic environment (spectrally and temporally modulated sound) from postnatal day 14 (P14) to P28 permanently improves the response characteristics of neurons in the inferior colliculus and auditory cortex, influencing tonotopical arrangement, response thresholds and strength, and frequency selectivity, along with stochasticity and the reproducibility of neuronal spiking patterns. In this study, we used a set of behavioral tests based on a recording of the acoustic startle response (ASR) and its prepulse inhibition (PPI), with the aim to extend the evidence of the persistent beneficial effects of the developmental acoustical enrichment. The enriched animals were generally not more sensitive to startling sounds, and also, their PPI of ASR, induced by noise or pure tone pulses, was comparable to the controls. They did, however, exhibit a more pronounced PPI when the prepulse stimulus was represented either by a change in the frequency of a background tone or by a silent gap in background noise. The differences in the PPI of ASR between the enriched and control animals were significant at lower (55 dB SPL), but not at higher (65-75 dB SPL), intensities of background sound. Thus, rearing pups in the acoustically enriched environment led to an improvement of the frequency resolution and gap detection ability under more difficult testing conditions, i.e., with a worsened stimulus clarity. We confirmed, using behavioral tests, that an acoustically enriched environment during the critical period of development influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood.
Collapse
|
9
|
Abstract
The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.
Collapse
|
10
|
Guven SG, Taş M, Bulut E, Tokuç B, Uzun C, Karasalihoğlu AR. Does noise exposure during pregnancy affect neonatal hearing screening results? Noise Health 2020; 21:69-76. [PMID: 32174641 PMCID: PMC7158898 DOI: 10.4103/nah.nah_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective The aim is to investigate whether noise is effective on hearing screening tests of neonates born to mothers exposed to noise during pregnancy. Material and Method Screening results of 2653 infants from the period of January 2013-May 2017 were evaluated. Transient Evoked Otoacoustic Emissions (TEOAE) and Auditory Brainstem Response (ABR) were used. Infants of 65 mothers exposed to noise (LAeq 80-85 dBA/8 hours/day) during pregnancy (Week ± SD; 32.58 ± 2.71) comprised the study group while the control group consisted of infants of 2588 mothers without noise exposure. Results Among the 65 infants, 23 (35.4%) passed screening at the first emission test (OAE1); 34 (52.3%) at the second emission test (OAE2); 7 (10.8%) at the ABR stage, 1 (1.5%) infant was referred to a tertiary center. In the control group, 458 (17.7%) infants passed at OAE1; 1822 (70.4%) at OAE2; 289 (11.2%) at ABR stages, 19 (0.7%) infants were referred to a tertiary center. The rate of infants that passed screening at OAE1 in the study group was high (P = 0.00001). Sixty-four (98.46%) infants in the study group and 2569 (99.26%) infants in the control group passed the tests. The difference between the two groups was not significant, indicating that exposure to noise during pregnancy had no unfavorable effects on auditory functions (P = 0.392). Conclusion Unfavorable effect of noise exposure during pregnancy was not observed on auditory functions of the infants. The higher rate of infants that passed the screening test at OAE1 stage in the study group raised the question, "Does the exposure of the noise at exposure action levels (80-85 dB A) during pregnancy contribute to auditory maturation of fetus?"
Collapse
Affiliation(s)
- Selis Gülseven Guven
- Department of Otorhinolaryngology, Head and Neck Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Memduha Taş
- Department of Audiology, Trakya University Faculty of Health Sciences, Edirne, Turkey
| | - Erdoğan Bulut
- Department of Audiology, Trakya University Faculty of Health Sciences, Edirne, Turkey
| | - Burcu Tokuç
- Department of Public Health, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Cem Uzun
- Department of Otorhinolaryngology, Head and Neck Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ahmet Rifat Karasalihoğlu
- Department of Otorhinolaryngology, Head and Neck Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
11
|
Dong BE, Chen H, Sakata K. BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem 2020; 154:41-55. [PMID: 32222968 DOI: 10.1111/jnc.15017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Deficiency of activity-induced expression of brain-derived neurotrophic factor (BDNF) disturbs neurotransmitter gene expression. Enriched environment treatment (EET) ameliorates the defects. However, how BDNF deficiency and EET affect the neurotransmitter gene expression differently across ages remains unclear. We addressed this question by determining the neurotransmitter gene expression across three life stages in wild-type and activity-dependent BDNF-deficient (KIV) mice. Mice received 2-months of standard control treatment (SCT) or EET at early-life development (ED: 0-2 months), young adulthood (2-4 months), and old adulthood (12-14 months) (N = 16/group). Half of these mice received additional 1-month SCT to examine persisting EET effects. High-throughput quantitative reverse transcription polymerase chain reaction measured expression of 81 genes for dopamine, adrenaline, serotonin, gamma aminobutyric acid, glutamate, acetylcholine, and BDNF systems in the frontal cortex (FC) and hippocampus. Results revealed that BDNF deficiency mostly reduced neurotransmitter gene expression, greatest at ED in the FC. EET increased expression of a larger number of genes at ED than adulthood, particularly in the KIV FC. Many genes down-regulated in KIV mice were up-regulated by EET, which persisted when EET was provided at ED (e.g., 5-hydroxytryptamine (serotonin) transporter [5HTT], ADRA1D, GRIA3, GABRA5, GABBR2). In both the regions, BDNF deficiency decreased the density of gene co-expression network specifically at ED, while EET increased the density and hub genes (e.g., GAT1, GABRG3, GRIN1, CHRNA7). These results suggest that BDNF deficiency, which occurs under chronic stress, causes neurotransmitter dysregulations prominently at ED, particularly in the FC. EET at ED may be most effective to normalize the dysregulations, providing persisting effects later in life. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Brittany E Dong
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Cheng Y, Zhang Y, Wang F, Jia G, Zhou J, Shan Y, Sun X, Yu L, Merzenich MM, Recanzone GH, Yang L, Zhou X. Reversal of Age-Related Changes in Cortical Sound-Azimuth Selectivity with Training. Cereb Cortex 2020; 30:1768-1778. [PMID: 31504260 DOI: 10.1093/cercor/bhz201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 02/03/2023] Open
Abstract
The compromised abilities to understand speech and localize sounds are two hallmark deficits in aged individuals. Earlier studies have shown that age-related deficits in cortical neural timing, which is clearly associated with speech perception, can be partially reversed with auditory training. However, whether training can reverse aged-related cortical changes in the domain of spatial processing has never been studied. In this study, we examined cortical spatial processing in ~21-month-old rats that were trained on a sound-azimuth discrimination task. We found that animals that experienced 1 month of training displayed sharper cortical sound-azimuth tuning when compared to the age-matched untrained controls. This training-induced remodeling in spatial tuning was paralleled by increases of cortical parvalbumin-labeled inhibitory interneurons. However, no measurable changes in cortical spatial processing were recorded in age-matched animals that were passively exposed to training sounds with no task demands. These results that demonstrate the effects of training on cortical spatial domain processing in the rodent model further support the notion that age-related changes in central neural process are, due to their plastic nature, reversible. Moreover, the results offer the encouraging possibility that behavioral training might be used to attenuate declines in auditory perception, which are commonly observed in older individuals.
Collapse
Affiliation(s)
- Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Fang Wang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Guoqiang Jia
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Jie Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xinde Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | | | - Gregg H Recanzone
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California at Davis, CA 95616, USA
| | - Lianfang Yang
- Department of Physical Education, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
13
|
Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020; 134:104622. [PMID: 31698054 DOI: 10.1016/j.nbd.2019.104622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common genetic cause of autism and intellectual disability. Fragile X mental retardation gene (Fmr1) knock-out (KO) mice display core deficits of FXS, including abnormally increased sound-evoked responses, and show a delayed development of parvalbumin (PV) cells. Here, we present the surprising result that sound exposure during early development reduces correlates of auditory hypersensitivity in Fmr1 KO mice. METHODS Fmr1 KO and wild-type (WT) mice were raised in a sound-attenuated environment (AE) or sound-exposed (SE) to 14 kHz tones (5 Hz repetition rate) from P9 until P21. At P21-P23, event-related potentials (ERPs), dendritic spine density, PV expression and phosphorylation of tropomyosin receptor kinase B (TrkB) were analyzed in the auditory cortex of AE and SE mice. RESULTS Enhanced N1 amplitude of ERPs, impaired PV cell development, and increased spine density in layers (L) 2/3 and L5/6 excitatory neurons were observed in AE Fmr1 KO compared to WT mice. In contrast, developmental sound exposure normalized ERP N1 amplitude, density of PV cells and dendritic spines in SE Fmr1 KO mice. Finally, TrkB phosphorylation was reduced in AE Fmr1 KO, but was enhanced in SE Fmr1 KO mice, suggesting that BDNF-TrkB signaling may be regulated by sound exposure to influence PV cell development. CONCLUSIONS Our results demonstrate that sound exposure, but not attenuation, during early developmental window restores molecular, cellular and functional properties in the auditory cortex of Fmr1 KO mice, and suggest this approach as a potential treatment for sensory phenotypes in FXS.
Collapse
Affiliation(s)
- Anna O Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Sarah M Reinhard
- Psychology Department, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | | | - Veronica Scott
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Psychology Department, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
14
|
Liu X, Wei F, Cheng Y, Zhang Y, Jia G, Zhou J, Zhu M, Shan Y, Sun X, Yu L, Merzenich MM, Lurie DI, Zheng Q, Zhou X. Auditory Training Reverses Lead (Pb)-Toxicity-Induced Changes in Sound-Azimuth Selectivity of Cortical Neurons. Cereb Cortex 2019; 29:3294-3304. [PMID: 30137254 DOI: 10.1093/cercor/bhy199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 01/16/2023] Open
Abstract
Lead (Pb) causes significant adverse effects on the developing brain, resulting in cognitive and learning disabilities in children. The process by which lead produces these negative changes is largely unknown. The fact that children with these syndromes also show deficits in central auditory processing, however, indicates a speculative but disturbing relationship between lead-exposure, impaired auditory processing, and behavioral dysfunction. Here we studied in rats the changes in cortical spatial tuning impacted by early lead-exposure and their potential restoration to normal by auditory training. We found animals that were exposed to lead early in life displayed significant behavioral impairments compared with naïve controls while conducting the sound-azimuth discrimination task. Lead-exposure also degraded the sound-azimuth selectivity of neurons in the primary auditory cortex. Subsequent sound-azimuth discrimination training, however, restored to nearly normal the lead-degraded cortical azimuth selectivity. This reversal of cortical spatial fidelity was paralleled by changes in cortical expression of certain excitatory and inhibitory neurotransmitter receptor subunits. These results in a rodent model demonstrate the persisting neurotoxic effects of early lead-exposure on behavioral and cortical neuronal processing of spatial information of sound. They also indicate that attention-demanding auditory training may remediate lead-induced cortical neurological deficits even after these deficits have occurred.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fanfan Wei
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| | - Guoqiang Jia
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| | - Jie Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| | - Min Zhu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinde Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Diana I Lurie
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, USA
| | - Qingyin Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, Collaborative Innovation Center for Brain Science, School of Life Sciences, East China Normal University, Shanghai, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University-Shanghai, Shanghai, China
| |
Collapse
|
15
|
O'Reilly KC, Perica MI, Fenton AA. Synaptic plasticity/dysplasticity, process memory and item memory in rodent models of mental dysfunction. Schizophr Res 2019; 207:22-36. [PMID: 30174252 PMCID: PMC6395534 DOI: 10.1016/j.schres.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Activity-dependent changes in the effective connection strength of synapses are a fundamental feature of a nervous system. This so-called synaptic plasticity is thought to underlie storage of information in memory and has been hypothesized to be crucial for the effects of cognitive behavioral therapy. Synaptic plasticity stores information in a neural network, creating a trace of neural activity from past experience. The plasticity can also change the behavior of the network so the network can differentially transform/compute information in future activations. We discuss these two related but separable functions of synaptic plasticity; one we call "item memory" as it represents and stores items of information in memory, the other we call "process memory" as it encodes and stores functions such as computations to modify network information processing capabilities. We review evidence of item and process memory operations in behavior and evidence that experience modifies the brain's functional networks. We discuss neurodevelopmental rodent models relevant for understanding mental illness and compare two models in which one model, neonatal ventral hippocampal lesion (NVHL) has beneficial adult outcomes after being exposed to an adolescent cognitive experience that is potentially similar to cognitive behavioral therapy. The other model, gestational day 17 methylazoxymethanol acetate (GD17-MAM), does not benefit from the same adolescent cognitive experience. We propose that process memory is altered by early cognitive experience in NVHL rats but not in GD17-MAM rats, and discuss how dysplasticity factors may contribute to the differential adult outcomes after early cognitive experience in the NVHL and MAM models.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Pharmacology, Robert F. Furchgott Center for Neuroscience, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
16
|
Lauer AM, Dent ML, Sun W, Xu-Friedman MA. Effects of Non-traumatic Noise and Conductive Hearing Loss on Auditory System Function. Neuroscience 2019; 407:182-191. [PMID: 30685543 DOI: 10.1016/j.neuroscience.2019.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/25/2023]
Abstract
The effects of traumatic noise-exposure and deafening on auditory system function have received a great deal of attention. However, lower levels of noise as well as temporary conductive hearing loss also have consequences on auditory physiology and hearing. Here we review how abnormal acoustic experience at early ages affects the ascending and descending auditory pathways, as well as hearing behavior.
Collapse
Affiliation(s)
- Amanda M Lauer
- Dept of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, United States
| | - Micheal L Dent
- Dept. Psychology, University at Buffalo, SUNY, United States
| | - Wei Sun
- Dept. Communicative Disorders and Sciences, University at Buffalo, SUNY, United States
| | | |
Collapse
|
17
|
Intermittent Low-level Noise Causes Negative Neural Gain in the Inferior Colliculus. Neuroscience 2018; 407:135-145. [PMID: 30458217 DOI: 10.1016/j.neuroscience.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
The central auditory system shows a remarkable ability to rescale its neural representation of loudness following long-term, low-level acoustic exposures; even when the noise is presented intermittently. Circadian rhythms exert potent biological effects, but it remains unclear if acoustic exposures occurring during the light or dark cycle affect the neurophysiological changes involved in loudness rescaling. To address this issue we exposed rats to intermittent (12 h/day), low-level noise (10-20 kHz, 75 dB SPL) for 5 weeks; exposures occurred during either the light (inactive) or dark (active) phase of the circadian cycle. The 12-h exposures, whether occurring during the light or dark phase, did not significantly alter cochlear function as reflected in distortion product otoacoustic emissions and compound action potential responses. However, neural activity in the inferior colliculus demonstrated negative gain in a frequency- and intensity-specific manner compared to unexposed controls; the magnitude and direction of the neuroplastic changes in the inferior colliculus were largely the same regardless of whether the 12-h noise exposures occurred during the light or dark phase of the circadian cycle. These neuroplastic changes could become relevant for low-level sound therapies used to treat hyperacusis.
Collapse
|
18
|
Attarha M, Bigelow J, Merzenich MM. Unintended Consequences of White Noise Therapy for Tinnitus—Otolaryngology's Cobra Effect. JAMA Otolaryngol Head Neck Surg 2018; 144:938-943. [DOI: 10.1001/jamaoto.2018.1856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mouna Attarha
- Posit Science Corporation, San Francisco, California
| | - James Bigelow
- Coleman Memorial Laboratory, Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco
| | - Michael M. Merzenich
- Posit Science Corporation, San Francisco, California
- Coleman Memorial Laboratory, Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
19
|
Induction of prolonged natural lifespans in mice exposed to acoustic environmental enrichment. Sci Rep 2018; 8:7909. [PMID: 29786063 PMCID: PMC5962611 DOI: 10.1038/s41598-018-26302-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
We investigated the effect of acoustic environmental enrichment (EE) on the lifespans and behaviours of mice to the end of their natural lifespan in different acoustic environments. Acoustic EE induced a significantly prolonged natural lifespan (nearly 17% longer) and was associated with increased voluntary movements. However, no correlation between lifespan and voluntary movements was detected, suggesting that increased voluntary movements are not a primary cause of lifespan prolongation. Analyses of individual differences in lifespan demonstrated that lifespan extension induced by acoustic EE could be related to changes in social relationships (e.g., reduction of social conflict) among individuals kept within a cage. Therefore, an acoustic component may be an important factor inducing the positive effects of EE.
Collapse
|
20
|
Abstract
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example.
Collapse
|
21
|
Wu M, Bao WX, Zhang J, Hu YF, Gao J, Luo BY. Effect of acoustic stimuli in patients with disorders of consciousness: a quantitative electroencephalography study. Neural Regen Res 2018; 13:1900-1906. [PMID: 30233062 PMCID: PMC6183039 DOI: 10.4103/1673-5374.238622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Auditory stimuli are proposed as beneficial neurorehabilitation methods in patients with disorders of consciousness. However, precise and accurate quantitative indices to estimate their potential effect remain scarce. Fourteen patients were recruited from the Neuro-Rehabilitation Unit of Hangzhou Hospital of Zhejiang Armed Police Corps of China. Altogether, there were seven cases of unresponsive wakefulness syndrome (five males and two females, aged 45.7 ± 16.8 years) and seven cases of minimally conscious state (six males and one female, aged 42.3 ± 20.8 years). Simultaneously, fourteen healthy controls (10 males and 4 females, aged 51.7 ± 9.7 years) also participated in this case-control experiment. Brain response to music, subjects’ own name, and noise was monitored by quantitative electroencephalography (QEEG) in the resting state and with acoustic stimulation. Predictive QEEG values in various brain regions were investigated. Our results show that cerebral activation was high in subjects stimulated by their own name, especially in the temporal lobe in patients with disorders of consciousness, and the frontal lobe in the control group. Further, during resting and stimulation, QEEG index (δ + θ/α + β ratio) negatively correlated with the Coma Recovery Scale-Revised score in traumatic disorders of consciousness patients. Hence, we speculate that a subject's own name might be an effective awakening therapy for patients with disorders of consciousness. Moreover, QEEG index in specific stimulation states may be used as a prognostic indicator for disorders of consciousness patients (sensitivity, 75%; specificity, 50%). This clinical study has been registered at ClinicalTrials.gov (identifier: NCT03385291).
Collapse
Affiliation(s)
- Min Wu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wang-Xiao Bao
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jie Zhang
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yang-Fan Hu
- Department of Computer Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou, Zhejiang Province, China
| | - Ben-Yan Luo
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
22
|
Abstract
Over the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
23
|
Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss. J Neurosci 2017; 37:7759-7771. [PMID: 28706081 DOI: 10.1523/jneurosci.0916-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/24/2017] [Accepted: 07/08/2017] [Indexed: 12/30/2022] Open
Abstract
In childhood, partial hearing loss can produce prolonged deficits in speech perception and temporal processing. However, early therapeutic interventions targeting temporal processing may improve later speech-related outcomes. Gap detection is a measure of auditory temporal resolution that relies on the auditory cortex (ACx), and early auditory deprivation alters intrinsic and synaptic properties in the ACx. Thus, early deprivation should induce deficits in gap detection, which should be reflected in ACx gap sensitivity. We tested whether earplugging-induced, early transient auditory deprivation in male and female Mongolian gerbils caused correlated deficits in behavioral and cortical gap detection, and whether these could be rescued by a novel therapeutic approach: brief exposure to gaps in background noise. Two weeks after earplug removal, animals that had been earplugged from hearing onset throughout auditory critical periods displayed impaired behavioral gap detection thresholds (GDTs), but this deficit was fully reversed by three 1 h sessions of exposure to gaps in noise. In parallel, after earplugging, cortical GDTs increased because fewer cells were sensitive to short gaps, and gap exposure normalized this pattern. Furthermore, in deprived animals, both first-spike latency and first-spike latency jitter increased, while spontaneous and evoked firing rates decreased, suggesting that deprivation causes a wider range of perceptual problems than measured here. These cortical changes all returned to control levels after gap exposure. Thus, brief stimulus exposure, perhaps in a salient context such as the unfamiliar placement into a testing apparatus, rescued impaired gap detection and may have potential as a remediation tool for general auditory processing deficits.SIGNIFICANCE STATEMENT Hearing loss in early childhood leads to impairments in auditory perception and language processing that can last well beyond the restoration of hearing sensitivity. Perceptual deficits can be improved by training, or by acoustic enrichment in animal models, but both approaches involve extended time and effort. Here, we used a novel remediation technique, brief periods of auditory stimulus exposure, to fully remediate cortical and perceptual deficits in gap detection induced by early transient hearing loss. This technique also improved multiple cortical response properties. Rescue by this efficient exposure regime may have potential as a therapeutic tool to remediate general auditory processing deficits in children with perceptual challenges arising from early hearing loss.
Collapse
|
24
|
Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment. J Neurosci 2017; 37:6314-6330. [PMID: 28583912 DOI: 10.1523/jneurosci.0602-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation-inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits.
Collapse
|
25
|
Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A 2017; 114:6364-6369. [PMID: 28559351 DOI: 10.1073/pnas.1707086114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive negative behavioral changes in normal aging are paralleled by a complex series of physical and functional declines expressed in the cerebral cortex. In studies conducted in the auditory domain, these degrading physical and functional cortical changes have been shown to be broadly reversed by intensive progressive training that improves the spectral and temporal resolution of acoustic inputs and suppresses behavioral distractors. Here we found older rats that were intensively trained on an attentionally demanding modulation-rate recognition task in young adulthood substantially retained training-driven improvements in temporal rate discrimination abilities over a subsequent 18-mo epoch-that is, forward into their older age. In parallel, this young-adult auditory training enduringly enhanced temporal and spectral information processing in their primary auditory cortices (A1). Substantially greater numbers of parvalbumin- and somatostatin-labeled inhibitory neurons (closer to the numbers recorded in young vigorous adults) were recorded in the A1 and hippocampus in old trained versus untrained age-matched rats. These results show that a simple form of training in young adulthood in this rat model enduringly delays the otherwise expected deterioration of the physical status and functional operations of the auditory nervous system, with evident training impacts generalized to the hippocampus.
Collapse
|
26
|
Skoe E, Burakiewicz E, Figueiredo M, Hardin M. Basic neural processing of sound in adults is influenced by bilingual experience. Neuroscience 2017; 349:278-290. [DOI: 10.1016/j.neuroscience.2017.02.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
|
27
|
The Janus Face of Auditory Learning: How Life in Sound Shapes Everyday Communication. THE FREQUENCY-FOLLOWING RESPONSE 2017. [DOI: 10.1007/978-3-319-47944-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Green DB, Ohlemacher J, Rosen MJ. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance. Front Neurosci 2016; 10:263. [PMID: 27378837 PMCID: PMC4911416 DOI: 10.3389/fnins.2016.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing.
Collapse
Affiliation(s)
| | | | - Merri J. Rosen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical UniversityRootstown, OH, USA
| |
Collapse
|
29
|
Abstract
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth T Lewis
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
30
|
Kraus N, White-Schwoch T. Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework. Trends Cogn Sci 2015; 19:642-654. [PMID: 26454481 PMCID: PMC4754986 DOI: 10.1016/j.tics.2015.08.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
The auditory system is stunning in its capacity for change: a single neuron can modulate its tuning in minutes. Here we articulate a conceptual framework to understand the biology of auditory learning where an animal must engage cognitive, sensorimotor, and reward systems to spark neural remodeling. Central to our framework is a consideration of the auditory system as an integrated whole that interacts with other circuits to guide and refine life in sound. Despite our emphasis on the auditory system, these principles may apply across the nervous system. Understanding neuroplastic changes in both normal and impaired sensory systems guides strategies to improve everyday communication.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA; Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA; Department of Otolaryngology, Northwestern University, Chicago, IL, USA.
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
31
|
Jiang C, Xu X, Yu L, Xu J, Zhang J. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure. Eur J Neurosci 2015; 42:2144-54. [DOI: 10.1111/ejn.12975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Cuiping Jiang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai; School of Life Sciences; East China Normal University; Shanghai 200062 China
| | - Xiaoxiao Xu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai; School of Life Sciences; East China Normal University; Shanghai 200062 China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai; School of Life Sciences; East China Normal University; Shanghai 200062 China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai; School of Life Sciences; East China Normal University; Shanghai 200062 China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai; School of Life Sciences; East China Normal University; Shanghai 200062 China
| |
Collapse
|
32
|
Lipina SJ, Segretin MS. Strengths and weakness of neuroscientific investigations of childhood poverty: future directions. Front Hum Neurosci 2015; 9:53. [PMID: 25717299 PMCID: PMC4324136 DOI: 10.3389/fnhum.2015.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/19/2015] [Indexed: 02/03/2023] Open
Abstract
The neuroscientific study of child poverty is a topic that has only recently emerged. In comparison with previous reviews (e.g., Hackman and Farah, 2009; Lipina and Colombo, 2009; Hackman et al., 2010; Raizada and Kishiyama, 2010; Lipina and Posner, 2012), our perspective synthesizes findings, and summarizes both conceptual and methodological contributions, as well as challenges that face current neuroscientific approaches to the study of childhood poverty. The aim of this effort is to identify target areas of study that could potentially help build a basic and applied research agenda for the coming years.
Collapse
Affiliation(s)
- Sebastián J Lipina
- Unidad de Neurobiología Aplicada (UNA, CEMIC-CONICET), Buenos Aires, Capital Federal Argentina
| | - M Soledad Segretin
- Unidad de Neurobiología Aplicada (UNA, CEMIC-CONICET), Buenos Aires, Capital Federal Argentina
| |
Collapse
|
33
|
Kraus N, Hornickel J, Strait DL, Slater J, Thompson E. Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Front Psychol 2014; 5:1403. [PMID: 25566109 PMCID: PMC4268440 DOI: 10.3389/fpsyg.2014.01403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Children from disadvantaged backgrounds often face impoverished auditory environments, such as greater exposure to ambient noise and fewer opportunities to participate in complex language interactions during development. These circumstances increase their risk for academic failure and dropout. Given the academic and neural benefits associated with musicianship, music training may be one method for providing auditory enrichment to children from disadvantaged backgrounds. We followed a group of primary-school students from gang reduction zones in Los Angeles, CA, USA for 2 years as they participated in Harmony Project. By providing free community music instruction for disadvantaged children, Harmony Project promotes the healthy development of children as learners, the development of children as ambassadors of peace and understanding, and the development of stronger communities. Children who were more engaged in the music program-as defined by better attendance and classroom participation-developed stronger brain encoding of speech after 2 years than their less-engaged peers in the program. Additionally, children who were more engaged in the program showed increases in reading scores, while those less engaged did not show improvements. The neural gains accompanying music engagement were seen in the very measures of neural speech processing that are weaker in children from disadvantaged backgrounds. Our results suggest that community music programs such as Harmony Project provide a form of auditory enrichment that counteracts some of the biological adversities of growing up in poverty, and can further support community-based interventions aimed at improving child health and wellness.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, USA
- Department of Otolaryngology, Neurobiology & Physiology and Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicago, IL, USA
| | - Jane Hornickel
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, USA
- Data Sense LLCChicago, IL, USA
| | - Dana L. Strait
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, USA
| | - Jessica Slater
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, USA
| | - Elaine Thompson
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
34
|
Skoe E, Kraus N. Auditory reserve and the legacy of auditory experience. Brain Sci 2014; 4:575-93. [PMID: 25405381 PMCID: PMC4279143 DOI: 10.3390/brainsci4040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Science Program Affiliate, University of Connecticut, 850 Bolton Street, Storrs, CT 06105, USA.
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Institute for Neuroscience, Department of Neurobiology and Physiology, Department of Otolaryngology, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Abstract
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function.
Collapse
|
36
|
Zhu X, Liu X, Wei F, Wang F, Merzenich MM, Schreiner CE, Sun X, Zhou X. Perceptual Training Restores Impaired Cortical Temporal Processing Due to Lead Exposure. ACTA ACUST UNITED AC 2014; 26:334-345. [PMID: 25405943 DOI: 10.1093/cercor/bhu258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Low-level lead exposure is a risk factor for cognitive and learning disabilities in children and has been specifically associated with deficits in auditory temporal processing that impair aural language and reading abilities. Here, we show that rats exposed to low levels of lead in early life display a significant behavioral impairment in an auditory temporal rate discrimination task. Lead exposure also results in a degradation of the neuronal repetition-rate following capacity and response synchronization in primary auditory cortex. A modified go/no-go repetition-rate discrimination task applied in adult animals for ∼50 days nearly restores to normal these lead-induced deficits in cortical temporal fidelity. Cortical expressions of parvalbumin, brain-derived neurotrophic factor, and NMDA receptor subunits NR2a and NR2b, which are down-regulated in lead-exposed animals, are also partially reversed with training. These studies in an animal model identify the primary auditory cortex as a novel target for low-level lead exposure and demonstrate that perceptual training can ameliorate lead-induced deficits in cortical discrimination between sound sequences.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xia Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Fanfan Wei
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Fang Wang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Michael M Merzenich
- Coleman Memorial Laboratory, Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Xinde Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
37
|
Kraus N, Slater J, Thompson EC, Hornickel J, Strait DL, Nicol T, White-Schwoch T. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children. Front Neurosci 2014; 8:351. [PMID: 25414631 PMCID: PMC4220673 DOI: 10.3389/fnins.2014.00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/14/2014] [Indexed: 01/22/2023] Open
Abstract
The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the development of strategies for auditory learning.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Department of Communication Sciences, Northwestern UniversityEvanston, IL, USA
- Neuroscience Program, Northwestern UniversityEvanston, IL, USA
- Department of Neurobiology and Physiology, Northwestern UniversityEvanston, IL, USA
- Department of Otolaryngology, Northwestern UniversityChicago, IL, USA
| | - Jessica Slater
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Department of Communication Sciences, Northwestern UniversityEvanston, IL, USA
| | - Elaine C. Thompson
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Department of Communication Sciences, Northwestern UniversityEvanston, IL, USA
| | - Jane Hornickel
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Data Sense LLCChicago, IL, USA
| | - Dana L. Strait
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Neuroscience Program, Northwestern UniversityEvanston, IL, USA
| | - Trent Nicol
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Department of Communication Sciences, Northwestern UniversityEvanston, IL, USA
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, www.brainvolts.northwestern.edu, Northwestern UniversityEvanston, IL, USA
- Department of Communication Sciences, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
38
|
Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience 2014; 280:282-98. [PMID: 25242640 DOI: 10.1016/j.neuroscience.2014.09.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
It has been half a century since brain volume enlargement was first reported in animals reared in an enriched environment (EE). As EE animals show improved memory task performance, exposure to EE has been a useful model system for studying the effects of experience on brain plasticity. We review EE-induced neural changes in the cerebral cortex and hippocampus focusing mainly on works published in the recent decade. The review is organized in three large domains of changes: anatomical, electrophysiological, and molecular changes. Finally, we discuss open issues and future outlook toward better understanding of EE-induced neural changes.
Collapse
|
39
|
Zhvania MG, Bikashvili TZ, Japaridze NJ, Lazrishvili II, Ksovreli M. White noise and neuronal porosome complex: transmission electron microscopic study. Discoveries (Craiova) 2014; 2:e25. [PMID: 32309553 PMCID: PMC6941563 DOI: 10.15190/d.2014.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the present electron microscopic study the effect of continuous white noise on the morphology of synapses and neuronal porosome complex (the neurotransmitter-release or secretory machinery) in two subcortical auditory brain regions - colliculus inferior and medial geniculate body in cat, were investigated. Several morphological alterations in some synapses were detected in both subcortical areas. These alterations mainly indicate to the decrease of functional activity of synapses. Rarely important pathological modifications in pre- and post-synaptic regions were detected. In addition to descriptive studies, the morphometric analysis of porosome diameter and depth was performed in colliculus inferior and medial geniculate body. The results revealed that while white noise has no effect on the porosome diameter and depth in colliculus inferior, it provokes significant alterations in the morphology of porosome complex in medial geniculate body. In particular, the significant increase of porosome depth in this nucleus may reflect the alteration in neurotransmission.
Collapse
Affiliation(s)
- Mzia G Zhvania
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162 Tbilisi, Georgia.,I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Tamar Z Bikashvili
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Nadezhda J Japaridze
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia.,New Vision University, 1a, Mikeladze Street, 0159 Tbilisi, Georgia
| | - Ilia I Lazrishvili
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Mariam Ksovreli
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162 Tbilisi, Georgia
| |
Collapse
|