1
|
Fernández-Arroyo B, Jurado S, Lerma J. Understanding OLM interneurons: Characterization, circuitry, and significance in memory and navigation. Neuroscience 2024:S0306-4522(24)00366-X. [PMID: 39097181 DOI: 10.1016/j.neuroscience.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Understanding the intricate mechanisms underlying memory formation and retention relies on unraveling how the hippocampus, a structure fundamental for memory acquisition, is organized. Within the complex hippocampal network, interneurons play a crucial role in orchestrating memory processes. Among these interneurons, Oriens-Lacunosum Moleculare (OLM) cells emerge as key regulators, governing the flow of information to CA1 pyramidal cells. In this review, we explore OLM interneurons in detail, describing their mechanisms and effects on memory processing, particularly in spatial and contextual memory tasks. Our aim is to provide a detailed understanding of how OLM interneurons contribute to the dynamic landscape of memory formation and retrieval.
Collapse
Affiliation(s)
| | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
2
|
Michon FX, Laplante I, Bosson A, Robitaille R, Lacaille JC. mTORC1-mediated acquisition of reward-related representations by hippocampal somatostatin interneurons. Mol Brain 2023; 16:55. [PMID: 37400913 DOI: 10.1186/s13041-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023] Open
Abstract
Plasticity of principal cells and inhibitory interneurons underlies hippocampal memory. Bidirectional modulation of somatostatin cell mTORC1 activity, a crucial translational control mechanism in synaptic plasticity, causes parallel changes in hippocampal CA1 somatostatin interneuron (SOM-IN) long-term potentiation and hippocampus-dependent memory, indicating a key role in learning. However, SOM-IN activity changes and behavioral correlates during learning, and the role of mTORC1 in these processes, remain ill-defined. To address these questions, we used two-photon Ca2+ imaging from SOM-INs during a virtual reality goal-directed spatial memory task in head-fixed control mice (SOM-IRES-Cre mice) or in mice with conditional knockout of Rptor (SOM-Rptor-KO mice) to block mTORC1 activity in SOM-INs. We found that control mice learn the task, but SOM-Raptor-KO mice exhibit a deficit. Also, SOM-IN Ca2+ activity became increasingly related to reward during learning in control mice but not in SOM-Rptor-KO mice. Four types of SOM-IN activity patterns related to reward location were observed, "reward off sustained", "reward off transient", "reward on sustained" and "reward on transient", and these responses showed reorganization after reward relocation in control but not SOM-Rptor-KO mice. Thus, SOM-INs develop mTORC1-dependent reward- related activity during learning. This coding may bi-directionally interact with pyramidal cells and other structures to represent and consolidate reward location.
Collapse
Affiliation(s)
- François-Xavier Michon
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Anthony Bosson
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Richard Robitaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
3
|
de Lima IB, Ribeiro FM. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:164-182. [PMID: 34951388 PMCID: PMC10190153 DOI: 10.2174/1570159x20666211223140303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.
Collapse
Affiliation(s)
- Izabella B.Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Targeting mGlu1 Receptors in the Treatment of Motor and Cognitive Dysfunctions in Mice Modeling Type 1 Spinocerebellar Ataxia. Cells 2022; 11:cells11233916. [PMID: 36497172 PMCID: PMC9738505 DOI: 10.3390/cells11233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.
Collapse
|
5
|
Honoré È, Belo do Nascimento I, Laplante I, Lacaille JC. Stimulation of protein synthesis by optogenetic and chemical induction of excitatory synaptic plasticity in hippocampal somatostatin interneurons. Mol Brain 2022; 15:81. [PMID: 36123709 PMCID: PMC9484204 DOI: 10.1186/s13041-022-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Somatostatin-expressing interneurons (SOM-INs) are a major subpopulation of GABAergic cells in CA1 hippocampus that receive excitation from pyramidal cells (PCs) and provide feedback control of synaptic inputs onto PC dendrites. Excitatory synapses from PCs onto SOM-INs (PC-SOM synapses) exhibit long-term potentiation (LTP) mediated by type 1a metabotropic glutamate receptors (mGluR1a). LTP at PC-SOM synapses translates in lasting regulation of metaplasticity of entorhinal and CA3 synaptic inputs on PCs and contributes to hippocampus-dependent learning. A persistent form of PC-SOM synapse LTP lasting hours is prevented by blockers of transcription and translation, and a more transient form of PC-SOM synapse LTP lasting tens of minutes requires mTORC1-signaling, suggesting an involvement of protein synthesis. However, the role of protein synthesis in these forms of plasticity has not been directly demonstrated. Here we use the SUrface SEnsing of Translation (SUnSET) assay of protein synthesis to directly show that the induction protocols for both forms of LTP at PC-SOM synapses stimulate protein synthesis in SOM-INs. Moreover, protein synthesis stimulated by persistent LTP induction was prevented in mice with a SOM-IN conditional knock-out of Raptor, an essential component of mTORC1, indicating a critical role of mTORC1 in the control of translation in PC-SOM synapse plasticity. Moreover, protein synthesis induced by both forms of LTP may share common mechanisms as transient LTP induction occluded further stimulation of protein synthesis by persistent LTP induction. Our findings highlight a crucial role of protein synthesis and its control by mTORC1 in SOM-INs that is important for hippocampus-dependent memory function.
Collapse
Affiliation(s)
- Ève Honoré
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuits, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Inês Belo do Nascimento
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuits, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Isabel Laplante
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuits, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Jean-Claude Lacaille
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuits, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.
| |
Collapse
|
6
|
Khlaifia A, Honoré E, Artinian J, Laplante I, Lacaille JC. mTORC1 function in hippocampal parvalbumin interneurons: regulation of firing and long-term potentiation of intrinsic excitability but not long-term contextual fear memory and context discrimination. Mol Brain 2022; 15:56. [PMID: 35715811 PMCID: PMC9204956 DOI: 10.1186/s13041-022-00941-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Abdessattar Khlaifia
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.,Department of Psychology, University of Toronto Scarborough, ON, M1C1A4, Toronto, Canada
| | - Eve Honoré
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Julien Artinian
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.,NeuroService, Neurocentre Magendie , Bordeaux, France
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.
| |
Collapse
|
7
|
Saviuk N, Chong Y, Wang P, Bermudez S, Zhao Z, Bhaskaran AA, Bowie D, Sonenberg N, Cooper E, Haghighi AP. Loss of 4E-BP converts cerebellar long-term depression to long-term potentiation. Cell Rep 2022; 39:110911. [PMID: 35675781 DOI: 10.1016/j.celrep.2022.110911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/31/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Natasha Saviuk
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Yumaine Chong
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Peng Wang
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Sara Bermudez
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhe Zhao
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arjun A Bhaskaran
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | - Ellis Cooper
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada.
| | - A Pejmun Haghighi
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
8
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
9
|
Oliveira MM, Klann E. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Semin Cell Dev Biol 2022; 125:101-109. [PMID: 34304995 PMCID: PMC8782933 DOI: 10.1016/j.semcdb.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Asgarihafshejani A, Honoré È, Michon FX, Laplante I, Lacaille JC. Long-term potentiation at pyramidal cell to somatostatin interneuron synapses controls hippocampal network plasticity and memory. iScience 2022; 25:104259. [PMID: 35521524 PMCID: PMC9062215 DOI: 10.1016/j.isci.2022.104259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Hippocampal somatostatin (SOM) cells are dendrite-projecting inhibitory interneurons. CA1 SOM cells receive major excitatory inputs from pyramidal cells (PC-SOM synapses) which show mGluR1a- and mTORC1-mediated long-term potentiation (LTP). PC-SOM synapse LTP contributes to CA1 network metaplasticity and memory consolidation, but whether it is sufficient to regulate these processes remains unknown. Here we used optogenetic stimulation of CA1 pyramidal cells and whole-cell recordings in slices to show that optogenetic theta-burst stimulation (TBSopto) produces LTP at PC-SOM synapses. At the network level, we found that TBSopto differentially regulates metaplasticity of pyramidal cell inputs: enhancing LTP at Schaffer collateral synapses and depressing LTP at temporo-ammonic synapses. At the behavioral level, we uncovered that in vivo TBSopto regulates learning-induced LTP at PC-SOM synapses, as well as contextual fear memory. Thus, LTP of PC-SOM synapses is a long-term feedback mechanism controlling pyramidal cell synaptic plasticity, sufficient to regulate memory consolidation. Optogenetic theta-burst (TBSopto) induces LTP at PC-SOM synapses TBSopto differentially regulates metaplasticity of pyramidal cell inputs In vivo TBSopto regulates PC-SOM plasticity and contextual fear memory PC-SOM synapse LTP grants durable feedback control of network plasticity and memory
Collapse
Affiliation(s)
- Azam Asgarihafshejani
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ève Honoré
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - François-Xavier Michon
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| |
Collapse
|
11
|
Biophysical and synaptic properties of regular spiking interneurons in hippocampal area CA3 of aged rats. Neurobiol Aging 2021; 112:27-38. [PMID: 35041997 DOI: 10.1016/j.neurobiolaging.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
Neuronal processing from the dentate gyrus to the hippocampus is critical for storage and recovery of new memory traces. In area CA3, GABAergic interneurons form a strong barrage of inhibition that modulates pyramidal cells. A well-established feature of aging is decreased GABAergic inhibition, a phenomenon that contributes to the exacerbated excitability of aged pyramidal cells. In hippocampal slices of aged rats (22-28 months old) we examined the properties of regular spiking CA3 interneurons with patch-clamp whole-cell recordings. We found enhanced firing discharge without altering the maximal firing rate of aged regular spiking interneurons. In the mossy fibers (MF) to interneurons synapse, a switch in the AMPA receptor subunit composition was found in aged interneurons. Young regular spiking interneurons predominantly express CP AMPA receptors and MF LTD. By contrast, aged regular spiking interneurons contain a higher proportion of CI AMPA receptors and respond with MF LTP. We show for the first time that the specialized MF terminals contacting interneurons, retain synaptic capabilities and provide a novel insight of the interneuron's function during aging.
Collapse
|
12
|
Racine AS, Michon FX, Laplante I, Lacaille JC. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons. Mol Brain 2021; 14:130. [PMID: 34429141 PMCID: PMC8385910 DOI: 10.1186/s13041-021-00830-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 04/13/2023] Open
Abstract
Somatostatin-expressing interneurons (SOM-INs) are a major subpopulation of GABAergic cells in CA1 hippocampus that receive excitation from pyramidal cells (PCs), and, in turn, provide feedback inhibition onto PC dendrites. Excitatory synapses onto SOM-INs show a Hebbian long-term potentiation (LTP) mediated by type 1a metabotropic glutamate receptors (mGluR1a) that is implicated in hippocampus-dependent learning. The neuropeptide somatostatin (SST) is also critical for hippocampal long-term synaptic plasticity, as well as learning and memory. SST effects on hippocampal PCs are well documented, but its actions on inhibitory interneurons remain largely undetermined. In the present work, we investigate the involvement of SST in long-term potentiation of CA1 SOM-IN excitatory synapses using pharmacological approaches targeting the somatostatinergic system and whole cell recordings in slices from transgenic mice expressing eYFP in SOM-INs. We report that application of exogenous SST14 induces long-term potentiation of excitatory postsynaptic potentials in SOM-INs via somatostatin type 1–5 receptors (SST1-5Rs) but does not affect synapses of PC or parvalbumin-expressing interneurons. Hebbian LTP in SOM-INs was prevented by inhibition of SSTRs and by depletion of SST by cysteamine treatment, suggesting a critical role of endogenous SST in LTP. LTP of SOM-IN excitatory synapses induced by SST14 was independent of NMDAR and mGluR1a, activity-dependent, and prevented by blocking GABAA receptor function. Our results indicate that endogenous SST may contribute to Hebbian LTP at excitatory synapses of SOM-INs by controlling GABAA inhibition, uncovering a novel role for SST in regulating long-term synaptic plasticity in somatostatinergic cells that may be important for hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Anne-Sophie Racine
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - François-Xavier Michon
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
13
|
Honoré E, Khlaifia A, Bosson A, Lacaille JC. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front Neural Circuits 2021; 15:687558. [PMID: 34149368 PMCID: PMC8206813 DOI: 10.3389/fncir.2021.687558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
A distinctive feature of the hippocampal structure is the diversity of inhibitory interneurons. These complex inhibitory interconnections largely contribute to the tight modulation of hippocampal circuitry, as well as to the formation and coordination of neuronal assemblies underlying learning and memory. Inhibitory interneurons provide more than a simple transitory inhibition of hippocampal principal cells (PCs). The synaptic plasticity of inhibitory neurons provides long-lasting changes in the hippocampal network and is a key component of memory formation. The dendrite targeting interneurons expressing the peptide somatostatin (SOM) are particularly interesting in this regard because they display unique long-lasting synaptic changes leading to metaplastic regulation of hippocampal networks. In this article, we examine the actions of the neuropeptide SOM on hippocampal cells, synaptic plasticity, learning, and memory. We address the different subtypes of hippocampal SOM interneurons. We describe the long-term synaptic plasticity that takes place at the excitatory synapses of SOM interneurons, its singular induction and expression mechanisms, as well as the consequences of these changes on the hippocampal network, learning, and memory. We also review evidence that astrocytes provide cell-specific dynamic regulation of inhibition of PC dendrites by SOM interneurons. Finally, we cover how, in mouse models of Alzheimer’s disease (AD), dysfunction of plasticity of SOM interneuron excitatory synapses may also contribute to cognitive impairments in brain disorders.
Collapse
Affiliation(s)
- Eve Honoré
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Anthony Bosson
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Haji N, Riebe I, Aguilar-Valles A, Artinian J, Laplante I, Lacaille JC. Tsc1 haploinsufficiency in Nkx2.1 cells upregulates hippocampal interneuron mTORC1 activity, impairs pyramidal cell synaptic inhibition, and alters contextual fear discrimination and spatial working memory in mice. Mol Autism 2020; 11:29. [PMID: 32375878 PMCID: PMC7201610 DOI: 10.1186/s13229-020-00340-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
Background Mutations in TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC), a disorder associated with epilepsy, autism, and intellectual disability. TSC1 and TSC2 are repressors of the mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of protein synthesis. Dysregulation of mTORC1 in TSC mouse models leads to impairments in excitation-inhibition balance, synaptic plasticity, and hippocampus-dependent learning and memory deficits. However, synaptic inhibition arises from multiple types of inhibitory interneurons and how changes in specific interneurons contribute to TSC remains largely unknown. In the present work, we determined the effect of conditional Tsc1 haploinsufficiency in a specific subgroup of inhibitory cells on hippocampal function in mice. Methods We investigated the consequences of conditional heterozygous knockout of Tsc1 in MGE-derived inhibitory cells by crossing Nkx2.1Cre/wt;Tsc1f/f mice. We examined the changes in mTORC1 activity and synaptic transmission in hippocampal cells, as well as hippocampus-related cognitive tasks. Results We detected selective increases in phosphorylation of ribosomal protein S6 in interneurons, indicating cell-specific-upregulated mTORC1 signaling. At the behavioral level, Nkx2.1Cre/wt;Tsc1f/wt mice exhibited intact contextual fear memory, but impaired contextual fear discrimination. They displayed intact spatial learning and reference memory but impairment in spatial working memory. Whole-cell recordings in hippocampal slices of Nkx2.1Cre/wt;Tsc1f/wt mice showed intact basic membrane properties, as well as miniature excitatory and inhibitory synaptic transmission, in pyramidal and Nkx2.1-expressing inhibitory cells. Using optogenetic activation of Nkx2.1 interneurons in slices of Nkx2.1Cre/wt;Tsc1f/wt mice, we found a decrease in synaptic inhibition of pyramidal cells. Chronic, but not acute treatment, with the mTORC1 inhibitor rapamycin reversed the impairment in synaptic inhibition. Conclusions Our results indicate that Tsc1 haploinsufficiency in MGE-derived inhibitory cells upregulates mTORC1 activity in these interneurons, reduces their synaptic inhibition of pyramidal cells, and alters contextual fear discrimination and spatial working memory. Thus, selective dysregulation of mTORC1 function in Nkx2.1-expressing inhibitory cells appears sufficient to impair synaptic inhibition and contributes to cognitive deficits in the Tsc1 mouse model of TSC.
Collapse
Affiliation(s)
- Nabila Haji
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada
| | - Ilse Riebe
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada
| | - Argel Aguilar-Valles
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada.,Department of Biochemistry and Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| | - Julien Artinian
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada
| | - Isabel Laplante
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Quebec, H3C 3 J7, Canada.
| |
Collapse
|
15
|
Kougioumoutzakis A, Pelletier JG, Laplante I, Khlaifia A, Lacaille JC. TRPC1 mediates slow excitatory synaptic transmission in hippocampal oriens/alveus interneurons. Mol Brain 2020; 13:12. [PMID: 31996247 PMCID: PMC6988362 DOI: 10.1186/s13041-020-0558-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal GABAergic interneurons play key roles in regulating principal cell activity and plasticity. Interneurons located in stratum oriens/alveus (O/A INs) receive excitatory inputs from CA1 pyramidal cells and express a Hebbian form of long-term potentiation (LTP) at their excitatory input synapses. This LTP requires the activation of metabotropic glutamate receptors 1a (mGluR1a) and Ca2+ entry via transient receptor potential (TRP) channels. However, the type of TRP channels involved in synaptic transmission at these synapses remains largely unknown. Using patch-clamp recordings, we show that slow excitatory postsynaptic currents (EPSCs) evoked in O/A INs are dependent on TRP channels but may be independent of phospholipase C. Using reverse transcription polymerase chain reaction (RT-PCR) we found that mRNA for TRPC 1, 3–7 was present in CA1 hippocampus. Using single-cell RT-PCR, we found expression of mRNA for TRPC 1, 4–7, but not TRPC3, in O/A INs. Using co-immunoprecipitation assays in HEK-293 cell expression system, we found that TRPC1 and TRPC4 interacted with mGluR1a. Co-immunoprecipitation in hippocampus showed that TRPC1 interacted with mGluR1a. Using immunofluorescence, we found that TRPC1 co-localized with mGluR1a in O/A IN dendrites, whereas TRPC4 localization appeared limited to O/A IN cell body. Down-regulation of TRPC1, but not TRPC4, expression in O/A INs using small interfering RNAs prevented slow EPSCs, suggesting that TRPC1 is an obligatory TRPC subunit for these EPSCs. Our findings uncover a functional role of TRPC1 in mGluR1a-mediated slow excitatory synaptic transmission onto O/A INs that could be involved in Hebbian LTP at these synapses.
Collapse
Affiliation(s)
- André Kougioumoutzakis
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Joe Guillaume Pelletier
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
16
|
The metabotropic glutamate receptor subtype 1 regulates development and maintenance of lemniscal synaptic connectivity in the somatosensory thalamus. PLoS One 2019; 14:e0226820. [PMID: 31881077 PMCID: PMC6934304 DOI: 10.1371/journal.pone.0226820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
The metabotropic glutamate receptor subtype 1 (mGluR1) is a major subtype of group I mGluRs, which contributes to the development and plasticity of synapses in the brain. In the sensory thalamus, the thalamocortical neuron receives sensory afferents and massive feedback input from corticothalamic (CT) fibers. Notably, mGluR1 is more concentrated in CT synapses in the sensory thalamus. In the visual thalamus, mGluR1 maintains mature afferent synaptic connectivity. However, it is unknown whether mGluR1 contributes to strengthening of immature synapses or weakening of excess synapses during development and whether mGluR1 at CT synapses heterosynaptically regulates the development or refinement of afferent synapses. Here we investigated the effects of knocking out the gene encoding mGluR1 or pharmacologically blocking cortical activity on the development and maintenance of lemniscal synapses, i.e., the somatosensory afferent synapses, in the ventral posteromedial somatosensory thalamus. mGluR1-knockout (KO) mice exhibited delayed developmental strengthening as well as incomplete elimination and remodeling after maturation of lemniscal synapses. Similar to the phenotypes exhibited by mGluR1-KO mice, pharmacological blockade of somatosensory cortical activity from P12 or P21 for 1 week in wild-type mice perturbed elimination or maintenance of lemniscal synapses, respectively. The same manipulation in mGluR1-KO mice failed to induce additional abnormalities in lemniscal synaptic connectivity. These results suggest that activation of mGluR1, driven by CT input, regulates multiple stages of the development of lemniscal synapses, including strengthening, refinement, and maintenance in the somatosensory thalamus.
Collapse
|
17
|
Regulation of Hippocampal Memory by mTORC1 in Somatostatin Interneurons. J Neurosci 2019; 39:8439-8456. [PMID: 31519824 DOI: 10.1523/jneurosci.0728-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/24/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
Translational control of long-term synaptic plasticity via Mechanistic Target Of Rapamycin Complex 1 (mTORC1) is crucial for hippocampal learning and memory. The role of mTORC1 is well characterized in excitatory principal cells but remains largely unaddressed in inhibitory interneurons. Here, we used cell-type-specific conditional knock-out strategies to alter mTORC1 function selectively in somatostatin (SOM) inhibitory interneurons (SOM-INs). We found that, in male mice, upregulation and downregulation of SOM-IN mTORC1 activity bidirectionally regulates contextual fear and spatial memory consolidation. Moreover, contextual fear learning induced a metabotropic glutamate receptor type 1 (mGluR1)-mediated late long-term potentiation (LTP) of excitatory input synapses onto hippocampal SOM-INs that was dependent on mTORC1. Finally, the induction protocol for mTORC1-mediated late-LTP in SOM-INs regulated Schaffer collateral pathway LTP in pyramidal neurons. Therefore, mTORC1 activity in somatostatin interneurons contributes to learning-induced persistent plasticity of their excitatory synaptic inputs and hippocampal memory consolidation, uncovering a role of mTORC1 in inhibitory circuits for memory.SIGNIFICANCE STATEMENT Memory consolidation necessitates synthesis of new proteins. Mechanistic Target Of Rapamycin Complex 1 (mTORC1) signaling is crucial for translational control involved in long-term memory and in late long-term potentiation (LTP). This is well described in principal glutamatergic pyramidal cells but poorly understood in GABAergic inhibitory interneurons. Here, we show that mTORC1 activity in somatostatin interneurons, a major subclass of GABAergic cells, is important to modulate long-term memory strength and precision. Furthermore, mTORC1 was necessary for learning-induced persistent LTP at excitatory inputs of somatostatin interneurons that depends on type I metabotropic glutamatergic receptors in the hippocampus. This effect was consistent with a newly described role of these interneurons in the modulation of LTP at Schaffer collateral synapses onto pyramidal cells.
Collapse
|
18
|
Kats IR, Klann E. Translating from cancer to the brain: regulation of protein synthesis by eIF4F. ACTA ACUST UNITED AC 2019; 26:332-342. [PMID: 31416906 PMCID: PMC6699409 DOI: 10.1101/lm.050047.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Formation of eukaryotic initiation factor 4F (eIF4F) is widely considered to be the rate-limiting step in cap-dependent translation initiation. Components of eIF4F are often up-regulated in various cancers, and much work has been done to elucidate the role of each of the translation initiation factors in cancer cell growth and survival. In fact, many of the basic mechanisms describing how eIF4F is assembled and how it functions to regulate translation initiation were first investigated in cancer cell lines. These same eIF4F translational control pathways also are relevant for neuronal signaling that underlies long-lasting synaptic plasticity and memory, and in neurological diseases where eIF4F and its upstream regulators are dysregulated. Although eIF4F is important in cancer and for brain function, there is not always a clear path to use the results of studies performed in cancer models to inform one of the roles that the same translation factors have in neuronal signaling. Issues arise when extrapolating from cell lines to tissue, and differences are likely to exist in how eIF4F and its upstream regulatory pathways are expressed in the diverse neuronal subtypes found in the brain. This review focuses on summarizing the role of eIF4F and its accessory proteins in cancer, and how this information has been utilized to investigate neuronal signaling, synaptic function, and animal behavior. Certain aspects of eIF4F regulation are consistent across cancer and neuroscience, whereas some results are more complicated to interpret, likely due to differences in the complexity of the brain, its billions of neurons and synapses, and its diverse cell types.
Collapse
Affiliation(s)
- Ilona R Kats
- Sackler Graduate Program, New York University School of Medicine, New York, New York 10016, USA.,Center for Neural Science, New York University, New York, New York 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003, USA.,NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
19
|
Sossin WS, Costa-Mattioli M. Translational Control in the Brain in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032912. [PMID: 30082469 DOI: 10.1101/cshperspect.a032912] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translational control in neurons is crucially required for long-lasting changes in synaptic function and memory storage. The importance of protein synthesis control to brain processes is underscored by the large number of neurological disorders in which translation rates are perturbed, such as autism and neurodegenerative disorders. Here we review the general principles of neuronal translation, focusing on the particular relevance of several key regulators of nervous system translation, including eukaryotic initiation factor 2α (eIF2α), the mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1), and the eukaryotic elongation factor 2 (eEF2). These pathways regulate the overall rate of protein synthesis in neurons and have selective effects on the translation of specific messenger RNAs (mRNAs). The importance of these general and specific translational control mechanisms is considered in the normal functioning of the nervous system, particularly during synaptic plasticity underlying memory, and in the context of neurological disorders.
Collapse
Affiliation(s)
- Wayne S Sossin
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
20
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
21
|
Rizzo V, Touzani K, Raveendra BL, Swarnkar S, Lora J, Kadakkuzha BM, Liu XA, Zhang C, Betel D, Stackman RW, Puthanveettil SV. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:158-169. [PMID: 28503670 DOI: 10.1016/j.bpsc.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. METHODS Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. RESULTS We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. CONCLUSIONS Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Khalid Touzani
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Bindu L Raveendra
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Joan Lora
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | - Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Robert W Stackman
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | | |
Collapse
|
22
|
Cencic R, Pelletier J. Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A. ACTA ACUST UNITED AC 2016; 4:e1137381. [PMID: 27335721 DOI: 10.1080/21690731.2015.1137381] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/08/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023]
Abstract
Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation - more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University , Montreal, Québec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada; The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada; Department of Oncology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
23
|
Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. J Neurosci 2015; 35:11125-32. [PMID: 26245973 DOI: 10.1523/jneurosci.4615-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. SIGNIFICANCE STATEMENT Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E-binding protein 2, leads to ASD-like behaviors and increased excitatory synaptic activity. Here we demonstrated that autistic behavioral and electrophysiological phenotypes can be treated in adult mice with antagonists of group I metabotropic glutamate receptors (mGluRs), which have been previously used in other ASD models (i.e., fragile X syndrome). These findings support the use of group I mGluR antagonists as a potential therapy that extends to autism models involving exacerbated mRNA translation initiation.
Collapse
|
24
|
Metaplastic Regulation of CA1 Schaffer Collateral Pathway Plasticity by Hebbian MGluR1a-Mediated Plasticity at Excitatory Synapses onto Somatostatin-Expressing Interneurons. eNeuro 2015; 2:eN-NWR-0051-15. [PMID: 26464997 PMCID: PMC4596015 DOI: 10.1523/eneuro.0051-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
Cortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms. However, the cell-type specificity of these different forms of LTP and their specific contribution to the dynamic regulation of the CA1 network remain unclear. Here we recorded from SOM-expressing interneurons (SOM-INs) in the O/A region from SOM-Cre-Ai3 transgenic mice in whole-cell patch-clamp. Results indicate that, like in anatomically identified O/A-INs, theta-burst stimulation (TBS) induced a Hebbian form of LTP dependent on metabotropic glutamate receptor type 1a (mGluR1a) in SOM-INs, but not in parvalbumin-expressing interneurons, another mainly nonoverlapping interneuron subtype in CA1. In addition, we demonstrated using field recordings from transgenic mice expressing archaerhodopsin 3 selectively in SOM-INs, that a prior conditioning TBS in O/A, to induce mGluR1a-dependent LTP in SOM-INs, upregulated LTP in the Schaffer collateral pathway of pyramidal cells. This effect was prevented by light-induced hyperpolarization of SOM-INs during TBS, or by application of the mGluR1a antagonist LY367385, indicating a necessity for mGluR1a and SOM-INs activation. These results uncover that SOM-INs perform an activity-dependent metaplastic control on hippocampal CA1 microcircuits in a cell-specific fashion. Our findings provide new insights on the contribution of interneuron synaptic plasticity in the regulation of the hippocampal network activity and mnemonic processes.
Collapse
|
25
|
Protein kinases paralleling late-phase LTP formation in dorsal hippocampus in the rat. Neurochem Int 2014; 76:50-8. [PMID: 24911953 DOI: 10.1016/j.neuint.2014.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/05/2014] [Accepted: 05/29/2014] [Indexed: 11/22/2022]
Abstract
Hippocampal long term potentiation (LTP), representing a cellular model for learning and memory formation, can be dissociated into at least two phases: a protein-synthesis-independent early phase, lasting about 4h and a protein-synthesis-dependent late phase LTP lasting 6h or longer, or even days. A large series of protein kinases have been shown to be involved and herein, a distinct set of protein kinases proposed to be involved in memory retrieval in previous work was tested in dorsal hippocampus of the rat following induction of late-phase LTP. A bipolar stimulation electrode was chronically implanted into the perforant path, while two monopolar recording electrodes were implanted into the dentate gyrus of the dorsal hippocampus. The recording electrode was measuring extracellular excitatory postsynaptic potentials, while the other one measured population spikes. Protein kinases were determined by immunoblotting and immunoflourescence on hippocampal areas showed the distribution pattern of protein kinases PKN1 and NEK7. Induction of LTP was proven, elevated levels for protein kinases PKN1, RPS6KB1, STK4, CDC42BPB, PRKG, TLK, BMX and decreased levels for NEK7, MAK14 and PLK1 were observed. A remarkable overlap of protein kinases observed in spatial memory processes with those proposed in LTP formation was demonstrated. The findings may be relevant for design of future studies on protein kinases and for the interpretation of previous work.
Collapse
|
26
|
Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory. Learn Mem 2013; 20:518-30. [PMID: 24042848 DOI: 10.1101/lm.027664.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanistic target of rapamcyin (mTOR) is a central player in cell growth throughout the organism. However, mTOR takes on an additional, more specialized role in the developed neuron, where it regulates the protein synthesis-dependent, plastic changes underlying learning and memory. mTOR is sequestered in two multiprotein complexes (mTORC1 and mTORC2) that have different substrate specificities, thus allowing for distinct functions at synapses. We will examine how learning activates the mTOR complexes, survey the critical effectors of this pathway in the context of synaptic plasticity, and assess whether mTOR plays an instructive or permissive role in generating molecular memory traces.
Collapse
Affiliation(s)
- Tyson E Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | | | | |
Collapse
|
27
|
Cox DJ, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol 2013; 521:1954-2007. [DOI: 10.1002/cne.23292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
|
28
|
Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells. J Neurosci 2013; 33:1872-86. [PMID: 23365227 DOI: 10.1523/jneurosci.3264-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) is a repressor of cap-dependent mRNA translation and a major downstream effector of the mammalian target of rapamycin (mTOR) implicated in hippocampal long-term synaptic plasticity and memory. Yet, synaptic mechanisms regulated by 4E-BP2 translational repression remain unknown. Combining knock-out mice, whole-cell recordings, spine analysis, and translation profiling, we found that 4E-BP2 deletion selectively upregulated synthesis of glutamate receptor subunits GluA1 and GluA2, facilitating AMPA receptor (AMPAR)-mediated synaptic transmission and affecting translation-dependent chemically induced late long-term potentiation (cL-LTP). In 4E-BP2 knock-out (4E-BP2(-/-)) mice, evoked and miniature EPSCs were increased, an effect mimicked by short-hairpin RNA knockdown of 4E-BP2 in wild-type mice, indicating that 4E-BP2 level regulates basal transmission at mature hippocampal AMPAR-containing synapses. Remarkably, in 4E-BP2(-/-) mice, the AMPA to NMDA receptor (NMDAR) EPSC ratio was increased, without affecting NMDAR-mediated EPSCs. The enhanced AMPAR function concurred with increased spine density and decreased length resulting from greater proportion of regular spines and less filopodia in 4E-BP2(-/-) mice. Polysome profiling revealed that translation of GluA1 and GluA2 subunits, but not GluN1 or GluN2A/B, was selectively increased in 4E-BP2(-/-) hippocampi, consistent with unaltered I-V relation of EPSCs mediated by GluA1/GluA2 heteromers. Finally, translation-dependent cL-LTP of unitary EPSCs was also affected in 4E-BP2(-/-) mice, lowering induction threshold and removing mTOR signaling requirement while impairing induction by normal stimulation. Thus, translational control through 4E-BP2 represents a unique mechanism for selective regulation of AMPAR synthesis, synaptic function, and long-term plasticity, important for hippocampal-dependent memory processes.
Collapse
|
29
|
Harnessing the power of metabolism for seizure prevention: focus on dietary treatments. Epilepsy Behav 2013; 26:266-72. [PMID: 23110824 PMCID: PMC3562425 DOI: 10.1016/j.yebeh.2012.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/06/2012] [Indexed: 02/08/2023]
Abstract
The continued occurrence of refractory seizures in at least one-third of children and adults with epilepsy, despite the availability of almost 15 conventional and novel anticonvulsant drugs, speaks to a dire need to develop novel therapeutic approaches. Cellular metabolism, the critical pathway by which cells access and utilize energy, is essential for normal neuronal function. Furthermore, mounting evidence suggests direct links between energy metabolism and cellular excitability. The high-fat, low-carbohydrate ketogenic diet has been used as a treatment for drug-refractory epilepsy for almost a century. Yet, the multitude of alternative therapies to target aspects of cellular metabolism and hyperexcitability is almost untapped. Approaches discussed in this review offer a wide diversity of therapeutic targets that might be exploited by investigators in the search for safer and more effective epilepsy treatments.
Collapse
|
30
|
Wang H, Zhuo M. Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front Pharmacol 2012; 3:189. [PMID: 23125836 PMCID: PMC3485740 DOI: 10.3389/fphar.2012.00189] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 12/05/2022] Open
Abstract
Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
31
|
Hoeffer CA, Santini E, Ma T, Arnold EC, Whelan AM, Wong H, Pierre P, Pelletier J, Klann E. Multiple components of eIF4F are required for protein synthesis-dependent hippocampal long-term potentiation. J Neurophysiol 2012; 109:68-76. [PMID: 23054596 DOI: 10.1152/jn.00342.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent forms of synaptic plasticity are widely thought to require the synthesis of new proteins. This feature of long-lasting forms of plasticity largely has been demonstrated using inhibitors of general protein synthesis, such as either anisomycin or emetine. However, these drugs, which inhibit elongation, cannot address detailed questions about the regulation of translation initiation, where the majority of translational control occurs. Moreover, general protein synthesis inhibitors cannot distinguish between cap-dependent and cap-independent modes of translation initiation. In the present study, we took advantage of two novel compounds, 4EGI-1 and hippuristanol, each of which targets a different component of the eukaryotic initiation factor (eIF)4F initiation complex, and investigated their effects on long-term potentiation (LTP) at CA3-CA1 synapses in the hippocampus. We found that 4EGI-1 and hippuristanol both attenuated long-lasting late-phase LTP induced by two different stimulation paradigms. We also found that 4EGI-1 and hippuristanol each were capable of blocking the expression of newly synthesized proteins immediately after the induction of late-phase LTP. These new pharmacological tools allow for a more precise dissection of the role played by translational control pathways in synaptic plasticity and demonstrate the importance of multiple aspects of eIF4F in processes underlying hippocampal LTP, laying the foundation for future studies investigating the role of eIF4F in hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Charles A Hoeffer
- Department of Physiology and Neuroscience, Langone Medical Center and School of Medicine, New York University, New York, New York 10012, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17200-7. [PMID: 23045678 DOI: 10.1073/pnas.1204599109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Variations in maternal care in the rat affect hippocampal morphology and function as well as performance on hippocampal-dependent tests of learning and memory in the offspring. Preliminary genome-wide analyses of gene transcription and DNA methylation of the molecular basis for such maternal effects suggested differences in the epigenetic state and transcriptional activity of the Grm1 gene in the rat as a function of maternal care. Grm1 encodes the type I metabotropic glutamate receptor (mGluR1), and we found increased mGluR1 mRNA and protein in hippocampus from the adult offspring of mothers showing an increased frequency of pup licking/grooming (i.e., high-LG mothers) that was associated with a decrease in the methylation of Grm1. ChIP assays showed increased levels of histone 3 lysine 9 acetylation and histone 3 lysine 4 trimethylation of Grm1 in hippocampus from the adult offspring of high-LG compared with low-LG mothers. These histone posttranslational modifications were highly correlated, and both associate inversely with DNA methylation and positively with transcription. Studies of mGluR1 function showed increased hippocampal mGluR1-induced long-term depression in the adult offspring of high-LG compared with low-LG mothers, as well as increased paired-pulse depression (PPD). PPD is an inhibitory feedback mechanism that prevents excessive glutamate release during high-frequency stimulation. The maternal effects on both long-term depression and PPD were eliminated by treatment with an mGluR1-selective antagonist. These findings suggest that variations in maternal care can influence hippocampal function and cognitive performance through the epigenetic regulation of genes implicated in glutamatergic synaptic signaling.
Collapse
|
33
|
Hartman AL, Santos P, Dolce A, Hardwick JM. The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice. PLoS One 2012; 7:e45156. [PMID: 22984623 PMCID: PMC3440313 DOI: 10.1371/journal.pone.0045156] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/13/2012] [Indexed: 01/24/2023] Open
Abstract
Objective The mammalian target of rapamycin (mTOR) pathway integrates signals from different nutrient sources, including amino acids and glucose. Compounds that inhibit mTOR kinase activity such as rapamycin and everolimus can suppress seizures in some chronic animal models and in patients with tuberous sclerosis. However, it is not known whether mTOR inhibitors exert acute anticonvulsant effects in addition to their longer term antiepileptogenic effects. To gain insights into how rapamycin suppresses seizures, we investigated the anticonvulsant activity of rapamycin using acute seizure tests in mice. Methods Following intraperitoneal injection of rapamycin, normal four-week-old male NIH Swiss mice were evaluated for susceptibility to a battery of acute seizure tests similar to those currently used to screen potential therapeutics by the US NIH Anticonvulsant Screening Program. To assess the short term effects of rapamycin, mice were seizure tested in ≤6 hours of a single dose of rapamycin, and for longer term effects of rapamycin, mice were tested after 3 or more daily doses of rapamycin. Results The only seizure test where short-term rapamycin treatment protected mice was against tonic hindlimb extension in the MES threshold test, though this protection waned with longer rapamycin treatment. Longer term rapamycin treatment protected against kainic acid-induced seizure activity, but only at late times after seizure onset. Rapamycin was not protective in the 6 Hz or PTZ seizure tests after short or longer rapamycin treatment times. In contrast to other metabolism-based therapies that protect in acute seizure tests, rapamycin has limited acute anticonvulsant effects in normal mice. Significance The efficacy of rapamycin as an acute anticonvulsant agent may be limited. Furthermore, the combined pattern of acute seizure test results places rapamycin in a third category distinct from both fasting and the ketogenic diet, and which is more similar to drugs acting on sodium channels.
Collapse
Affiliation(s)
- Adam L. Hartman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (ALH); (JMH)
| | - Polan Santos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alison Dolce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Marie Hardwick
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (ALH); (JMH)
| |
Collapse
|
34
|
CREB-dependent transcriptional control and quantal changes in persistent long-term potentiation in hippocampal interneurons. J Neurosci 2012; 32:6335-50. [PMID: 22553039 DOI: 10.1523/jneurosci.5463-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence indicates an important role of long-term synaptic plasticity in hippocampal inhibitory interneurons in learning and memory. The cellular and molecular mechanisms that underlie such persistent changes in synaptic function in interneurons remain, however, largely undetermined. A transcription- and translation-dependent form of long-term potentiation was uncovered at excitatory synapses onto hippocampal interneurons in oriens-alveus (OA-INs) which is induced by activation of type 1 metabotropic glutamate receptors (cL-LTP(mGluR1)). Here, we use (1) a combination of pharmacological siRNA knock-down and overexpression approaches to reveal the molecular mechanisms of transcriptional control via cAMP response element-binding protein (CREB) during induction, and (2) quantal analysis to identify synaptic changes during maintenance of cL-LTP(mGluR1) in rat hippocampus. Induction stimulated CREB phosphorylation in OA-INs via extracellular signal-regulated protein kinase (ERK) signaling. Also, CREB knockdown impaired cL-LTP(mGluR1), whereas CREB overexpression facilitated the induction, demonstrating a necessary and permissive role of CREB via ERK signaling in transcriptional control in cL-LTP(mGluR1). Quantal analysis of synaptic responses during cL-LTP(mGluR1) maintenance revealed an increased number of quanta released, corresponding to enhanced transmitter release and a larger quantal size, indicating enhanced responsiveness to individual quanta. Fluctuation analysis of synaptic currents uncovered an increase in conductance and number of functional postsynaptic receptors contributing to single quanta. Our findings indicate that CREB-dependent transcription is a necessary permissive switch for eliciting persistent presynaptic and postsynaptic quantal changes at excitatory synapses in inhibitory local circuits, uncovering cell type-specific coupling of induction and expression mechanisms during persistent synaptic plasticity which may contribute to hippocampal long-term memory processes.
Collapse
|
35
|
The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLoS One 2012; 7:e35885. [PMID: 22567115 PMCID: PMC3342334 DOI: 10.1371/journal.pone.0035885] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/23/2012] [Indexed: 12/14/2022] Open
Abstract
Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures.
Collapse
|
36
|
Deli A, Schipany K, Rosner M, Höger H, Pollak A, Li L, Hengstschläger M, Lubec G. Blocking mTORC1 activity by rapamycin leads to impairment of spatial memory retrieval but not acquisition in C57BL/6J mice. Behav Brain Res 2012; 229:320-4. [PMID: 22306200 DOI: 10.1016/j.bbr.2012.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/02/2012] [Accepted: 01/06/2012] [Indexed: 12/31/2022]
Abstract
Although the involvement of the mTOR (mammalian target of rapamycin) system in memory processes has been reported, information on the effect of rapamycin on spatial learning and memory is limited. It was therefore the aim of the study to show the effect of parenteral rapamycin administration to C57BL/6J mice on performance in the multiple T-maze (MTM) and to determine hippocampal mTOR activity. Rapamycin-treated and -untreated/trained/probed mice are the main part of the experiment considering retrieval and acquisition or consolidation of spatial memory. Six hours following euthanasia hippocampi were extirpated and used for evaluation of mTOR activity as represented by hippocampal levels of S6 protein and its phosphorylated active form (phospho S6 protein, S240,244), a read out of mTOR complex 1 activity. Mice given i.p. rapamycin learned the task of the MTM but failed at the probe trial, showing absence of the phosphorylated active form of S6 protein, indicating inhibition of mTOR activity. Herein, impairing effects of rapamycin on retrieval but not on acquisition or consolidation of spatial memory are shown. Deficient memory retrieval was paralleled by inhibition of mTOR complex 1 activity. The current study extends knowledge on rapamycin in memory mechanisms and challenges work on deeper insights into the role of mTOR in different phases of memory formation and retrieval.
Collapse
Affiliation(s)
- Alev Deli
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Local regulation of protein synthesis in neurons has emerged as a leading research focus because of its importance in synaptic plasticity and neurological diseases. The complexity of neuronal subcellular domains and their distance from the soma demand local spatial and temporal control of protein synthesis. Synthesis of many synaptic proteins, such as GluR and PSD-95, is under local control. mRNA binding proteins (RBPs), such as FMRP, function as key regulators of local RNA translation, and the mTORC1 pathway acts as a primary signaling cascade for regulation of these proteins. Much of the regulation occurs through structures termed RNA granules, which are based on reversible aggregation of the RBPs, some of which have aggregation prone domains with sequence features similar to yeast prion proteins. Mutations in many of these RBPs are associated with neurological diseases, including FMRP in fragile X syndrome; TDP-43, FUS (fused in sarcoma), angiogenin, and ataxin-2 in amyotrophic lateral sclerosis; ataxin-2 in spinocerebellar ataxia; and SMN (survival of motor neuron protein) in spinal muscular atrophy.
Collapse
|
38
|
Gieros K, Sobczuk A, Salinska E. Differential involvement of mGluR1 and mGluR5 in memory reconsolidation and retrieval in a passive avoidance task in 1-day old chicks. Neurobiol Learn Mem 2012; 97:165-72. [DOI: 10.1016/j.nlm.2011.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/30/2022]
|
39
|
Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS, Park SW, Kwak C, Ahn SJ, Choi SY, Kim H, Kim KH, Backx PH, Bradley CA, Kim E, Jang DJ, Lee K, Kim SJ, Zhuo M, Collingridge GL, Kaang BK. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 2011; 14:1447-54. [PMID: 22019731 DOI: 10.1038/nn.2937] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/22/2011] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA receptor (NMDAR)-mediated synaptic plasticity at mouse Schaffer collateral-commissural synapses. Both genetic deletion and pharmacological inhibition of PI3Kγ disrupted NMDAR long-term depression (LTD) while leaving other forms of synaptic plasticity intact. Accompanying this physiological deficit, the impairment of NMDAR LTD by PI3Kγ blockade was specifically correlated with deficits in behavioral flexibility. These findings suggest that a specific PI3K isoform, PI3Kγ, is critical for NMDAR LTD and some forms of cognitive function. Thus, individual isoforms of PI3Ks may have distinct roles in different types of synaptic plasticity and may therefore influence various kinds of behavior.
Collapse
Affiliation(s)
- Jae-Ick Kim
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Galván EJ, Cosgrove KE, Barrionuevo G. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 2011; 60:740-7. [PMID: 21093459 PMCID: PMC3073593 DOI: 10.1016/j.neuropharm.2010.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells and inhibitory interneurons has emerged. These data have revealed an immense heterogeneity of long-term plasticity at MF synapses on various interneuron targets. Interestingly, these studies also indicate that the mechanisms of MF long-term plasticity in some interneuron subtypes may be more similar to pyramidal cells than previously appreciated. In this review, we first define the synapse types at each of the interneuron targets based on the receptors present. We then describe the different forms of long-term plasticity observed, and the mechanisms underlying each form as they are currently understood. Finally we highlight various open questions surrounding MF long-term plasticity in interneurons, focusing specifically on the induction and maintenance of LTP, and what the functional impact of persistent changes in efficacy at MF-interneuron synapses might be on the emergent properties of the inhibitory network dynamics in area CA3. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
| | - Kathleen E. Cosgrove
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Germán Barrionuevo
- Dept. of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
41
|
Sossin WS, Lacaille JC. Mechanisms of translational regulation in synaptic plasticity. Curr Opin Neurobiol 2010; 20:450-6. [PMID: 20430610 PMCID: PMC3006486 DOI: 10.1016/j.conb.2010.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/24/2010] [Accepted: 03/28/2010] [Indexed: 12/19/2022]
Abstract
The plasticity of the nervous system is due to the ability of neurons to change their properties by altering the function of their proteome. A major mechanism for this is through altering the amount of proteins by regulating their translation. In this review, we focus on recent advances in the elucidation of the mechanisms by which neurons regulate translation during synaptic plasticity. Particular focus will be on the different transduction mechanisms that selectively target distinct elements of the mRNA in the regulation of translation during plasticity.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | | |
Collapse
|
42
|
Bidinosti M, Ran I, Sanchez-Carbente MR, Martineau Y, Gingras AC, Gkogkas C, Raught B, Bramham CR, Sossin WS, Costa-Mattioli M, DesGroseillers L, Lacaille JC, Sonenberg N. Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol Cell 2010; 37:797-808. [PMID: 20347422 PMCID: PMC2861547 DOI: 10.1016/j.molcel.2010.02.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/06/2009] [Accepted: 02/21/2010] [Indexed: 10/19/2022]
Abstract
The eIF4E-binding proteins (4E-BPs) repress translation initiation by preventing eIF4F complex formation. Of the three mammalian 4E-BPs, only 4E-BP2 is enriched in the mammalian brain and plays an important role in synaptic plasticity and learning and memory formation. Here we describe asparagine deamidation as a brain-specific posttranslational modification of 4E-BP2. Deamidation is the spontaneous conversion of asparagines to aspartates. Two deamidation sites were mapped to an asparagine-rich sequence unique to 4E-BP2. Deamidated 4E-BP2 exhibits increased binding to the mammalian target of rapamycin (mTOR)-binding protein raptor, which effects its reduced association with eIF4E. 4E-BP2 deamidation occurs during postnatal development, concomitant with the attenuation of the activity of the PI3K-Akt-mTOR signaling pathway. Expression of deamidated 4E-BP2 in 4E-BP2(-/-) neurons yielded mEPSCs exhibiting increased charge transfer with slower rise and decay kinetics relative to the wild-type form. 4E-BP2 deamidation may represent a compensatory mechanism for the developmental reduction of PI3K-Akt-mTOR signaling.
Collapse
Affiliation(s)
- Michael Bidinosti
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|