1
|
Lima J, Panayi MC, Sharp T, McHugh SB, Bannerman DM. More and Less Fear in Serotonin Transporter Knockout Mice. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70016. [PMID: 39917838 PMCID: PMC11803413 DOI: 10.1111/gbb.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Recent theories suggest that reduced serotonin transporter (5-HTT) function, which increases serotonin (5-HT) levels at the synapse, enhances neural plasticity and affects sensitivity to environmental cues. This may promote learning about emotionally relevant events. However, the boundaries that define such emotional learning remain to be established. This was investigated using 5-HTT knockout (5-HTTKO) mice which provide a model of long-term elevated 5-HT transmission and are associated with increased anxiety. Compared to wild-type controls, 5-HTTKO mice were faster to discriminate between an auditory cue that predicted footshock (CS+) and a cue predicting no footshock (CS-). Notably, this enhanced discrimination performance was driven not by faster learning that the CS+ predicted footshock, but rather by faster learning that the CS- cue signals the absence of footshock and thus provides temporary relief from fear/anxiety. Similarly, 5-HTTKO mice were also faster to reduce their fear of the CS+ cue during subsequent extinction. These findings are consistent with facilitated inhibitory learning that predicts the absence of potential threats in 5-HTTKO mice. However, 5-HTTKO mice also exhibited increased generalisation of fear learning about ambiguous aversive cues in a novel context, different from the training context. Thus, 5-HTTKO mice can exhibit both more and less fear compared to wild-type controls. Taken together, our results support the idea that loss of 5-HTT function, and corresponding increases in synaptic 5-HT availability, may facilitate learning by priming of aversive memories. This both facilitates inhibitory learning for fear memories but also enhances generalisation of fear.
Collapse
Affiliation(s)
- João Lima
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear MedicineCopenhagen University Hospital—Amager and HvidovreCopenhagenDenmark
| | - Marios C. Panayi
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Trevor Sharp
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Stephen B. McHugh
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Medical Research Council Brain Network Dynamics UnitOxfordUK
| | | |
Collapse
|
2
|
Heesbeen EJ, van Kampen T, Verdouw PM, van Lissa C, Bijlsma EY, Groenink L. The effect of SSRIs on unconditioned anxiety: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2024; 241:1731-1755. [PMID: 38980348 PMCID: PMC11339141 DOI: 10.1007/s00213-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are the first choice of treatment for anxiety-like disorders. However, which aspects of anxiety are affected by SSRIs is not yet fully understood. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on four aspects of unconditioned anxiety: approach-avoidance behaviour (elevated plus maze), repetitive behaviour (marble burying), distress behaviour (ultrasonic vocalization), and activation of the autonomous nervous system (stress-induced hyperthermia). METHODS We identified publications by searching Medline and Embase databases and assessed the risk of bias. A random effects meta-analysis was performed and moderator effects were analysed with Bayesian penalized meta-regression. RESULTS Our search yielded 105 elevated plus maze, 63 marble burying, 11 ultrasonic vocalization, and 7 stress-induced hyperthermia articles. Meta-analysis suggested that SSRIs reduce anxiety-like behaviour in the elevated plus maze, marble burying and ultrasonic vocalization test and that effects are moderated by pre-existing stress conditions (elevated plus maze) and dose dependency (marble burying) but not by duration of treatment or type of SSRI. The reporting quality was low, publication bias was likely, and heterogeneity was high. CONCLUSION SSRIs seem to reduce a broad range of unconditioned anxiety-associated behaviours. These results should be interpreted with caution due to a high risk of bias, likely occurrence of publication bias, substantial heterogeneity and limited moderator data availability. Our review demonstrates the importance of including bias assessments when interpreting meta-analysis results. We further recommend improving the reporting quality, the conduct of animal research, and the publication of all results regardless of significance.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tatum van Kampen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Shoji H, Ikeda K, Miyakawa T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 2023; 16:32. [PMID: 36991468 PMCID: PMC10061809 DOI: 10.1186/s13041-023-01020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
4
|
Ip CT, Ganz M, Ozenne B, Olbrich S, Beliveau V, Dam VH, Köhler-Forsberg K, Jørgensen MB, Frøkjær VG, Knudsen GM. Association between the loudness dependence of auditory evoked potential, serotonergic neurotransmission and treatment outcome in patients with depression. Eur Neuropsychopharmacol 2023; 70:32-44. [PMID: 36863106 DOI: 10.1016/j.euroneuro.2023.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
Previous studies have suggested that the loudness dependence of auditory evoked potential (LDAEP) is associated with the effectiveness of antidepressant treatment in patients with major depressive disorders (MDD). Furthermore, both LDAEP and the cerebral serotonin 4 receptor (5-HT4R) density is inversely related to brain serotonin levels. We included 84 patients with MDD and 22 healthy controls to examined the association between LDAEP and treatment response and its association with cerebral 5-HT4R density. Participants underwent both EEG and 5-HT4R neuroimaging with [11C]SB207145 PET. Thirty-nine patients with MDD were re-examined after 8 weeks of treatment with selective serotonin reuptake inhibitors/serotonin noradrenaline reuptake inhibitor (SSRI/SNRI). We found that the cortical source of LDAEP was higher in untreated patients with MDD compared to healthy controls (p=0.03). Prior to SSRI/SNRI treatment, subsequent treatment responders had a negative association between LDAEP and depressive symptoms and a positive association between scalp LDAEP and symptom improvement at week 8. This was not found in source LDAEP. In healthy controls, we found a positive correlation between both scalp and source LDAEP and cerebral 5-HT4R binding but that was not observed in patients with MDD. We did not see any changes in scalp and source LDAEP in response to SSRI/SNRI treatment. These results support a theoretical framework where both LDAEP and cerebral 5-HT4R are indices of cerebral 5-HT levels in healthy individuals while this association seems to be disrupted in MDD. The combination of the two biomarkers may be useful for stratifying patients with MDD. Clinical Trials Registration:https://clinicaltrials.gov/ct2/show/NCT02869035?draw=1Registration number: NCT0286903.
Collapse
Affiliation(s)
- Cheng-Teng Ip
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Melanie Ganz
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Public Health, Section of Biostatistics, University of Copenhagen, Denmark
| | - Sebastian Olbrich
- Department for Psychiatry, Psychotherapy and Psychosomatic, University Zurich, Switzerland
| | - Vincent Beliveau
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vibeke H Dam
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kristin Köhler-Forsberg
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Vibe G Frøkjær
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and NeuroPharm, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Social stress-induced serotonin dysfunction activates spexin in male Nile tilapia ( Oreochromis Niloticus). Proc Natl Acad Sci U S A 2023; 120:e2117547120. [PMID: 36623187 PMCID: PMC9934202 DOI: 10.1073/pnas.2117547120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.
Collapse
|
6
|
Sacher J, Zsido RG, Barth C, Zientek F, Rullmann M, Luthardt J, Patt M, Becker GA, Rusjan P, Witte AV, Regenthal R, Koushik A, Kratzsch J, Decker B, Jogschies P, Villringer A, Hesse S, Sabri O. Increase in serotonin transporter binding in patients with premenstrual dysphoric disorder across the menstrual cycle: a case-control longitudinal neuroreceptor ligand PET imaging study. Biol Psychiatry 2023:S0006-3223(23)00005-7. [PMID: 36997451 DOI: 10.1016/j.biopsych.2022.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) disrupts the lives of millions of people each month. The timing of symptoms suggests that hormonal fluctuations play a role in the pathogenesis. Here, we tested whether a heightened sensitivity of the serotonin system to menstrual cycle phase underlies PMDD, assessing the relationship of serotonin transporter (5-HTT) changes with symptom severity across the menstrual cycle. METHODS In this longitudinal case-control study, we acquired 118 [11C]DASB positron emission tomography scans measuring 5-HTT nondisplaceable binding potential (BPND) in 30 patients with PMDD and 29 controls during 2 menstrual cycle phases (periovulatory, premenstrual). The primary outcome was midbrain and prefrontal cortex 5-HTT BPND. We tested whether BPND changes correlated with depressed mood. RESULTS Linear mixed effects modeling (significant group × time × region interaction) showed a mean increase of 18% in midbrain 5-HTT BPND (mean [SD] periovulatory = 1.64 [0.40], premenstrual = 1.93 [0.40], delta = 0.29 [0.47]: t29 = -3.43, p = .0002) in patients with PMDD, whereas controls displayed a mean 10% decrease in midbrain 5-HTT BPND (periovulatory = 1.65 [0.24] > premenstrual = 1.49 [0.41], delta = -0.17 [0.33]: t28 = -2.73, p = .01). In patients, increased midbrain 5-HTT BPND correlated with depressive symptom severity (R2 = 0.41, p < .0015) across the menstrual cycle. CONCLUSIONS These data suggest cycle-specific dynamics with increased central serotonergic uptake followed by extracellular serotonin loss underlying the premenstrual onset of depressed mood in patients with PMDD. These neurochemical findings argue for systematic testing of pre-symptom-onset dosing of selective serotonin reuptake inhibitors or nonpharmacological strategies to augment extracellular serotonin in people with PMDD.
Collapse
|
7
|
Pan W, Pan J, Zhao Y, Zhang H, Tang J. Serotonin Transporter Defect Disturbs Structure and Function of the Auditory Cortex in Mice. Front Neurosci 2021; 15:749923. [PMID: 34690685 PMCID: PMC8527018 DOI: 10.3389/fnins.2021.749923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.
Collapse
Affiliation(s)
- Wenlu Pan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Functional Nucleic Acid Basic and Clinical Research Center, Department of Physiology, School of Basic Medical Sciences, Changsha Medical College, Changsha, China
| | - Jing Pan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Yan Zhao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Lecorps B, Weary DM, von Keyserlingk MAG. Negative expectations and vulnerability to stressors in animals. Neurosci Biobehav Rev 2021; 130:240-251. [PMID: 34454913 DOI: 10.1016/j.neubiorev.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Abstract
Humans express stable differences in pessimism that render some individuals more vulnerable to stressors and mood disorders. We explored whether non-human animals express stable individual differences in expectations (assessed via judgment bias tests) and whether these differences relate to susceptibility to stressors. Judgment bias tests do not distinguish pessimism from sensitivity to reinforcers; negative expectations are likely driven by a combination of these two elements. The available evidence suggests that animals express stable individual differences in expectations such that some persistently perceive ambiguous situations in a more negative way. A lack of research prevents drawing firm conclusions on how negative expectations affect responses to stressors, but current evidence suggests a link between negative expectations and the adoption of avoidance coping strategies, stronger responses to uncontrollable stressors and risk of mood-related disorders. We explore implications for animals living in captivity and for research using animals as models for human disorders.
Collapse
Affiliation(s)
- Benjamin Lecorps
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada.
| |
Collapse
|
9
|
Serotonin 5-HT 1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology (Berl) 2021; 238:1111-1120. [PMID: 33511450 PMCID: PMC8728944 DOI: 10.1007/s00213-020-05758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.
Collapse
|
10
|
Yang H, Liang X, Zhao Y, Gu X, Mao Z, Zeng Q, Chen H, Martyniuk CJ. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111700. [PMID: 33396031 DOI: 10.1016/j.ecoenv.2020.111700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 μg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 μg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 μg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 μg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 μg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
11
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
12
|
White AN, Gross JD, Kaski SW, Trexler KR, Wix KA, Wetsel WC, Kinsey SG, Siderovski DP, Setola V. Genetic deletion of Rgs12 in mice affects serotonin transporter expression and function in vivo and ex vivo. J Psychopharmacol 2020; 34:1393-1407. [PMID: 32842837 PMCID: PMC8576640 DOI: 10.1177/0269881120944160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice. This effect on DAT prompted us to investigate whether the serotonin transporter (SERT) exhibits similar alterations upon RGS12 loss in C57BL/6J mice. AIMS Does RGS12 loss affect (a) hyperlocomotion to the preferentially SERT-targeting psychostimulant 3,4-methylenedioxymethamphetamine (MDMA), (b) SERT expression and function in relevant brain regions, and/or (c) serotonergically modulated behaviors? METHODS Open-field and spontaneous home-cage locomotor activities were quantified. 5-HT, 5-HIAA, and SERT levels in brain-region homogenates, as well as SERT expression and function in brain-region tissue preparations, were measured using appropriate biochemical assays. Serotonergically modulated behaviors were assessed using forced swim and tail suspension paradigms, elevated plus and elevated zero maze tests, and social interaction assays. RESULTS RGS12-null mice displayed no hyperlocomotion to 10 mg/kg MDMA. There were brain region-specific alterations in SERT expression and function associated with RGS12 loss. Drug-naïve RGS12-null mice displayed increases in both anxiety-like and anti-depressive-like behaviors. CONCLUSION RGS12 is a critical modulator of serotonergic neurotransmission and serotonergically modulated behavior in mice; lack of hyperlocomotion to low dose MDMA in RGS12-null mice is related to an alteration of steady-state SERT expression and 5-HT uptake.
Collapse
Affiliation(s)
- Allison N. White
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Joshua D. Gross
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Shane W. Kaski
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Behavioral Medicine & Psychiatry, West Virginia University, Morgantown WV 26506 USA
| | - Kristen R. Trexler
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Psychology, West Virginia University, Morgantown WV 26506 USA
| | - Kim A. Wix
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - William C. Wetsel
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham NC 27710 USA,Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham NC 27710 USA
| | - Steven G. Kinsey
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Psychology, West Virginia University, Morgantown WV 26506 USA
| | - David P. Siderovski
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Vincent Setola
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Behavioral Medicine & Psychiatry, West Virginia University, Morgantown WV 26506 USA,Corresponding author: Dr. Vincent Setola, Department of Neuroscience, West Virginia University School of Medicine, 108 Biomedical Road, WVU Health Sciences Center, Morgantown, WV 26506;
| |
Collapse
|
13
|
Licht CL, Mortensen EL, Hjordt LV, Stenbaek DS, Arentzen TE, Nørremølle A, Knudsen GM. Serotonin transporter gene (SLC6A4) variation and sensory processing sensitivity-Comparison with other anxiety-related temperamental dimensions. Mol Genet Genomic Med 2020; 8:e1352. [PMID: 32543106 PMCID: PMC7434600 DOI: 10.1002/mgg3.1352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background The short (s) allele of the 5‐HTTLPR polymorphism in the promoter region of the human serotonin transporter (5‐HTT) gene SLC6A4 has previously been associated with anxiety‐related personality dimensions. However, this relationship has not been confirmed in all studies and may be modified by environmental circumstances and/or psychiatric illness. This study examined whether the temperamental trait sensory processing sensitivity (SPS), characterized by increased responsivity to environmental stimuli, is related to 5‐HTTLPR/rs25531 genotype. Methods 5‐HTTLPR and rs25531 genotypes, level of SPS, self‐reported Revised NEO Personality Inventory (NEO‐PI‐R) and Temperament and Character Inventory (TCI) personality profiles, and symptoms of psychological distress (SCL‐90R Global Severity Index) were determined for 405 healthy volunteers. Results Sensory processing sensitivity was highly correlated with the anxiety‐related dimensions of the NEO‐PI‐R and the TCI models of personality, Neuroticism, and Harm Avoidance, respectively. However, the level of SPS was not associated with the combined 5‐HTTLPR and rs25531 s′/s′ genotype. Neuroticism and Harm Avoidance were also not associated with 5‐HTTLPR/rs25531 s′/s′ genotype. Correcting for symptoms of psychological distress had no effect on the relationships between personality and genotype. Conclusion The level of SPS was not associated with serotonin transporter gene variation. Further, combined 5‐HTTLPR and rs25531 genotype was not associated with other anxiety‐related dimensions.
Collapse
Affiliation(s)
- Cecilie L Licht
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark.,Unit of Medical Psychology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Erik L Mortensen
- Unit of Medical Psychology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Liv V Hjordt
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Dea S Stenbaek
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Tine E Arentzen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| |
Collapse
|
14
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
15
|
Translational Studies in the Complex Role of Neurotransmitter Systems in Anxiety and Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:121-140. [PMID: 32002926 DOI: 10.1007/978-981-32-9705-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.
Collapse
|
16
|
Enhanced discriminative aversive learning and amygdala responsivity in 5-HT transporter mutant mice. Transl Psychiatry 2019; 9:139. [PMID: 30996249 PMCID: PMC6470159 DOI: 10.1038/s41398-019-0476-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Genetic variation in the human serotonin transporter (5-HTT) has been linked to altered fear learning but the data are inconsistent and the mechanism is unclear. The present study investigated conditioned aversive learning in 5-HTT knockout (KO) mice while simultaneously recording neural network activity (theta oscillations) and hemodynamic responses (tissue oxygen delivery) from the amygdala, a brain region necessary for forming fearful memories. Conditioned aversive learning was measured using a discrimination learning task in which one auditory cue was paired with foot-shock, whereas a second auditory cue was not. Compared with wild-type mice, 5-HTTKO mice exhibited faster discrimination learning. This effect was associated with stronger theta frequency oscillations and greater hemodynamic changes in the amygdala in response to both the emotionally relevant cues and the unconditioned foot-shock stimulus. Furthermore, hemodynamic responses to the unconditioned stimulus predicted behavioral discrimination performance the following day. Acute pharmacological 5-HTT blockade in wild-type mice produced a similar effect, to the extent that administration of citalopram during the fear conditioning sessions enhanced fear memory recall. Collectively, our data argue that loss of 5-HTT function enhances amygdala responsivity to aversive events and facilitates learning for emotionally relevant cues.
Collapse
|
17
|
Krause ET, Kjaer JB, Dudde A, Schrader L, Phi-van L. Fear but not social behaviour is affected by a polymorphism in the 5'-flanking region of the serotonin transporter (5-HTT) gene in adult hens. Behav Brain Res 2019; 361:50-53. [PMID: 30562569 DOI: 10.1016/j.bbr.2018.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The serotonin transporter gene (5-HTT) is involved in the regulation of the neural serotonin. Polymorphisms in the 5-HTT gene have been described in many species to be involved in physiological processes and emotions. A functional polymorphism in the 5´-flanking region of the 5-HTT gene is known from chickens, with a deletion-allele (D), which is associated with an increased 5-HTT expression, in comparison to the wild-type-allele (W). In domestic populations, the majority of hens carry the W-allele. The regulatory changes of the 5-HTT are accompanied in chickens, as in humans, by modulations of fear. Beside these effects on fear, the understanding of potential functional consequences on the social behaviour in the gregarious chicken is lacking. Thus, we here investigated whether the 5-HTT polymorphism with three genotypes (WW, WD, DD), is not only linked to fear-related behaviour, but affects also socio-positive and -negative behaviours of adult hens. Our data confirmed the effects on fear-related behaviour. WW hens showed highest levels of fear. Interestingly, no differences in the social behaviours were present between the hens of the different 5-HTT genotypes. We further discuss implications for potential evolutionary pathways via natural selection and / or artificial selection through domestication of the 5-HTT polymorphism, which might have enabled a stable social lifestyle in the wild ancestors of modern chickens.
Collapse
Affiliation(s)
- E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany.
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany
| | - Anissa Dudde
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany; Department of Animal Behaviour, University of Bielefeld, Konsequenz 45, 33615 Bielefeld, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany
| | - Loc Phi-van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany.
| |
Collapse
|
18
|
Yu W, Yen YC, Lee YH, Tan S, Xiao Y, Lokman H, Ting AKT, Ganegala H, Kwon T, Ho WK, Je HS. Prenatal selective serotonin reuptake inhibitor (SSRI) exposure induces working memory and social recognition deficits by disrupting inhibitory synaptic networks in male mice. Mol Brain 2019; 12:29. [PMID: 30935412 PMCID: PMC6444596 DOI: 10.1186/s13041-019-0452-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Infants born following prenatal exposure to SSRIs have a higher risk for behavioral abnormalities, however, the underlying mechanisms remains unknown. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males. In the medial prefrontal cortex (mPFC), a key region regulating these behaviors, we found augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons. Fast-spiking interneurons in mPFC exhibited enhanced intrinsic excitability and serotonin-induced excitability due to upregulated serotonin (5-HT) 2A receptor (5-HT2AR) signaling. More importantly, the behavioral deficits in prenatal fluoxetine treated mice were reversed by the application of a 5-HT2AR antagonist. Taken together, our findings suggest that alterations in inhibitory neuronal modulation are responsible for the behavioral alterations following prenatal exposure to SSRIs.
Collapse
Affiliation(s)
- Weonjin Yu
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yi-Chun Yen
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Young-Hwan Lee
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shawn Tan
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yixin Xiao
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Hidayat Lokman
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Audrey Khoo Tze Ting
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hasini Ganegala
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - H Shawn Je
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
19
|
Phi Van VD, Krause ET, Phi-Van L. Modulation of Fear and Arousal Behavior by Serotonin Transporter (5-HTT) Genotypes in Newly Hatched Chickens. Front Behav Neurosci 2018; 12:284. [PMID: 30524254 PMCID: PMC6256247 DOI: 10.3389/fnbeh.2018.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The serotonin transporter (5-HTT) plays a key role in regulating serotonergic transmission via removal of serotonin (5-hydroxytryptamine, 5-HT) from synaptic clefts. Alterations in 5-HTT expression and 5-HT transmission have been shown to cause changes to adult behavior including fear. The objective of the present study was to investigate the 5-HTT role in fear in birds at the very early stages of post-hatching life. Using an avoidance test with an elevated balance beam, which was based on depth perception and the respective fear of heights, we assessed fear-related avoidance behaviors of newly hatched chicks of the three functional 5-HTT genotypes W/W, W/D and D/D. Newly hatched chicks of the genotype D/D, which was linked to high 5-HTT expression, showed less intensive avoidance responses as measured by decreased latency to jump than W/W and W/D chicks. Further, significantly fewer D/D hens than W/W hens showed fear-like behavior that resembled a freezing response. Furthermore, in an arousal test the arousal reaction of the chicks in response to an acute short-term visual social deprivation in the home compartment was assessed 5 weeks after hatching, which also revealed that D/D chicks exhibited decreased arousal reaction, compared to W/W chicks. Thus, the results indicate that fear responses differ in D/D chicks in the early post-hatching periods, possibly due to the different expression of 5-HTT respectively 5-HT levels in this strain.
Collapse
Affiliation(s)
- Valerie D Phi Van
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Zürich, Switzerland
| | - E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut (FLI), Celle, Germany
| | - Loc Phi-Van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut (FLI), Celle, Germany
| |
Collapse
|
20
|
Rebholz H, Friedman E, Castello J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int J Mol Sci 2018; 19:ijms19113581. [PMID: 30428567 PMCID: PMC6274737 DOI: 10.3390/ijms19113581] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
The serotonin 4 receptor, 5-HT₄R, represents one of seven different serotonin receptor families and is implicated in a variety of physiological functions and their pathophysiological variants, such as mood and depression or anxiety, food intake and obesity or anorexia, or memory and memory loss in Alzheimer's disease. Its central nervous system expression pattern in the forebrain, in particular in caudate putamen, the hippocampus and to lesser extent in the cortex, predispose it for a role in executive function and reward-related actions. In rodents, regional overexpression or knockdown in the prefrontal cortex or the nucleus accumbens of 5-HT₄R was shown to impact mood and depression-like phenotypes, food intake and hypophagia; however, whether expression changes are causally involved in the etiology of such disorders is not clear. In this context, more data are emerging, especially based on PET technology and the use of ligand tracers that demonstrate altered 5-HT₄R expression in brain disorders in humans, confirming data stemming from post-mortem tissue and preclinical animal models. In this review, we would like to present the current knowledge of 5-HT₄R expression in brain regions relevant to mood/depression, reward and executive function with a focus on 5-HT₄R expression changes in brain disorders or caused by drug treatment, at both the transcript and protein levels.
Collapse
Affiliation(s)
- Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| | - Julia Castello
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| |
Collapse
|
21
|
Zubkov EA, Zorkina YA, Orshanskaya EV, Khlebnikova NN, Krupina NA, Chekhonin VP. Changes in Gene Expression Profiles in Adult Rat Brain Structures after Neonatal Action of Dipeptidyl Peptidase-IV Inhibitors. Neuropsychobiology 2018; 76:89-99. [PMID: 29860255 DOI: 10.1159/000488367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). METHODS In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. RESULTS Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. DISCUSSION These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin.
Collapse
Affiliation(s)
- Eugene A Zubkov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Yana A Zorkina
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Elena V Orshanskaya
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | | | - Natalia A Krupina
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
22
|
Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem 2018. [DOI: 10.1111/jnc.14333] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Pi
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Chun-Long Mu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Peng
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Zan Huang
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| |
Collapse
|
23
|
Matrov D, Kaart T, Lanfumey L, Maldonado R, Sharp T, Tordera RM, Kelly PA, Deakin B, Harro J. Cerebral oxidative metabolism mapping in four genetic mouse models of anxiety and mood disorders. Behav Brain Res 2018; 356:435-443. [PMID: 29885846 DOI: 10.1016/j.bbr.2018.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
The psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT1-/+), full knockout of the cannabinoid 1 receptor (CB1-/-), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT). Altogether 76 mouse brains were studied to measure oxidative metabolism in one hundred brain regions, and the obtained dataset was submitted to a variety of machine learning algorithms and multidimensional scaling. Overall, the top brain regions having the largest contribution to classification into depression model were the lateroanterior hypothalamic nucleus, the anterior part of the basomedial amygdaloid nucleus, claustrum, the suprachiasmatic nucleus, the ventromedial hypothalamic nucleus, and the anterior hypothalamic area. In terms of the patterns of inter-regional relationship between wild-type and genetically modified mice there was little overall difference, while the most deviating brain regions were cortical amygdala and ventrolateral and ventral posteromedial thalamic nuclei. The GRi mice that most clearly differed from their controls exhibited deviation of connectivity for a number of brain regions, such as ventrolateral thalamic nucleus, the intermediate part of the lateral septal nucleus, the anteriodorsal part of the medial amygdaloid nucleus, the medial division of the central amygdaloid nucleus, ventral pallidum, nucleus of the vertical limb of the diagonal band, anteroventral parts of the thalamic nucleus and parts of the bed nucleus of the stria terminalis. Conclusively, the GRi mouse model was characterized by changes in the functional connectivity of the extended amygdala and stress response circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neuroscience, INSERM U 894, 2 ter rue d'Alésia, 75014 Paris, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Paul A Kelly
- Centre for Cognitive and Neural Systems, University of Edinburgh, Scotland, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
24
|
Shah R, Courtiol E, Castellanos FX, Teixeira CM. Abnormal Serotonin Levels During Perinatal Development Lead to Behavioral Deficits in Adulthood. Front Behav Neurosci 2018; 12:114. [PMID: 29928194 PMCID: PMC5997829 DOI: 10.3389/fnbeh.2018.00114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
Serotonin (5-HT) is one of the best-studied modulatory neurotransmitters with ubiquitous presynaptic release and postsynaptic reception. 5-HT has been implicated in a wide variety of brain functions, ranging from autonomic regulation, sensory perception, feeding and motor function to emotional regulation and cognition. The role of this neuromodulator in neuropsychiatric diseases is unquestionable with important neuropsychiatric medications, e.g., most antidepressants, targeting this system. Importantly, 5-HT modulates neurodevelopment and changes in its levels during development can have life-long consequences. In this mini-review, we highlight that exposure to both low and high serotonin levels during the perinatal period can lead to behavioral deficits in adulthood. We focus on three exogenous factors that can change 5-HT levels during the critical perinatal period: dietary tryptophan depletion, exposure to serotonin-selective-reuptake-inhibitors (SSRIs) and poor early life care. We discuss the effects of each of these on behavioral deficits in adulthood.
Collapse
Affiliation(s)
- Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Emmanuelle Courtiol
- CNRS UMR 5292 - INSERM U1028, Lyon Neuroscience Research Center, Université Lyon 1, Lyon, France
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, United States.,Division of Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, United States
| |
Collapse
|
25
|
PINHEIRO IL, SANTANA BJRCDE, GALINDO LCM, MANHÃES DE CASTRO R, SOUSA SLD. Perinatal serotonergic activity: A decisive factor in the control of food intake. REV NUTR 2017. [DOI: 10.1590/1678-98652017000400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The serotoninergic system controls key events related to proper nervous system development. The neurotransmitter serotonin and the serotonin transporter are critical for this control. Availability of these components is minutely regulated during the development period, and the environment may affect their action on the nervous system. Environmental factors such as undernutrition and selective serotonin reuptake inhibitors may increase the availability of serotonin in the synaptic cleft and change its anorectic action. The physiological responses promoted by serotonin on intake control decrease when requested by acute stimuli or stress, demonstrating that animals or individuals develop adaptations in response to the environmental insults they experience during the development period. Diseases, such as anxiety and obesity, appear to be associated with the body’s response to stress or stimulus, and require greater serotonergic system action. These findings demonstrate the importance of the level of serotonin in the perinatal period to the development of molecular and morphological aspects of food intake control, and its decisive role in understanding the possible environmental factors that cause diseases in adulthood.
Collapse
|
26
|
Krause ET, Kjaer JB, Lüders C, van LP. A polymorphism in the 5'-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav Brain Res 2017; 330:92-96. [PMID: 28465138 DOI: 10.1016/j.bbr.2017.04.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023]
Abstract
The neural serotonin (5-HT)/serotonin transporter (5-HTT) system is involved in the regulation of physiological processes and emotional states. In humans, the short (S) allele in the 5-HTT gene-linked polymorphic region, which decreases 5-HTT expression, has been shown to be associated with behavioral changes including an increased level of anxiety. Also in birds a polymorphism in the 5-HTT gene is described, a deletion (D) has been found to have functional consequences on growth and locomotion. Furthermore, the D-allele leads to an increased 5-HTT expression compared to the wild type (W), a feature which is linked to lower levels of fear in mammalian species. Thus, we aimed here to test whether the polymorphism in the chicken 5-HTT gene also leads to respective alternations of fear-related behaviors. We tested 268 hens of three genotypes (W/W, W/D, D/D) in two behavioral paradigms (open field, light-dark test) to assess fear-related behavior. Both tests revealed that hens possessing the D-allele showed lower levels of fear than those having the W-allele. These similar outcomes in fear-related behaviors in an avian and a mammalian species are associated with an increased 5-HTT expression. In the human 5-HTT gene, the long (L) allele is linked to such increased expression, whereas in chickens it is the D-allele. Thus, increased 5-HTT expression causing decreased fear may be a general mechanism in vertebrates.
Collapse
Affiliation(s)
- E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25/27, 29223 Celle, Germany.
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25/27, 29223 Celle, Germany
| | - Carolin Lüders
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Loc Phi van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25/27, 29223 Celle, Germany.
| |
Collapse
|
27
|
Tang X, Liu H, Chen Q, Wang X, Xiong Y, Zhao P. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori). Int J Mol Sci 2016; 17:ijms17101675. [PMID: 27706106 PMCID: PMC5085708 DOI: 10.3390/ijms17101675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022] Open
Abstract
The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China.
| | - Ying Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China.
| |
Collapse
|
28
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
29
|
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front Neural Circuits 2016; 10:24. [PMID: 27092057 PMCID: PMC4820447 DOI: 10.3389/fncir.2016.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
30
|
Mc Mahon B, Andersen SB, Madsen MK, Hjordt LV, Hageman I, Dam H, Svarer C, da Cunha-Bang S, Baaré W, Madsen J, Hasholt L, Holst K, Frokjaer VG, Knudsen GM. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder. Brain 2016; 139:1605-14. [DOI: 10.1093/brain/aww043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/28/2016] [Indexed: 11/14/2022] Open
|
31
|
Ye R, Quinlan MA, Iwamoto H, Wu HH, Green NH, Jetter CS, McMahon DG, Veestra-VanderWeele J, Levitt P, Blakely RD. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters. Front Synaptic Neurosci 2016; 7:20. [PMID: 26793096 PMCID: PMC4707279 DOI: 10.3389/fnsyn.2015.00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca(2+)-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes.
Collapse
Affiliation(s)
- Ran Ye
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Meagan A Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hsiao-Huei Wu
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Noah H Green
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Christopher S Jetter
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Douglas G McMahon
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Biological Sciences, Vanderbilt University School of Medicine, NashvilleTN, USA
| | - Jeremy Veestra-VanderWeele
- Department of Psychiatry, NYS Psychiatric Institute, Columbia University Medical Center, New York NY, USA
| | - Pat Levitt
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, NashvilleTN, USA
| |
Collapse
|
32
|
Bocchio M, Fucsina G, Oikonomidis L, McHugh SB, Bannerman DM, Sharp T, Capogna M. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala. Neuropsychopharmacology 2015; 40:3015-26. [PMID: 26052039 PMCID: PMC4864439 DOI: 10.1038/npp.2015.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Giulia Fucsina
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lydia Oikonomidis
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,Department of Pharmacology, University of Oxford, Oxford, UK,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK, Tel: +44 1865 271897, Fax: +44 1865 271647, E-mail:
| |
Collapse
|
33
|
Harrison SJ, Tyrer AE, Levitan RD, Xu X, Houle S, Wilson AA, Nobrega JN, Rusjan PM, Meyer JH. Light therapy and serotonin transporter binding in the anterior cingulate and prefrontal cortex. Acta Psychiatr Scand 2015; 132:379-88. [PMID: 25891484 PMCID: PMC4942271 DOI: 10.1111/acps.12424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effects of light therapy on serotonin transporter binding (5-HTT BPND ), an index of 5-HTT levels, in the anterior cingulate and prefrontal cortices (ACC and PFC) of healthy individuals during the fall and winter. Twenty-five per cent of healthy individuals experience seasonal mood changes that affect functioning. 5-HTT BPND has been found to be higher across multiple brain regions in the fall and winter relative to spring and summer, and elevated 5-HTT BPND may lead to extracellular serotonin loss and low mood. We hypothesized that, during the fall and winter, light therapy would reduce 5-HTT BPND in the ACC and PFC, which sample brain regions involved in mood regulation. METHOD In a single-blind, placebo-controlled, counterbalanced, crossover design, [(11) C]DASB positron emission tomography was used measure 5-HTT BPND following light therapy and placebo conditions during fall and winter. RESULTS In winter, light therapy significantly decreased 5-HTT BPND by 12% in the ACC relative to placebo (F1,9 = 18.04, P = 0.002). In the fall, no significant change in 5-HTT BPND was found in any region across conditions. CONCLUSION These results identify, for the first time, a central biomarker associated with the intervention of light therapy in humans which may be applied to further develop this treatment for prevention of seasonal depression.
Collapse
Affiliation(s)
- S J Harrison
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Behavioural Neurobiology Laboratory and Campbell Family Mental Health Research Institute and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - A E Tyrer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - R D Levitan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - X Xu
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - S Houle
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - A A Wilson
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J N Nobrega
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Behavioural Neurobiology Laboratory and Campbell Family Mental Health Research Institute and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - P M Rusjan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J H Meyer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Couch Y, Xie Q, Lundberg L, Sharp T, Anthony DC. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice. PLoS One 2015; 10:e0130643. [PMID: 26147001 PMCID: PMC4493081 DOI: 10.1371/journal.pone.0130643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/21/2015] [Indexed: 01/15/2023] Open
Abstract
It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, United Kingdom
- * E-mail:
| | - Qin Xie
- Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Louise Lundberg
- Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, United Kingdom
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 0RQ, United Kingdom
| | - Trevor Sharp
- Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
35
|
Altieri SC, Yang H, O'Brien HJ, Redwine HM, Senturk D, Hensler JG, Andrews AM. Perinatal vs genetic programming of serotonin states associated with anxiety. Neuropsychopharmacology 2015; 40:1456-70. [PMID: 25523893 PMCID: PMC4397404 DOI: 10.1038/npp.2014.331] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hongyan Yang
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hannah J O'Brien
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hannah M Redwine
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Damla Senturk
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Julie G Hensler
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne M Andrews
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
36
|
McHugh SB, Barkus C, Lima J, Glover LR, Sharp T, Bannerman DM. SERT and uncertainty: serotonin transporter expression influences information processing biases for ambiguous aversive cues in mice. GENES BRAIN AND BEHAVIOR 2015; 14:330-6. [PMID: 25824641 PMCID: PMC4440341 DOI: 10.1111/gbb.12215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
The long allele variant of the serotonin transporter (SERT, 5-HTT) gene-linked polymorphic region (5-HTTLPR) is associated with higher levels of 5-HTT expression and reduced risk of developing affective disorders. However, little is known about the mechanisms underlying this protective effect. One hypothesis is that 5-HTT expression influences aversive information processing, with reduced negative cognitive bias present in those with higher 5-HTT expression. Here we investigated this hypothesis using genetically-modified mice and a novel aversive learning paradigm. Mice with high levels of 5-HTT expression (5-HTT over-expressing, 5-HTTOE mice) and wild-type mice were trained to discriminate between three distinct auditory cues: one cue predicted footshock on all trials (CS+); a second cue predicted the absence of footshock (CS−); and a third cue predicted footshock on 20% of trials (CS20%), and was therefore ambiguous. Wild-type mice exhibited equivalently high levels of fear to the CS+ and CS20% and minimal fear to the CS−. In contrast, 5-HTTOE mice exhibited high levels of fear to the CS+ but minimal fear to the CS− and the CS20%. This selective reduction in fear to ambiguous aversive cues suggests that increased 5-HTT expression reduces negative cognitive bias for stimuli with uncertain outcomes.
Collapse
Affiliation(s)
- S B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
37
|
Nomura M, Kaneko M, Okuma Y, Nomura J, Kusumi I, Koyama T, Nomura Y. Involvement of serotonin transporter gene polymorphisms (5-HTT) in impulsive behavior in the japanese population. PLoS One 2015; 10:e0119743. [PMID: 25775400 PMCID: PMC4361639 DOI: 10.1371/journal.pone.0119743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022] Open
Abstract
The serotonergic pathway has been implicated in the pathogenesis of impulsivity, and sensitivity to aversive outcomes may be linked to serotonin (5-HT) levels. Polymorphisms in the gene that encodes the serotonin transporter (5-HTT), which have differential effects on the level of serotonin transmission, display alternate responses to aversive stimuli. However, recent studies have shown that 5-HT does not affect motor function, which suggests that the functioning of the serotonin-transporter-linked polymorphic region (5-HTTLPR) does not directly affect the behavioral regulatory process itself, but instead exerts an effect via the evaluation of the potential risk associated with particular behavioral outputs. The aim of the present study was to examine the effect of specific 5-HTTLPR genotypes on the motor regulatory process, as observed during a Go/Nogo punishment feedback task. 5-HTT gene-linked promoter polymorphisms were analyzed by polymerase chain reaction, using lymphocytes from 61 healthy Japanese volunteers. Impulsivity was defined as the number of commission errors (responding when one should not) made during a Go/Nogo task. We found that the s/s genotype group made fewer impulsive responses, specifically under aversive conditions for committing such errors, compared to those in the s/l group, without affecting overall motor inhibition. These results suggest that 5-HTTLPRs do not directly affect the behavioral regulatory process itself, but may instead exert an effect on the evaluation of potential risk. The results also indicate that under such aversive conditions, decreased expression of 5-HTT may promote motor inhibitory control.
Collapse
Affiliation(s)
- Michio Nomura
- Graduate School of Education, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan
- * E-mail:
| | - Masayuki Kaneko
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Yasunobu Okuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Japan
| | - Jun Nomura
- Department of Biomedical Research, Graduate School of Biomedical and Health Sciences, University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Koyama
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Nomura
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
38
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
39
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
40
|
Jacobsen JP, Plenge P, Sachs BD, Pehrson AL, Cajina M, Du Y, Roberts W, Rudder ML, Dalvi P, Robinson TJ, O’Neill SP, Khoo KS, Morillo CS, Zhang X, Caron MG. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology (Berl) 2014; 231:4527-40. [PMID: 24810106 PMCID: PMC4346315 DOI: 10.1007/s00213-014-3595-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/18/2014] [Indexed: 12/12/2022]
Abstract
RATIONALE Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. OBJECTIVES Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. METHODS Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). RESULTS We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. CONCLUSIONS We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
Collapse
Affiliation(s)
| | - Per Plenge
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D. Sachs
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Yunzhi Du
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Wendy Roberts
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Meghan L. Rudder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Prachiti Dalvi
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Taylor J. Robinson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Sharon P. O’Neill
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - King S. Khoo
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Corresponding Author: Dr. Marc G. Caron, James B. Duke Professor, Department of Cell Biology, Duke University Medical Center, PO Box 3287, Durham, NC 27710, USA., Tel: +1 919 684 5433, Fax: +1 919 681 8641,
| |
Collapse
|
41
|
Line SJ, Barkus C, Rawlings N, Jennings K, McHugh S, Sharp T, Bannerman DM. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur J Neurosci 2014; 40:3735-45. [PMID: 25283165 PMCID: PMC4737229 DOI: 10.1111/ejn.12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The 5‐hydroxytryptamine (5‐HT) transporter (5‐HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5‐HTT gene promoter is associated with reduced 5‐HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5‐HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5‐HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over‐express the 5‐HTT (5‐HTTOE mice). Compared with wild‐type mice, 5‐HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision‐making T‐maze task, 5‐HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild‐type mice. However, further inspection of the data revealed that 5‐HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5‐HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5‐HTT over‐expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5‐HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, The University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodrigues R, Petersen RB, Perry G. Parallels between major depressive disorder and Alzheimer's disease: role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol 2014; 34:925-49. [PMID: 24927694 DOI: 10.1007/s10571-014-0074-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
Abstract
The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer's disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic-pituitary axis, the hypothalamic-pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and "oxidopamatergic" cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD.
Collapse
Affiliation(s)
- Roberto Rodrigues
- College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA,
| | | | | |
Collapse
|
43
|
Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8:199. [PMID: 24936175 PMCID: PMC4047678 DOI: 10.3389/fnbeh.2014.00199] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 01/03/2023] Open
Abstract
Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the "gain" of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. interneuronal populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.
Collapse
Affiliation(s)
- Paul R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| | - Christine Luckhart
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| |
Collapse
|
44
|
Barkus C, Line SJ, Huber A, Capitao L, Lima J, Jennings K, Lowry J, Sharp T, Bannerman DM, McHugh SB. Variation in serotonin transporter expression modulates fear-evoked hemodynamic responses and theta-frequency neuronal oscillations in the amygdala. Biol Psychiatry 2014; 75:901-8. [PMID: 24120093 PMCID: PMC4032572 DOI: 10.1016/j.biopsych.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Gene association studies detect an influence of natural variation in the 5-hydroxytryptamine transporter (5-HTT) gene on multiple aspects of individuality in brain function, ranging from personality traits through to susceptibility to psychiatric disorders such as anxiety and depression. The neural substrates of these associations are unknown. Human neuroimaging studies suggest modulation of the amygdala by 5-HTT variation, but this hypothesis is controversial and unresolved, and difficult to investigate further in humans. METHODS We used a mouse model in which the 5-HTT is overexpressed throughout the brain and recorded hemodynamic responses (using a novel in vivo voltammetric monitoring method, analogous to blood oxygen level-dependent functional magnetic resonance imaging) and local field potentials during Pavlovian fear conditioning. RESULTS Increased 5-HTT expression impaired, but did not prevent, fear learning and significantly reduced amygdala hemodynamic responses to aversive cues. Increased 5-HTT expression was also associated with reduced theta oscillations, which were a feature of aversive cue presentation in controls. Moreover, in control mice, but not those with high 5-HTT expression, there was a strong correlation between theta power and the amplitude of the hemodynamic response. CONCLUSIONS Direct experimental manipulation of 5-HTT expression levels throughout the brain markedly altered fear learning, amygdala hemodynamic responses, and neuronal oscillations.
Collapse
Affiliation(s)
- Christopher Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Samantha J Line
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna Huber
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Liliana Capitao
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Joao Lima
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Katie Jennings
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Lowry
- Department of Chemistry, National University of Ireland, Maynooth, Ireland
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
45
|
Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. SCIENCE CHINA-LIFE SCIENCES 2014; 57:327-335. [PMID: 24554471 DOI: 10.1007/s11427-014-4615-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022]
Abstract
Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.
Collapse
Affiliation(s)
- Jia Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 2014; 81:15-30. [PMID: 24486710 DOI: 10.1016/j.neuropharm.2014.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders.
Collapse
Affiliation(s)
- Maude Beaudoin-Gobert
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France.
| |
Collapse
|
47
|
Kerr TM, Muller CL, Miah M, Jetter CS, Pfeiffer R, Shah C, Baganz N, Anderson GM, Crawley JN, Sutcliffe JS, Blakely RD, Veenstra-Vanderweele J. Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Mol Autism 2013; 4:35. [PMID: 24083388 PMCID: PMC3851031 DOI: 10.1186/2040-2392-4-35] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022] Open
Abstract
Background Previously, we identified multiple, rare serotonin (5-HT) transporter (SERT) variants in children with autism spectrum disorder (ASD). Although in our study the SERT Ala56 variant was over-transmitted to ASD probands, it was also seen in some unaffected individuals, suggesting that associated ASD risk is influenced by the epistatic effects of other genetic variation. Subsequently, we established that mice expressing the SERT Ala56 variant on a 129S6/S4 genetic background display multiple biochemical, physiological and behavioral changes, including hyperserotonemia, altered 5-HT receptor sensitivity, and altered social, communication, and repetitive behavior. Here we explore the effects of genetic background on SERT Ala56 knock-in phenotypes. Methods To explore the effects of genetic background, we backcrossed SERT Ala56 mice on the 129 background into a C57BL/6 (B6) background to achieve congenic B6 SERT Ala56 mice, and assessed autism-relevant behavior, including sociability, ultrasonic vocalizations, and repetitive behavior in the home cage, as well as serotonergic phenotypes, including whole blood serotonin levels and serotonin receptor sensitivity. Results One consistent phenotype between the two strains was performance in the tube test for dominance, where mutant mice displayed a greater tendency to withdraw from a social encounter in a narrow tube as compared to wildtype littermate controls. On the B6 background, mutant pup ultrasonic vocalizations were significantly increased, in contrast to decreased vocalizations seen previously on the 129 background. Several phenotypes seen on the 129 background were reduced or absent when the mutation was placed on the B6 background, including hyperserotonemia, 5-HT receptor hypersensivity, and repetitive behavior. Conclusions Our findings provide a cogent example of how epistatic interactions can modulate the impact of functional genetic variation and suggest that some aspects of social behavior may be especially sensitive to changes in SERT function. Finally, these results provide a platform for the identification of genes that may modulate the risk of ASD in humans.
Collapse
Affiliation(s)
- Travis M Kerr
- Department of Psychiatry, Vanderbilt University, 465 21st Ave S, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Couch Y, Martin CJ, Howarth C, Raley J, Khrapitchev AA, Stratford M, Sharp T, Sibson NR, Anthony DC. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI. Neuroimage 2013; 75:177-186. [PMID: 23473937 PMCID: PMC4004801 DOI: 10.1016/j.neuroimage.2013.02.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 02/02/2023] Open
Abstract
Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK; CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Chris J Martin
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Clare Howarth
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Josie Raley
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Alexandre A Khrapitchev
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Michael Stratford
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK
| | - Nicola R Sibson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK
| |
Collapse
|
49
|
Olivier JDA, Vinkers CH, Olivier B. The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front Pharmacol 2013; 4:74. [PMID: 23781201 PMCID: PMC3677985 DOI: 10.3389/fphar.2013.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence that genetic factors play an important role in anxiety disorders. In support, human genome-wide association studies have implicated several novel candidate genes. However, illumination of such genetic factors involved in anxiety disorders has not resulted in novel drugs over the past decades. A complicating factor is the heterogeneous classification of anxiety disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) and diverging operationalization of anxiety used in preclinical and clinical studies. Currently, there is an increasing focus on the gene × environment (G × E) interaction in anxiety as genes do not operate in isolation and environmental factors have been found to significantly contribute to the development of anxiety disorders in at-risk individuals. Nevertheless, extensive research on G × E mechanisms in anxiety has not resulted in major breakthroughs in drug discovery. Modification of individual genes in rodent models has enabled the specific study of anxiety in preclinical studies. In this context, two extensively studied neurotransmitters involved in anxiety are the gamma-aminobutyric acid (GABA) and 5-HT (5-hydroxytryptamine) system. In this review, we illustrate the complex interplay between genes and environment in anxiety processes by reviewing preclinical and clinical studies on the serotonin transporter (5-HTT), 5-HT1A receptor, 5-HT2 receptor, and GABAA receptor. Even though targets from the serotonin and GABA system have yielded drugs with known anxiolytic efficacy, the relation between the genetic background of these targets and anxiety symptoms and development of anxiety disorders is largely unknown. The aim of this review is to show the vast complexity of genetic and environmental factors in anxiety disorders. In light of the difficulty with which common genetic variants are identified in anxiety disorders, animal models with translational validity may aid in elucidating the neurobiological background of these genes and their possible role in anxiety. We argue that, in addition to human genetic studies, translational models are essential to map anxiety-related genes and to enhance our understanding of anxiety disorders in order to develop potentially novel treatment strategies.
Collapse
Affiliation(s)
- Jocelien D A Olivier
- Department of, Women's and Children's Health, Uppsala University Uppsala, Sweden ; Center for Gender Medicine, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Pryce CR, Klaus F. Translating the evidence for gene association with depression into mouse models of depression-relevant behaviour: current limitations and future potential. Neurosci Biobehav Rev 2013; 37:1380-402. [PMID: 23680698 DOI: 10.1016/j.neubiorev.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Depression is characterised by high prevalence and complex, heterogeneous psychopathology. At the level of aetio-pathology, considerable research effort has been invested to identify specific gene polymorphisms associated with increased depression prevalence. Genome-wide association studies have not identified any risk polymorphisms, and candidate gene case-control studies have identified a small number of risk polymorphisms. It is increasingly recognised that interaction between genotype and environmental factors (G×E), notably stressful life events, is the more realistic unit of depression aetio-pathology, with G×E evidence described for a small number of risk polymorphisms. An important complementary approach has been to describe genes exhibiting brain region-specific expression changes in depression. Mouse models of depression informed by the human evidence allow for the study of causality, but to-date have also yielded limited insights into depression aetio-pathology. This review of the translational evidence integrates human and mouse research approaches and evidence. It also makes specific recommendations in terms of how future research in human and mouse should be designed in order to deliver evidence for depression aetio-pathology and thereby to inform the development of novel and improved antidepressant treatments.
Collapse
Affiliation(s)
- Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy & Psychosomatics, Zurich University Hospital for Psychiatry, August Forel-Strasse 7, CH-8008 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|