1
|
Cropper EC, Perkins M, Jing J. Persistent modulatory actions and task switching in the feeding network of Aplysia. Curr Opin Neurobiol 2023; 82:102775. [PMID: 37625344 PMCID: PMC10530010 DOI: 10.1016/j.conb.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The activity of multifunctional networks is configured by neuromodulators that exert persistent effects. This raises a question, does this impact the ability of a network to switch from one type of activity to another? We review studies that have addressed this question in the Aplysia feeding circuit. Task switching in this system occurs "asymmetrically." When there is a switch from egestion to ingestion neuromodulation impedes switching (creates a "negative bias"). When there is a switch from ingestion to egestion the biasing is "positive." Ingestion promotes subsequent egestion. We contrast mechanisms responsible for the two types of biasing and show that the observed asymmetry is a consequence of the fact that there is more than one set of egestive circuit parameters.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Matthew Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Evans CG, Barry MA, Perkins MH, Jing J, Weiss KR, Cropper EC. Variable task switching in the feeding network of Aplysia is a function of differential command input. J Neurophysiol 2023; 130:941-952. [PMID: 37671445 PMCID: PMC10648941 DOI: 10.1152/jn.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael A Barry
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthew H Perkins
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jian Jing
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Klaudiusz R Weiss
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elizabeth C Cropper
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
3
|
Evans CG, Barry MA, Jing J, Perkins MH, Weiss KR, Cropper EC. The Complement of Projection Neurons Activated Determines the Type of Feeding Motor Program in Aplysia. Front Neural Circuits 2021; 15:685222. [PMID: 34177471 PMCID: PMC8222659 DOI: 10.3389/fncir.2021.685222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple projection neurons are often activated to initiate behavior. A question that then arises is, what is the unique functional role of each neuron activated? We address this issue in the feeding system of Aplysia. Previous experiments identified a projection neuron [cerebral buccal interneuron 2 (CBI-2)] that can trigger ingestive motor programs but only after it is repeatedly stimulated, i.e., initial programs are poorly defined. As CBI-2 stimulation continues, programs become progressively more ingestive (repetition priming occurs). This priming results, at least in part, from persistent actions of peptide cotransmitters released from CBI-2. We now show that in some preparations repetition priming does not occur. There is no clear seasonal effect; priming and non-priming preparations are encountered throughout the year. CBI-2 is electrically coupled to a second projection neuron, cerebral buccal interneuron 3 (CBI-3). In preparations in which priming does not occur, we show that ingestive activity is generated when CBI-2 and CBI-3 are coactivated. Programs are immediately ingestive, i.e., priming is not necessary, and a persistent state is not induced. Our data suggest that dynamic changes in the configuration of activity can vary and be determined by the complement of projection neurons that trigger activity.
Collapse
Affiliation(s)
- Colin G. Evans
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael A. Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Matthew H. Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
An Anticipatory Circuit Modification That Modifies Subsequent Task Switching. J Neurosci 2021; 41:2152-2163. [PMID: 33500278 DOI: 10.1523/jneurosci.2427-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Modulators are generally expected to establish a network configuration that is appropriate for the current circumstances. We characterize a situation where the opposite is apparently observed. A network effect of a peptide modulator is counterproductive in that it tends to impede rather than promote the creation of the configuration that is appropriate when the modulator is released. This raises a question: why does release occur? We present data that strongly suggest that it impacts task switching. Our experiments were conducted in an Aplysia feeding network that generates egestive and ingestive motor programs. Initial experiments focused on egestive activity and the neuron B8. As activity becomes egestive, there is an increase in synaptic drive to B8 and its firing frequency increases (Wang et al., 2019). We show that, as this occurs, there is also a persistent current that develops in B8 that is outward rather than inward. Dynamic clamp introduction of this current decreases excitability. When there is an egestive-ingestive task switch in Aplysia, negative biasing is observed (i.e., a bout of egestive activity has a negative impact on a subsequent attempt to initiate an ingestive response) (Proekt et al., 2004). Using an in vitro analog of negative biasing, we demonstrate that the outward current that develops during egestive priming plays an important role in establishing this phenomenon. Our data suggest that, although the outward current induced as activity becomes egestive is counterproductive at the time, it plays an anticipatory role in that it subsequently impacts task switching.SIGNIFICANCE STATEMENT In this study, we identify a peptide-induced circuit modification (induction of an outward current) that does not immediately promote the establishment of a behaviorally appropriate network configuration. We ask why this might occur, and present data that strongly suggest that it plays an important role during task switching. Specifically, our data suggest that the outward current we characterize plays a role in the negative biasing that is seen in the mollusc Aplysia when there is a transition from egestive to ingestive activity. It is possible that the mechanism that we describe operates in other species. A negative effect of egestion on subsequent ingestion is observed throughout the animal kingdom.
Collapse
|
5
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
6
|
Bazenkov NI, Boldyshev BA, Dyakonova V, Kuznetsov OP. Simulating Small Neural Circuits with a Discrete Computational Model. BIOLOGICAL CYBERNETICS 2020; 114:349-362. [PMID: 32170500 DOI: 10.1007/s00422-020-00826-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Simulations of neural activity are commonly based on differential equations. We address the question what can be achieved with a simplified discrete model. The proposed model resembles artificial neural networks enriched with additional biologically inspired features. A neuron has several states, and the state transitions follow endogenous patterns which roughly correspond to firing behavior observed in biological neurons: oscillatory, tonic, plateauing, etc. Neural interactions consist of two components: synaptic connections and extrasynaptic emission of neurotransmitters. The dynamics is asynchronous and event-based; the events correspond to the changes in neurons activity. This model is innovative in introducing discrete framework for modeling neurotransmitter interactions which play the important role in neuromodulation. We simulate rhythmic activity of small neural ensembles like central pattern generators (CPG). The modeled examples include: the biphasic rhythm generated by the half-center mechanism with the post-inhibitory rebound (like the leech heartbeat CPG), the triphasic rhythm (like in pond snail feeding CPG) and the pattern switch in the system of several neurons (like the switch between ingestion and egestion in Aplysia feeding CPG). The asynchronous dynamics allows to obtain multi-phasic rhythms with phase durations close to their biological prototypes. The perspectives of discrete modeling in biological research are discussed in the conclusion.
Collapse
Affiliation(s)
- Nikolay I Bazenkov
- V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia.
| | - Boris A Boldyshev
- V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
| | - Varvara Dyakonova
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Oleg P Kuznetsov
- V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Costa RM, Baxter DA, Byrne JH. Computational model of the distributed representation of operant reward memory: combinatoric engagement of intrinsic and synaptic plasticity mechanisms. ACTA ACUST UNITED AC 2020; 27:236-249. [PMID: 32414941 PMCID: PMC7233148 DOI: 10.1101/lm.051367.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified cells B30, B51, B63, and B65, and increases in B63-B30 and B63-B65 electrical synaptic coupling. To examine the ways in which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was developed. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs, and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 increased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features. Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63-B30 coupling contributed to regularity and bias, and B63-B65 coupling contributed to all BMP features. Each site of plasticity altered multiple BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.
Collapse
Affiliation(s)
- Renan M Costa
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Engineering in Medicine (EnMed), Texas A&M Health Science Center-Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Network Degeneracy and the Dynamics of Task Switching in the Feeding Circuit in Aplysia. J Neurosci 2019; 39:8705-8716. [PMID: 31548235 DOI: 10.1523/jneurosci.1454-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
The characteristics of a network are determined by parameters that describe the intrinsic properties of the component neurons and their synapses. Degeneracy occurs when more than one set of parameters produces the same (or very similar) output. It is not clear whether network degeneracy impacts network function or is simply a reflection of the fact that, although it is important for a network to be able to generate a particular output, it is not important how this is achieved. We address this issue in the feeding network of the mollusc Aplysia In this system, there are two stimulation paradigms that generate egestive motor programs: repetition priming and positive biasing. We demonstrate that circuit parameters differ in the 2 cases (e.g., egestive repetition priming requires activity in an interneuron, B20, which is not essential for positive biasing). We show that degeneracy has consequences for task switching. If egestive repetition priming is immediately followed by stimulation of an ingestive input to the feeding central pattern generator, the first few cycles of activity are egestive (not ingestive). In this situation, there is a task switch cost. This "cost" is in part due to the potentiating effect of egestive repetition priming on B20. In contrast, there is no switch cost after positive biasing. Stimulation of the ingestive central pattern generator input immediately triggers ingestive activity. Our results indicate that the mechanisms used to pattern activity can impact network function in that they can determine how readily a network can switch from one configuration to another.SIGNIFICANCE STATEMENT A particular pattern of neural activity can be generated by more than one set of circuit parameters. How or whether this impacts network function is unclear. We address this issue in the feeding network of Aplysia and demonstrate that degeneracy in network function can have consequences for task switching. Namely, we show that, when egestive activity is generated via one set of circuit modifications, an immediate switch to ingestive activity is not possible. In contrast, rapid transitions to ingestive activity are possible if egestive activity is generated via a different set of circuit modifications.
Collapse
|
9
|
Mukherjee N, Wachutka J, Katz DB. Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics. eLife 2019; 8:e45968. [PMID: 31232693 PMCID: PMC6625792 DOI: 10.7554/elife.45968] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Sensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former via a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they preceded the action-related transition - thus, the same perturbation impacted behavior or not, depending on the transition latency in that particular trial. Our results suggest a distributed attractor network model of taste processing, and a dynamical role for cortex in driving motor behavior.
Collapse
Affiliation(s)
- Narendra Mukherjee
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Donald B Katz
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| |
Collapse
|
10
|
Perkins MH, Weiss KR, Cropper EC. Persistent effects of cyclic adenosine monophosphate are directly responsible for maintaining a neural network state. Sci Rep 2019; 9:9058. [PMID: 31227744 PMCID: PMC6588548 DOI: 10.1038/s41598-019-45241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 01/25/2023] Open
Abstract
Network states are often determined by modulators that alter the synaptic and cellular properties of the constituent neurons. Frequently neuromodulators act via second messengers, consequently their effects can persist. This persistence at the cellular/molecular level determines the maintenance of the state at the network level. Here we study a feeding network in Aplysia. In this network, persistent modulation supports the maintenance of an ingestive state, biasing the network to generate ingestive motor programs. Neuropeptides that exert cyclic adenosine monophosphate (cAMP) dependent effects play an important role in inducing the ingestive state. Most commonly, modulatory effects exerted through cAMP signaling are persistent as a consequence of PKA activation. This is not the case in the neurons we study. Instead maintenance of the network state depends on the persistence of cAMP itself. Data strongly suggest that this is a consequence of the direct activation of a cyclic nucleotide gated current.
Collapse
Affiliation(s)
- Matthew H Perkins
- Icahn School of Medicine at Mt. Sinai, Department of Neuroscience and Friedman Brain Institute, One Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA.
| | - Klaudiusz R Weiss
- Icahn School of Medicine at Mt. Sinai, Department of Neuroscience and Friedman Brain Institute, One Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
| | - Elizabeth C Cropper
- Icahn School of Medicine at Mt. Sinai, Department of Neuroscience and Friedman Brain Institute, One Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
| |
Collapse
|
11
|
Zhang G, Yuan WD, Vilim FS, Romanova EV, Yu K, Yin SY, Le ZW, Xue YY, Chen TT, Chen GK, Chen SA, Cropper EC, Sweedler JV, Weiss KR, Jing J. Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. ACS Chem Neurosci 2018. [PMID: 29543430 DOI: 10.1021/acschemneuro.7b00513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.
Collapse
Affiliation(s)
- Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Wang-ding Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ferdinand S. Vilim
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Elena V. Romanova
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Si-yuan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Zi-wei Le
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ying-yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ting-ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Guo-kai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Song-an Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
12
|
Cellular Effects of Repetition Priming in the Aplysia Feeding Network Are Suppressed during a Task-Switch But Persist and Facilitate a Return to the Primed State. J Neurosci 2018; 38:6475-6490. [PMID: 29934354 DOI: 10.1523/jneurosci.0547-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Many neural networks are multitasking and receive modulatory input, which configures activity. As a result, these networks can enter a relatively persistent state in which they are biased to generate one type of output as opposed to another. A question we address is as follows: what happens to this type of state when the network is forced to task-switch? We address this question in the feeding system of the mollusc Aplysia This network generates ingestive and egestive motor programs. We focus on an identified neuron that is selectively active when programs are ingestive. Previous work has established that the increase in firing frequency observed during ingestive programs is at least partially mediated by an excitability increase. Here we identify the underlying cellular mechanism as the induction of a cAMP-dependent inward current. We ask how this current is impacted by the subsequent induction of egestive activity. Interestingly, we demonstrate that this task-switch does not eliminate the inward current but instead activates an outward current. The induction of the outward current obviously reduces the net inward current in the cell. This produces the decrease in excitability and firing frequency required for the task-switch. Importantly, however, the persistence of the inward current is not impacted. It remains present and coexists with the outward current. Consequently, when effects of egestive priming and the outward current dissipate, firing frequency and excitability remain above baseline levels. This presumably has important functional implications in that it will facilitate a return to ingestive activity.SIGNIFICANCE STATEMENT Under physiological conditions, an animal generating a particular type of motor activity can be forced to at least briefly task-switch. In some circumstances, this involves the temporary induction of an "antagonistic" or incompatible motor program. For example, ingestion can be interrupted by a brief period of egestive activity. In this type of situation, it is often desirable for behavioral switching to occur rapidly and efficiently. In this report, we focus on a particular aspect of this type of task-switch. We determine how the priming that occurs when a multitasking network repeatedly generates one type of motor activity can be retained during the execution of an incompatible motor program.
Collapse
|
13
|
Zhang M, Wang Y, Li Y, Li W, Li R, Xie X, Wang S, Hu X, Zhang L, Bao Z. Identification and Characterization of Neuropeptides by Transcriptome and Proteome Analyses in a Bivalve Mollusc Patinopecten yessoensis. Front Genet 2018; 9:197. [PMID: 29922332 PMCID: PMC5996578 DOI: 10.3389/fgene.2018.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides play essential roles in regulation of reproduction and growth in marine molluscs. But their function in marine bivalves – a group of animals of commercial importance – is largely unexplored due to the lack of systematic identification of these molecules. In this study, we sequenced and analyzed the transcriptome of nerve ganglia of Yesso scallop Patinopecten yessoensis, from which 63 neuropeptide genes were identified based on BLAST and de novo prediction approaches, and 31 were confirmed by proteomic analysis using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty genes encode known neuropeptide precursors, of which 20 commonly exist in bilaterians and 30 are protostome specific. Three neuropeptides that have not yet been reported in bivalves were identified, including calcitonin/DH31, lymnokinin and pleurin. Characterization of glycoprotein hormones, insulin-like peptides, allatostatins, RFamides, and some reproduction, cardioactivity or feeding related neuropeptides reveals scallop neuropeptides have conserved molluscan neuropeptide domains, but some (e.g., GPB5, APGWamide and ELH) are characterized with bivalve-specific features. Thirteen potentially novel neuropeptides were identified, including 10 that may also exist in other protostomes, and 3 (GNamide, LRYamide, and Vamide) that may be scallop specific. In addition, we found neuropeptides potentially related to scallop shell growth and eye functioning. This study represents the first comprehensive identification of neuropeptides in scallop, and would contribute to a complete understanding on the roles of various neuropeptides in endocrine regulation in bivalve molluscs.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xinran Xie
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Neveu CL, Costa RM, Homma R, Nagayama S, Baxter DA, Byrne JH. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA-Induced Selection of Motor Patterns in Aplysia. eNeuro 2017; 4:ENEURO.0206-17.2017. [PMID: 29071298 PMCID: PMC5654236 DOI: 10.1523/eneuro.0206-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.
Collapse
Affiliation(s)
- Curtis L Neveu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Renan M Costa
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ryota Homma
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
15
|
Cropper EC, Jing J, Perkins MH, Weiss KR. Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophysiol 2017; 118:1861-1870. [PMID: 28679841 DOI: 10.1152/jn.00373.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Many central pattern generator (CPG)-mediated behaviors are episodic, meaning that they are not continuously ongoing; instead, there are pauses between bouts of activity. This raises an interesting possibility, that the neural networks that mediate these behaviors are not operating under "steady-state" conditions; i.e., there could be dynamic changes in motor activity as it stops and starts. Research in the feeding system of the mollusk Aplysia californica has demonstrated that this can be the case. After a pause, initial food grasping responses are relatively weak. With repetition, however, responses strengthen. In this review we describe experiments that have characterized cellular/molecular mechanisms that produce these changes in motor activity. In particular, we focus on cumulative effects of modulatory neuropeptides. Furthermore, we relate Aplysia research to work in other systems and species, and develop a hypothesis that postulates that changes in response magnitude are a reflection of an efficient feeding strategy.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and.,State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Matthew H Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
16
|
Sensory Cortical Activity Is Related to the Selection of a Rhythmic Motor Action Pattern. J Neurosci 2017; 36:5596-607. [PMID: 27194338 DOI: 10.1523/jneurosci.3949-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Rats produce robust, highly distinctive orofacial rhythms in response to taste stimuli-responses that aid in the consumption of palatable tastes and the ejection of aversive tastes, and that are sourced in a multifunctional brainstem central pattern generator. Several pieces of indirect evidence suggest that primary gustatory cortex (GC) may be a part of a distributed forebrain circuit involved in the selection of particular consumption-related rhythms, although not in the production of individual mouth movements per se. Here, we performed a series of tests of this hypothesis. We first examined the temporal relationship between GC activity and orofacial behaviors by performing paired single-neuron and electromyographic recordings in awake rats. Using a trial-by-trial analysis, we found that a subset of GC neurons shows a burst of activity beginning before the transition between nondistinct and taste-specific (i.e., consumption-related) orofacial rhythms. We further showed that shifting the latency of consumption-related behavior by selective cueing has an analogous impact on the timing of GC activity. Finally, we showed the complementary result, demonstrating that optogenetic perturbation of GC activity has a modest but significant impact on the probability that a specific rhythm will be produced in response to a strongly aversive taste. GC appears to be a part of a distributed circuit that governs the selection of taste-induced orofacial rhythms. SIGNIFICANCE STATEMENT In many well studied (typically invertebrate) sensorimotor systems, top-down modulation helps motor-control regions "select" movement patterns. Here, we provide evidence that gustatory cortex (GC) may be part of the forebrain circuit that performs this function in relation to oral behaviors ("gapes") whereby a substance in the mouth is rejected as unpalatable. We show that GC palatability coding is well timed to play this role, and that the latency of these codes changes as the latency of gaping shifts with learning. We go on to show that by silencing these neurons, we can change the likelihood of gaping. These data help to break down the sensory/motor divide by showing a role for sensory cortex in the selection of motor behavior.
Collapse
|
17
|
Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:4195-4200. [PMID: 28373553 DOI: 10.1073/pnas.1618934114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2 This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.
Collapse
|
18
|
Cropper EC, Dacks AM, Weiss KR. Consequences of degeneracy in network function. Curr Opin Neurobiol 2016; 41:62-67. [PMID: 27589602 DOI: 10.1016/j.conb.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023]
Abstract
Often distinct elements serve similar functions within a network. However, it is unclear whether this network degeneracy is beneficial, or merely a reflection of tighter regulation of overall network performance relative to individual neuronal properties. We review circumstances where data strongly suggest that degeneracy is beneficial in that it makes network function more robust. Importantly, network degeneracy is likely to have functional consequences that are not widely appreciated. This is likely to be true when network activity is configured by modulators with persistent actions, and the history of network activity potentially impacts subsequent functioning. Data suggest that degeneracy in this context may be important for the creation of latent memories, and for state-dependent task switching.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, United States.
| | - Andrew M Dacks
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV 26506, United States
| | - Klaudiusz R Weiss
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, United States
| |
Collapse
|
19
|
Siniscalchi MJ, Cropper EC, Jing J, Weiss KR. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators. J Neurophysiol 2016; 116:1821-1830. [PMID: 27466134 DOI: 10.1152/jn.00365.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to "prime" motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for "task" switching, i.e., the cessation of one type of motor activity and the initiation of another.
Collapse
Affiliation(s)
- Michael J Siniscalchi
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Svensson E, Evans CG, Cropper EC. Repetition priming-induced changes in sensorimotor transmission. J Neurophysiol 2016; 115:1637-43. [PMID: 26763783 DOI: 10.1152/jn.01082.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
When a behavior is repeated performance often improves, i.e., repetition priming occurs. Although repetition priming is ubiquitous, mediating mechanisms are poorly understood. We address this issue in the feeding network ofAplysia Similar to the priming observed elsewhere, priming inAplysiais stimulus specific, i.e., it can be either "ingestive" or "egestive." Previous studies demonstrated that priming alters motor and premotor activity. Here we sought to determine whether sensorimotor transmission is also modified. We report that changes in sensorimotor transmission do occur. We ask how they are mediated and obtain data that strongly suggest a presynaptic mechanism that involves changes in the "background" intracellular Ca(2+)concentration ([Ca(2+)]i) in primary afferents themselves. This form of plasticity has previously been described and generated interest due to its potentially graded nature. Manipulations that alter the magnitude of the [Ca(2+)]iimpact the efficacy of synaptic transmission. It is, however, unclear how graded control is exerted under physiologically relevant conditions. In the feeding system changes in the background [Ca(2+)]iare mediated by the induction of a nifedipine-sensitive current. We demonstrate that the extent to which this current is induced is altered by peptides (i.e., increased by a peptide released during the repetition priming of ingestive activity and decreased by a peptide released during the repetition priming of egestive activity). We suggest that this constitutes a behaviorally relevant mechanism for the graded control of synaptic transmission via the regulation of the [Ca(2+)]iin a neuron.
Collapse
Affiliation(s)
- Erik Svensson
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Colin G Evans
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
Abstract
We investigate stimulus specificity of repetition priming in a tractable model system; the feeding network of Aplysia. Previous studies primarily focused on an aspect of behavior that is altered during ingestive priming, radula opening. Priming of radula opening occurs when two modulatory peptides [feeding circuit activating peptide (FCAP) and cerebral peptide-2 (CP-2)] are released from the cholinergic command-like neuron cerebral buccal interneuron 2. Effects of FCAP/CP-2 on radula opening motor neurons are cAMP mediated. The present experiments sought to determine whether FCAP/CP-2 and cAMP are also involved in the priming of radula opening during an incompatible activity, i.e., during egestive motor programs. Egestive priming is induced when motor programs are triggered by afferents with processes in the esophageal nerve. We demonstrate that egestive priming is not FCAP/CP-2 mediated. Instead, it is induced by an unrelated peptide (small cardioactive peptide), which exerts PKC-mediated effects. Our data, therefore, suggest that different feeding motor programs are primed via actions of different sets of intercellular and intracellular substances. We suggest that this accounts for the stimulus specificity that can be characteristic of repetition priming. Different stimuli activate different central pattern generator inputs. These inputs release different modulators, which induce functionally distinct motor programs.
Collapse
|
22
|
Marder E, O'Leary T, Shruti S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 2015; 37:329-46. [PMID: 25032499 DOI: 10.1146/annurev-neuro-071013-013958] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators act, a phenomenon known as state dependence. We provide insights from experiments and computational work that show how state dependence can arise and the consequences it can have for cellular and circuit function. These observations pose a general unsolved question that is relevant to all nervous systems: How is robust modulation achieved in spite of animal-to-animal variability and degenerate, nonlinear mechanisms for the production of neuronal and network activity?
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454; , ,
| | | | | |
Collapse
|
23
|
Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr Opin Neurobiol 2014; 31:156-63. [PMID: 25460072 DOI: 10.1016/j.conb.2014.10.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
Small central pattern generating circuits found in invertebrates have significant advantages for the study of the circuit mechanisms that generate brain rhythms. Experimental and computational studies of small oscillatory circuits reveal that similar rhythms can arise from disparate mechanisms. Animal-to-animal variation in the properties of single neurons and synapses may underly robust circuit performance, and can be revealed by perturbations. Neuromodulation can produce altered circuit performance but also ensure reliable circuit function.
Collapse
|
24
|
Dacks AM, Weiss KR. Release of a single neurotransmitter from an identified interneuron coherently affects motor output on multiple time scales. J Neurophysiol 2013; 109:2327-34. [PMID: 23407357 DOI: 10.1152/jn.01079.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurotransmitters can have diverse effects that occur over multiple time scales often making the consequences of neurotransmission difficult to predict. To explore the consequences of this diversity, we used the buccal ganglion of Aplysia to examine the effects of GABA release by a single interneuron, B40, on the intrinsic properties and motor output of the radula closure neuron B8. B40 induces a picrotoxin-sensitive fast IPSP lasting milliseconds in B8 and a slow EPSP lasting seconds. We found that the excitatory effects of this slow EPSP are also mediated by GABA. Together, these two GABAergic actions structure B8 firing in a pattern characteristic of ingestive programs. Furthermore, we found that repeated B40 stimulation induces a persistent increase in B8 excitability that was occluded in the presence of the GABA B receptor agonist baclofen, suggesting that GABA affects B8 excitability over multiple time scales. The phasing of B8 activity during the feeding motor programs determines the nature of the behavior elicited during that motor program. The persistent increase in B8 excitability induced by B40 biased the activity of B8 during feeding motor programs causing the motor programs to become more ingestive in nature. Thus, a single transmitter released from a single interneuron can have consequences for motor output that are expressed over multiple time scales. Importantly, despite the differences in their signs and temporal characteristics, the three actions of B40 are coherent in that they promote B8 firing patterns that are characteristic of ingestive motor outputs.
Collapse
Affiliation(s)
- Andrew M Dacks
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|