1
|
Vakili K, Fathi M, Ebrahimi R, Ahmadian S, Moafi M, Ebrahimi MJ, Tafazolimoghadam A, Davoodi A, Eghbaldoost A, Eyvani K, Ghayyem H, Jashni Pour M, Kosari M, Niknejad S, Sanaye Abbasi A, Zarebidoki A, Andrew M, Trenaman S, Batool Z, Sayehmiri F, Ebrahimzadeh K. Use of Drugs Affecting GABA A Receptors and the Risk of Developing Alzheimer's Disease and Dementia: a Meta-Analysis and Literature Review. Mol Neurobiol 2025:10.1007/s12035-025-04821-9. [PMID: 40108057 DOI: 10.1007/s12035-025-04821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The gamma-aminobutyric acid (GABA) system is known for its role in cognitive functions and memory processes. However, the activity of GABAA receptors and their associated pathways influence the accumulation of β-amyloid peptide (Aβ), a key hallmark in the development and prognosis of research examining the relationship between the use of drugs affecting GABAA receptors and the risk of developing Alzheimer's disease (AD) and dementia. This study aimed to examine the association between GABAA receptor-affecting drugs and the risk of AD and dementia, focusing on benzodiazepines, zolpidem, and anesthetics. This meta-analysis included all English articles on AD, dementia, and GABAA receptor agonist medications published before May 2024. The articles were identified through searches conducted on PubMed and Scopus databases. The extracted data were analyzed using STATA software (version 14.2). Q statistics and the I2 index were used to evaluate heterogeneity, while Egger's test and funnel plot were utilized to detect publication bias. A total of 19 articles (10 case-control and 9 cohort articles) were eligible for the analysis, involving 2,953,980 patients. The use of GABA agonists was found to have a statistically significant relationship with the development of dementia (RR = 1.15, 95% CI: 1.02-1.29, I2 = 87.6%) and AD (RR = 1.21, 95% CI: 1.04-1.40, I2 = 97.6%). In the drug-based subgroup, we observed that zolpidem consumption was associated with an increased incidence of AD and dementia (RR = 1.28, 95% CI: 1.08-1.52, I2 = 24.3%), similar to the effects of benzodiazepines (BZDs; RR = 1.11, 95% CI: 1.04-1.18, I2 = 87.2%). Meta-regression analysis showed that the duration of follow-up, which ranged from 5 to 11 years across the studies, was significantly associated with heterogeneity (P = 0.036). Our findings indicate that the use of zolpidem and BZD is associated with an increased risk of dementia and AD.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarina Ahmadian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, 73461, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Davoodi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Amirreza Eghbaldoost
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, 4361844981, Iran
| | - Kimia Eyvani
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
- Harvard Medical School, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Hani Ghayyem
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehraeen Jashni Pour
- Educational and Scientific Centre, Institute of Biology and Medicine of Taras, Shevchenko National University of Kyiv, Kiev, 01033, Ukraine
| | - Mohammadreza Kosari
- MBBS, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sepideh Niknejad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Ali Sanaye Abbasi
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
| | - Ameneh Zarebidoki
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Melissa Andrew
- Department of Medicine (Geriatrics), Dalhousie University, Halifax, Canada
| | - Shanna Trenaman
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Canada
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Arichi S, Eto K, Ogata M, Sasaki-Hamada S, Ishibashi H. Potentiation of Nicotine-Induced Currents by QO58, a Kv7 Channel Opener, in Intracardiac Ganglion Neurons of Rats. Biol Pharm Bull 2025; 48:101-107. [PMID: 39909436 DOI: 10.1248/bpb.b24-00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
QO58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-[1,5-a] pyrimidin-7-one) is currently used as a specific activator of the Kv7 (KCNQ) family of K+ channels. Here, we report an unexpected potentiating effect of this drug on nicotinic acetylcholine receptors. We recorded the whole-cell responses to the rapid application of nicotine with the Cs+-based pipette solution in intracardiac ganglion neurons freshly dissociated from the rat heart. Nicotine-induced inward currents were concentration-dependently blocked by mecamylamine, but not by 1 μM atropine at a holding potential of -60 mV. While the application of QO58 per se evoked a persistent inward current at this holding potential, 10 μM QO58 potentiated the peak amplitude of the nicotine-induced current. The QO58-induced inward currents were inhibited by the Kv7 channel blockers XE991 and Ba2+, but not by mecamylamine. On the other hand, the nicotine-induced current potentiated by QO58 was fully inhibited by mecamylamine. The facilitatory action of QO58 on the nicotinic response was unaffected by Ba2+. QO58 did not affect the reversal potential of the nicotine-induced current. QO58 apparently shifted the concentration-response curve of nicotine to the left. The half-maximal effective concentrations for nicotine in the absence and presence of 10 μM QO58 were 10.2 and 4.3 μM, respectively. These results suggest that QO58 acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Given the prevalence of nicotinic receptor signaling, the present observations should be considered in future studies on the roles of Kv7 channels in the function of neural circuits and diseases.
Collapse
Affiliation(s)
- Shiho Arichi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | - Kei Eto
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
3
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2024; 168:3831-3852. [PMID: 37621067 PMCID: PMC11591409 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L. Absalom
- School of ScienceUniversity of Western SydneySydneyNew South WalesAustralia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Susan X. N. Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Vivian W. Y. Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Han C. Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineThe Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Philip K. Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Borghese CM, Goldschen-Ohm MP. State-dependent energetics of GABA A receptor modulators. Biophys J 2024; 123:1903-1906. [PMID: 38303510 PMCID: PMC11309981 DOI: 10.1016/j.bpj.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Cecilia M Borghese
- University of Texas at Austin, Department of Neuroscience, Austin, Texas
| | | |
Collapse
|
5
|
Pierce SR, Xu SQ, Germann AL, Steinbach JH, Akk G. Potentiation of the GABA AR reveals variable energetic contributions by etiocholanolone and propofol. Biophys J 2024; 123:1954-1967. [PMID: 37752702 PMCID: PMC11442032 DOI: 10.1016/j.bpj.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The properties of a potentiator are typically evaluated by measuring its ability to enhance the magnitude of the control response. Analysis of the ability of drugs to potentiate responses from receptor channels takes place in the context of particular models to extract parameters for functional effects. In the often-used coagonist model, the agonist generating control activity and the potentiator enhancing the control activity make additive energetic contributions to stabilize the active state of the receptor. The energetic contributions are fixed and, once known, enable calculation of predicted receptor behavior at any concentration combination of agonist and potentiator. Here, we have examined the applicability of the coagonist model by measuring the relationship between the magnitude of receptor potentiation and the level of background activity. Ternary αβγ GABAA receptors were activated by GABA or the allosteric agonist propofol, or by a gain-of-function mutation, and etiocholanolone- or propofol-mediated potentiation of peak responses was measured. We show that the free energy change contributed by the modulators etiocholanolone or propofol is reduced at higher levels of control activity, thereby being in disagreement with basic principles of the coagonist model. Possible mechanisms underlying this discrepancy are discussed.
Collapse
Affiliation(s)
- Spencer R Pierce
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sophia Q Xu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
O'Connor EC, Kambara K, Bertrand D. Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery. Expert Opin Drug Discov 2024; 19:173-187. [PMID: 37850233 DOI: 10.1080/17460441.2023.2270902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.
Collapse
Affiliation(s)
- Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience & Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
7
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Elifranji ZO, Al-Ajlouni JM, Al-Saber MG, Hammad YS, Baniatta BA, Alshoubaki SN, Jabaiti MS, Alkhatib AM, Abu awad AM, Altarazi AE, Abdin AN, Al-Ani A, Alshrouf MA. Effect of Preoperative Antianxiety Medications on Blood Pressure and Blood Loss in Total Knee Arthroplasty: A Case-Control Study. Adv Orthop 2023; 2023:6355849. [PMID: 37456533 PMCID: PMC10349676 DOI: 10.1155/2023/6355849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Background The increasing number of canceled operations in patients undergoing total knee arthroplasty (TKA) due to high blood pressure readings has put a considerable burden on surgeons. In this study, we aim to assess the effect of giving antianxiety drugs preoperatively on maintaining blood pressure (BP) and blood loss for patients undergoing TKA surgery. Methods This retrospective case-control study included patients who underwent total knee arthroplasty and divided them into two main groups: those who had taken a 3 mg bromazepam oral tablet at the night preoperatively and the control group. The blood pressure of patients was then measured preoperatively (baseline), in the morning of surgery, in the operating room before anesthesia, and during the surgery. The percentage of measured BP was calculated by dividing the measured BP by the baseline, then multiplying by 100. Results 301 patients were included in our study: 137 received bromazepam and 164 as a control group. The ratio of systolic BP (SBP) in the morning of surgery to the baseline (percentage of morning SBP) decreased significantly in the bromazepam group compared with the controls. The ratio of SBP, in the operating room before anesthesia (percentage of preanesthesia SBP) also decreased significantly in the bromazepam group. However, the percentage of SBP in the middle of surgery did not change significantly. In addition, there was a significant difference change from the baseline in diastolic BP and mean arterial BP between the two groups in the morning of surgery, inside the theatre, and in the middle of the operation. The bromazepam group also showed a significant decrease in blood loss. Conclusion Preoperative oral antianxiety drugs (bromazepam) helps in controlling hemodynamic changes associated with anxiety, including maintaining BP in well-controlled hypertensive and healthy patients undergoing TKA, and it plays a role in decreasing the total blood loss.
Collapse
Affiliation(s)
- Zuhdi O. Elifranji
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Jihad M. Al-Ajlouni
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Munther G. Al-Saber
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Yazan S. Hammad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Basel A. Baniatta
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Sara N. Alshoubaki
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Mohammad S. Jabaiti
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad M. Alkhatib
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman M. Abu awad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman E. Altarazi
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Aseel N. Abdin
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11942, Jordan
| | - Mohammad Ali Alshrouf
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
9
|
Figueiredo TH, Aroniadou-Anderjaska V, Apland JP, Rossetti K, Braga MFM. Delayed tezampanel and caramiphen treatment but not midazolam protects against long-term neuropathology after soman exposure. Exp Biol Med (Maywood) 2023; 248:612-623. [PMID: 37300407 PMCID: PMC10350803 DOI: 10.1177/15353702231171911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023] Open
Abstract
Prolonged status epilepticus (SE) can cause brain damage; therefore, treatment must be administered promptly after seizure onset to limit SE duration and prevent neuropathology. Timely treatment of SE is not always feasible; this would be particularly true in a mass exposure to an SE-inducing agent such as a nerve agent. Therefore, the availability of anticonvulsant treatments that have neuroprotective efficacy even if administered with a delay after SE onset is an imperative. Here, we compared the long-term neuropathology resulting from acutely exposing 21-day-old male and female rats to the nerve agent soman, and treating them with midazolam (3 mg/kg) or co-administration of tezampanel (10 mg/kg) and caramiphen (50 mg/kg), at 1 h postexposure (~50 min after SE onset). Midazolam-treated rats had significant neuronal degeneration in limbic structures, mainly at one month postexposure, followed by neuronal loss in the basolateral amygdala and the CA1 hippocampal area. Neuronal loss resulted in significant amygdala and hippocampal atrophy, deteriorating from one to six months postexposure. Rats treated with tezampanel-caramiphen had no evidence of neuropathology, except for neuronal loss in the basolateral amygdala at the six-month timepoint. Anxiety was increased only in the midazolam-treated rats, at one, three, and six months postexposure. Spontaneous recurrent seizures appeared only in midazolam-treated rats, at three and six months postexposure in males and only at six months in females. These findings suggest that delayed treatment of nerve agent-induced SE with midazolam may result in long-lasting or permanent brain damage, while antiglutamatergic anticonvulsant treatment consisting of tezampanel and caramiphen may provide full neuroprotection.
Collapse
Affiliation(s)
- Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Katia Rossetti
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria FM Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Yang Y, Ren L, Li W, Zhang Y, Zhang S, Ge B, Yang H, Du G, Tang B, Wang H, Wang J. GABAergic signaling as a potential therapeutic target in cancers. Biomed Pharmacother 2023; 161:114410. [PMID: 36812710 DOI: 10.1016/j.biopha.2023.114410] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
GABA is the most common inhibitory neurotransmitter in the vertebrate central nervous system. Synthesized by glutamic acid decarboxylase, GABA could specifically bind with two GABA receptors to transmit inhibition signal stimuli into cells: GABAA receptor and GABAB receptor. In recent years, emerging studies revealed that GABAergic signaling not only participated in traditional neurotransmission but was involved in tumorigenesis as well as regulating tumor immunity. In this review, we summarize the existing knowledge of the GABAergic signaling pathway in tumor proliferation, metastasis, progression, stemness, and tumor microenvironment as well as the underlying molecular mechanism. We also discussed the therapeutical advances in targeting GABA receptors to provide the theoretical basis for pharmacological intervention of GABAergic signaling in cancer treatment especially immunotherapy.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Goldschen-Ohm MP. Benzodiazepine Modulation of GABA A Receptors: A Mechanistic Perspective. Biomolecules 2022; 12:1784. [PMID: 36551212 PMCID: PMC9775625 DOI: 10.3390/biom12121784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that target GABAA receptors (GABAARs) to tune inhibitory synaptic signaling throughout the central nervous system. Despite knowing their molecular target for over 40 years, we still do not fully understand the mechanism of modulation at the level of the channel protein. Nonetheless, functional studies, together with recent cryo-EM structures of GABAA(α1)2(βX)2(γ2)1 receptors in complex with BZDs, provide a wealth of information to aid in addressing this gap in knowledge. Here, mechanistic interpretations of functional and structural evidence for the action of BZDs at GABAA(α1)2(βX)2(γ2)1 receptors are reviewed. The goal is not to describe each of the many studies that are relevant to this discussion nor to dissect in detail all the effects of individual mutations or perturbations but rather to highlight general mechanistic principles in the context of recent structural information.
Collapse
|
12
|
Castellano D, Wu K, Keramidas A, Lu W. Shisa7-Dependent Regulation of GABA A Receptor Single-Channel Gating Kinetics. J Neurosci 2022; 42:8758-8766. [PMID: 36216503 PMCID: PMC9698691 DOI: 10.1523/jneurosci.0510-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
GABAA receptors (GABAARs) mediate the majority of fast inhibitory transmission throughout the brain. Although it is widely known that pore-forming subunits critically determine receptor function, it is unclear whether their single-channel properties are modulated by GABAAR-associated transmembrane proteins. We previously identified Shisa7 as a GABAAR auxiliary subunit that modulates the trafficking, pharmacology, and deactivation properties of these receptors. However, whether Shisa7 also regulates GABAAR single-channel properties has yet to be determined. Here, we performed single-channel recordings of α2β3γ2L GABAARs cotransfected with Shisa7 in HEK293T cells and found that while Shisa7 does not change channel slope conductance, it reduced the frequency of receptor openings. Importantly, Shisa7 modulates GABAAR gating by decreasing the duration and open probability within bursts. Through kinetic analysis of individual dwell time components, activation modeling, and macroscopic simulations, we demonstrate that Shisa7 accelerates GABAAR deactivation by governing the time spent between close and open states during gating. Together, our data provide a mechanistic basis for how Shisa7 controls GABAAR gating and reveal for the first time that GABAAR single-channel properties can be modulated by an auxiliary subunit. These findings shed light on processes that shape the temporal dynamics of GABAergic transmission.SIGNIFICANCE STATEMENT Although GABAA receptor (GABAAR) single-channel properties are largely determined by pore-forming subunits, it remains unknown whether they are also controlled by GABAAR-associated transmembrane proteins. Here, we show that Shisa7, a recently identified GABAAR auxiliary subunit, modulates GABAAR activation by altering single-channel burst kinetics. These results reveal that Shisa7 primarily decreases the duration and open probability of receptor burst activity during gating, leading to accelerated GABAAR deactivation. These experiments are the first to assess the gating properties of GABAARs in the presence of an auxiliary subunit and provides a kinetic basis for how Shisa7 modifies temporal attributes of GABAergic transmission at the single-channel level.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunwei Wu
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Lu
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
14
|
GABA A receptor proline 273 at the interdomain interface of the β 2 subunit regulates entry into desensitization and opening/closing transitions. Life Sci 2022; 308:120943. [PMID: 36096246 DOI: 10.1016/j.lfs.2022.120943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
AIMS GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a β2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the β1-β2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the β2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that β2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE In conclusion, we demonstrate that β2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.
Collapse
|
15
|
Figueiredo TH, Aroniadou-Anderjaska V, Pidoplichko VI, Apland JP, Braga MFM. Antiseizure and Neuroprotective Efficacy of Midazolam in Comparison with Tezampanel (LY293558) against Soman-Induced Status Epilepticus. TOXICS 2022; 10:409. [PMID: 35893842 PMCID: PMC9330837 DOI: 10.3390/toxics10080409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Acute exposure to nerve agents induces status epilepticus (SE), which can cause death or long-term brain damage. Diazepam is approved by the FDA for the treatment of nerve agent-induced SE, and midazolam (MDZ) is currently under consideration to replace diazepam. However, animal studies have raised questions about the neuroprotective efficacy of benzodiazepines. Here, we compared the antiseizure and neuroprotective efficacy of MDZ (5 mg/kg) with that of tezampanel (LY293558; 10 mg/kg), an AMPA/GluK1 receptor antagonist, administered 1 h after injection of the nerve agent, soman (1.2 × LD50), in adult male rats. Both of the anticonvulsants promptly stopped SE, with MDZ having a more rapid effect. However, SE reoccurred to a greater extent in the MDZ-treated group, resulting in a significantly longer total duration of SE within 24 h post-exposure compared with the LY293558-treated group. The neuroprotective efficacy of the two drugs was studied in the basolateral amygdala, 30 days post-exposure. Significant neuronal and inter-neuronal loss, reduced ratio of interneurons to the total number of neurons, and reduction in spontaneous inhibitory postsynaptic currents accompanied by increased anxiety were found in the MDZ-treated group. The rats treated with LY293558 did not differ from the control rats (not exposed to soman) in any of these measurements. Thus, LY293558 has significantly greater efficacy than midazolam in protecting against prolonged seizures and brain damage caused by acute nerve agent exposure.
Collapse
Affiliation(s)
- Taiza H. Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Volodymyr I. Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
| | - James P. Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, MD 21010, USA;
| | - Maria F. M. Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Prenatal exposure to benzodiazepines and Z-drugs in humans and risk of adverse neurodevelopmental outcomes in offspring: A systematic review. Neurosci Biobehav Rev 2022; 137:104647. [PMID: 35367514 DOI: 10.1016/j.neubiorev.2022.104647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
When used during pregnancy, benzodiazepines (BZDs) and related z-drugs could pass readily through the placenta and the foetal blood-brain barrier, where they can bind to γ-amino butyric acid (GABA) receptors in the developing foetal brain. Yet, data on long-term safety of prenatal BZD and z-drug use and its impact on offspring neurodevelopment are inconclusive. In this systematic review, we qualitatively synthetize the existing evidence on maternal exposure to various BZDs and z-drugs during pregnancy and offspring cognitive, emotional, behavioural, and motor skills developmental outcomes. Nineteen studies were included. We used harvest plots to visualize the directions of reported associations. Despite several associations between distinct types of BZDs and z-drugs and an increased risk of outcomes within different neurodevelopmental domains were observed, a remarkable scarcity of overall research on the topic and considerable discrepancies in methodology, particularly towards controlling for confounding by indication, precluded drawing conclusions with a reasonable degree of certainty. We outline various research strategies to mitigate methodological limitations and provide directions for future empirical studies on the topic.
Collapse
|
17
|
Tong X, Zhang Z, Zhu J, Li S, Qu S, Qin B, Guo Y, Chen R. A Comparison of Epileptogenic Effect of Status Epilepticus Treated With Diazepam, Midazolam, and Pentobarbital in the Mouse Pilocarpine Model of Epilepsy. Front Neurol 2022; 13:821917. [PMID: 35669869 PMCID: PMC9163813 DOI: 10.3389/fneur.2022.821917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Status epilepticus (SE) is a medical emergency associated with acute severe systemic damage and high mortality. Moreover, symptomatic SE is one of the highest risk factors for epileptogenesis. While the antiepileptic drugs (AEDs) are chosen in favor of acute control of SE, the potential short-term and long-term effects of such AEDs have been ignored in clinics. In this study, we hypothesized that AEDs that are used to control acute SE might affect the feasibility for the chronic development of epileptogenesis after SE. Therefore, we sought to compare the epileptogenic effects of SE that are terminated by three AEDs, i.e., diazepam, midazolam, and pentobarbital, which are widely used as first-line anti-SE AEDs. For this purpose, we used a mouse model of SE induced by intraperitoneal (i.p.) injection of lithium chloride (LiCl)-pilocarpine. The pilocarpine-induced SE was terminated with diazepam, midazolam, or pentobarbital. Then we compared short-term and long-term effects of SE with different AED treatments by examining SE-associated mortality and behavioral spontaneous recurrent seizures (SRSs) and by using magnetic resonance imaging (MRI) and immunohistochemistry to evaluate pathological and cellular alterations of mice in the different treatment groups. We found that i.p. injections of diazepam (5 mg/kg), midazolam (10 mg/kg), and pentobarbital (37.5 mg/kg) were able to terminate acute pilocarpine-SE effectively, while pentobarbital treatment showed less neuroprotective action against lethality in the short phase following SE. Long-term evaluation following SE revealed that SE treated with midazolam had resulted in relatively less behavioral SRS, less hippocampal atrophy, and milder neuronal loss and gliosis. Our data revealed an obvious advantage of midazolam vs. diazepam or pentobarbital in protecting the brain from epileptogenesis. Therefore, if midazolam provides as strong action to quench SE as other AEDs in clinics, midazolam should be the first choice of anti-SE AEDs as it provides additional benefits against epileptogenesis.
Collapse
Affiliation(s)
- Xiangzhen Tong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zizhu Zhang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Bing Qin
| | - Yanwu Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Yanwu Guo
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Rongqing Chen ;
| |
Collapse
|
18
|
Mechanisms of inhibition and activation of extrasynaptic αβ GABA A receptors. Nature 2022; 602:529-533. [PMID: 35140402 PMCID: PMC8850191 DOI: 10.1038/s41586-022-04402-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7–12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA–Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling. Cryo-electron microscopy structures are used to identify mechanisms underlying distinct features of extrasynaptic type A γ-aminobutyric acid receptors.
Collapse
|
19
|
Bonalume V, Caffino L, Castelnovo LF, Faroni A, Liu S, Hu J, Milanese M, Bonanno G, Sohns K, Hoffmann T, De Col R, Schmelz M, Fumagalli F, Magnaghi V, Carr R. Axonal GABA A stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity. J Physiol 2021; 599:4065-4084. [PMID: 34174096 DOI: 10.1113/jp279664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA depolarized sural nerve axons and increased the electrical excitability of C-fibres via GABAA receptor. Axonal excitability responses to GABA increased monotonically with the rate of action potential firing. Action potential activity in unmyelinated C-fibres is coupled to Na-K-Cl cotransporter type 1 (NKCC1) loading of axonal chloride. Activation of axonal GABAA receptor stabilized C-fibre excitability during prolonged low frequency (2.5 Hz) firing. NKCC1 maintains intra-axonal chloride to provide feed-forward stabilization of C-fibre excitability and thus support sustained firing. ABSTRACT GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R β3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, β3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.
Collapse
Affiliation(s)
- Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca F Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Jing Hu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genova, Italy
| | - Kyra Sohns
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tal Hoffmann
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University, Erlangen, Germany
| | - Roberto De Col
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard Carr
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
21
|
Kim JJ, Hibbs RE. Direct Structural Insights into GABA A Receptor Pharmacology. Trends Biochem Sci 2021; 46:502-517. [PMID: 33674151 DOI: 10.1016/j.tibs.2021.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
GABAA receptors are pentameric ligand-gated ion channels that mediate most fast neuronal inhibition in the brain. In addition to their important physiological roles, they are noteworthy in their rich pharmacology; prominent drugs used for anxiety, insomnia, and general anesthesia act through positive modulation of GABAA receptors. Direct structural information for how these drugs work was absent until recently. Efforts in structural biology over the past few years have revealed how important drug classes and natural products interact with the GABAA receptor, providing a foundation for studies in dynamics and structure-guided drug design. Here, we review recent developments in GABAA receptor structural pharmacology, focusing on subunit assemblies of the receptor found at synapses.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Nors JW, Gupta S, Goldschen-Ohm MP. A critical residue in the α 1M2-M3 linker regulating mammalian GABA A receptor pore gating by diazepam. eLife 2021; 10:64400. [PMID: 33591271 PMCID: PMC7899671 DOI: 10.7554/elife.64400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that modulate activity of GABAA receptors (GABAARs), neurotransmitter-gated ion channels critical for synaptic transmission. However, the physical basis of this modulation is poorly understood. We explore the role of an important gating domain, the α1M2–M3 linker, in linkage between the BZD site and pore gate. To probe energetics of this coupling without complication from bound agonist, we use a gain of function mutant (α1L9'Tβ2γ2L) directly activated by BZDs. We identify a specific residue whose mutation (α1V279A) more than doubles the energetic contribution of the BZD positive modulator diazepam (DZ) to pore opening and also enhances DZ potentiation of GABA-evoked currents in a wild-type background. In contrast, other linker mutations have little effect on DZ efficiency, but generally impair unliganded pore opening. Our observations reveal an important residue regulating BZD-pore linkage, thereby shedding new light on the molecular mechanism of these drugs.
Collapse
Affiliation(s)
- Joseph W Nors
- University of Texas at Austin, Department of Neuroscience, Austin, United States
| | - Shipra Gupta
- University of Texas at Austin, Department of Neuroscience, Austin, United States
| | | |
Collapse
|
23
|
Kaczor PT, Wolska AD, Mozrzymas JW. α 1 Subunit Histidine 55 at the Interface between Extracellular and Transmembrane Domains Affects Preactivation and Desensitization of the GABA A Receptor. ACS Chem Neurosci 2021; 12:562-572. [PMID: 33471498 PMCID: PMC7875458 DOI: 10.1021/acschemneuro.0c00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
![]()
The
GABAA receptor is a member of the Cys-loop family
and plays a crucial role in the adult mammalian brain inhibition.
Although the static structure of this receptor is emerging, the molecular
mechanisms underlying its conformational transitions remain elusive.
It is known that in the Cys-loop receptors, the interface between
extracellular and transmembrane domains plays a key role in transmitting
the “activation wave” down to the channel gate in the
pore. It has been previously reported that histidine 55 (H55), located
centrally at the interfacial β1−β2 loop of the
α1 subunit, is important in the receptor activation,
but it is unknown which specific gating steps it is affecting. In
the present study, we addressed this issue by taking advantage of
the state-of-the-art macroscopic and single-channel recordings together
with extensive modeling. Considering that H55 is known to affect the
local electrostatic landscape and because it is neighbored by two
negatively charged aspartates, a well conserved feature in the α
subunits, we considered substitution with negative (E) and positive
(K) residues. We found that these mutations markedly affected the
receptor gating, altering primarily preactivation and desensitization
transitions. Importantly, opposite effects were observed for these
two mutations strongly suggesting involvement of electrostatic interactions.
Single-channel recordings suggested also a minor effect on opening/closing
transitions which did not depend on the electric charge of the substituting
amino acid. Altogether, we demonstrate that H55 mutations affect primarily
preactivation and desensitization most likely by influencing local
electrostatic interactions at the receptor interface.
Collapse
Affiliation(s)
- Przemyslaw T. Kaczor
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Aleksandra D. Wolska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| |
Collapse
|
24
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
25
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Althaus AL, Ackley MA, Belfort GM, Gee SM, Dai J, Nguyen DP, Kazdoba TM, Modgil A, Davies PA, Moss SJ, Salituro FG, Hoffmann E, Hammond RS, Robichaud AJ, Quirk MC, Doherty JJ. Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABA A receptor positive allosteric modulator. Neuropharmacology 2020; 181:108333. [PMID: 32976892 PMCID: PMC8265595 DOI: 10.1016/j.neuropharm.2020.108333] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023]
Abstract
Zuranolone (SAGE-217) is a novel, synthetic, clinical stage neuroactive steroid GABAA receptor positive allosteric modulator designed with the pharmacokinetic properties to support oral daily dosing. In vitro, zuranolone enhanced GABAA receptor current at nine unique human recombinant receptor subtypes, including representative receptors for both synaptic (γ subunit-containing) and extrasynaptic (δ subunit-containing) configurations. At a representative synaptic subunit configuration, α1β2γ2, zuranolone potentiated GABA currents synergistically with the benzodiazepine diazepam, consistent with the non-competitive activity and distinct binding sites of the two classes of compounds at synaptic receptors. In a brain slice preparation, zuranolone produced a sustained increase in GABA currents consistent with metabotropic trafficking of GABAA receptors to the cell surface. In vivo, zuranolone exhibited potent activity, indicating its ability to modulate GABAA receptors in the central nervous system after oral dosing by protecting against chemo-convulsant seizures in a mouse model and enhancing electroencephalogram β-frequency power in rats. Together, these data establish zuranolone as a potent and efficacious neuroactive steroid GABAA receptor positive allosteric modulator with drug-like properties and CNS exposure in preclinical models. Recent clinical data support the therapeutic promise of neuroactive steroid GABAA receptor positive modulators for treating mood disorders; brexanolone is the first therapeutic approved specifically for the treatment of postpartum depression. Zuranolone is currently under clinical investigation for the treatment of major depressive episodes in major depressive disorder, postpartum depression, and bipolar depression.
Collapse
Affiliation(s)
- Alison L Althaus
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA.
| | - Michael A Ackley
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Gabriel M Belfort
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Steven M Gee
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Jing Dai
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - David P Nguyen
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Tatiana M Kazdoba
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Amit Modgil
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Francesco G Salituro
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Ethan Hoffmann
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Rebecca S Hammond
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Albert J Robichaud
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Michael C Quirk
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - James J Doherty
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| |
Collapse
|
27
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
28
|
Gielen M, Barilone N, Corringer PJ. The desensitization pathway of GABA A receptors, one subunit at a time. Nat Commun 2020; 11:5369. [PMID: 33097732 PMCID: PMC7585415 DOI: 10.1038/s41467-020-19218-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors mediate most inhibitory synaptic transmission in the brain of vertebrates. Following GABA binding and fast activation, these receptors undergo a slower desensitization, the conformational pathway of which remains largely elusive. To explore the mechanism of desensitization, we used concatemeric α1β2γ2 GABAA receptors to selectively introduce gain-of-desensitization mutations one subunit at a time. A library of twenty-six mutant combinations was generated and their bi-exponential macroscopic desensitization rates measured. Introducing mutations at the different subunits shows a strongly asymmetric pattern with a key contribution of the γ2 subunit, and combining mutations results in marked synergistic effects indicating a non-concerted mechanism. Kinetic modelling indeed suggests a pathway where subunits move independently, the desensitization of two subunits being required to occlude the pore. Our work thus hints towards a very diverse and labile conformational landscape during desensitization, with potential implications in physiology and pharmacology.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France.
- Sorbonne Université, 21 rue de l'École de Médecine, 75006, Paris, France.
| | - Nathalie Barilone
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
29
|
Sarkar S, Choudhury S, Islam N, Chowdhury MSJH, Chowdhury MTI, Baker MR, Baker SN, Kumar H. Effects of Diazepam on Reaction Times to Stop and Go. Front Hum Neurosci 2020; 14:567177. [PMID: 33132880 PMCID: PMC7573484 DOI: 10.3389/fnhum.2020.567177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction: The ability to stop the execution of a movement in response to an external cue requires intact executive function. The effect of psychotropic drugs on movement inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal Reaction Time (SSRT). In a recent publication, we validated an improved measure of SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which enhances transmission at GABAA receptors, affects ocSSRT. Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg doses of diazepam. Each participant received both the dosage of drug and placebo orally on separate days with adequate washout. The ocSSRT and simple reaction time (RT) were estimated through a stop-signal task delivered via a battery-operated box incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed just before and 1 h after dosing. Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher (+27 ms) than for placebo (−1 ms; p = 0.012). By contrast, the mean change in simple response time remained comparable in all three dosing groups (p = 0.419). Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role in movement-stopping.
Collapse
Affiliation(s)
- Swagata Sarkar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India.,Department of Physiology, University of Calcutta, Kolkata, India
| | - Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Nazrul Islam
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | | | | | - Mark R Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.,Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.,The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| |
Collapse
|
30
|
Absalom NL, Liao VWY, Kothur K, Indurthi DC, Bennetts B, Troedson C, Mohammad SS, Gupta S, McGregor IS, Bowen MT, Lederer D, Mary S, De Waele L, Jansen K, Gill D, Kurian MA, McTague A, Møller RS, Ahring PK, Dale RC, Chebib M. Gain-of-function GABRB3 variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun 2020; 2:fcaa162. [PMID: 33585817 PMCID: PMC7869430 DOI: 10.1093/braincomms/fcaa162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.
Collapse
Affiliation(s)
- Nathan L Absalom
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian W Y Liao
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Dinesh C Indurthi
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
- Discipline of Paediatrics and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, 2145, Australia
| | - Christopher Troedson
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Sachin Gupta
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Iain S McGregor
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael T Bowen
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Damien Lederer
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Sandrine Mary
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Deepak Gill
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Manju A Kurian
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Amy McTague
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230, Denmark
| | - Philip K Ahring
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Russell C Dale
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Mary Chebib
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Absalom NL, Liao VW, Chebib M. Ligand-gated ion channels in genetic disorders and the question of efficacy. Int J Biochem Cell Biol 2020; 126:105806. [DOI: 10.1016/j.biocel.2020.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
|
32
|
Silva ON, Franco OL, Neves BJ, Morais ÁCB, De Oliveira Neto JR, da Cunha LC, Naves LM, Pedrino GR, Costa EA, Fajemiroye JO. Involvement of the gabaergic, serotonergic and glucocorticoid mechanism in the anxiolytic-like effect of mastoparan-L. Neuropeptides 2020; 81:102027. [PMID: 32059939 DOI: 10.1016/j.npep.2020.102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Mastoparan-L (mast-L) is a cell-penetrating tetradecapeptide and stimulator of monoamine exocytosis. In the present study, we evaluated the anxiolytic-like effect of mast-L. Preliminary pharmacological tests were conducted to determine the most appropriate route of administration, extrapolate dose and detect potential toxic effects of this peptide. Oral and intracerebroventricular administration of mast-L (0.1, 0.3 or 0.9 mg.kg-1), diazepam (1 or 5 mg.kg-1), buspirone (10 mg.kg-1) or vehicle 10 mL.kg-1 was carried out prior to the exposure of mice to the anxiety models: open field, light-dark box and elevated plus-maze. To characterize the mechanism underlying the antianxiety-like effect of mast-L, pharmacological antagonism, blood plasma analysis, molecular docking, and receptor binding assays were performed. The absence of a neurotoxic sign, animal's death as well as lack of significant changes in the relative organ weight, hematological and biochemical parameters suggest that mast-L is relatively safe. The anxiolytic-like effect of mast-L was attenuated by flumazenil (antagonist of benzodiazepine binding site) and WAY100635 (selective antagonist of 5-HT1A receptors) pretreatments. Mast-L reduced plasma corticosterone and lowered the scoring function at GABAA -18.48 kcal/mol (Ki = 155 nM), 5-HT1A -22.39 kcal/mol (Ki = 130 nM), corticotropin-releasing factor receptor subtype 1 (CRF1) -11.95 kcal/mol (Ki = 299 nM) and glucocorticoid receptors (GR) -14.69 kcal/mol (Ki = 3552 nM). These data fit the binding affinity (Ki) and demonstrate the involvement of gabaergic, serotonergic and glucocorticoid mechanisms in the anxiolytic-like property of mast-L.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Bruno J Neves
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Álice Cristina B Morais
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Jeronimo R De Oliveira Neto
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Lara M Naves
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Gustavo R Pedrino
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Elson A Costa
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - James O Fajemiroye
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
33
|
De Araujo Furtado M, Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MFM. Electroencephalographic analysis in soman-exposed 21-day-old rats and the effects of midazolam or LY293558 with caramiphen. Ann N Y Acad Sci 2020; 1479:122-133. [PMID: 32237259 DOI: 10.1111/nyas.14331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
Acute nerve agent exposure induces status epilepticus (SE), which can cause brain damage or death. Research aiming at developing effective therapies for controlling nerve agent-induced SE is commonly performed in adult rats. The characteristics of nerve agent-induced SE in young rats are less clear; relevant knowledge is necessary for developing effective pediatric therapies. Here, we have used electroencephalographic (EEG) recordings and analysis to study seizures in postnatal day 21 rats exposed to 1.2 × LD50 of soman, and compared the antiseizure efficacy of midazolam (MDZ)-currently considered by the Food and Drug Administration to replace diazepam for treating SE in victims of nerve agent exposure-with that of LY293558, an AMPA/GluK1 receptor antagonist, administered in combination with caramiphen, an antimuscarinic with N-methyl-d-aspartate receptor antagonistic properties. Prolonged SE developed in 80% of the rats and was reflected in behavioral seizures/convulsions. Both MDZ and LY293558 + caramiphen stopped the SE induced by soman, but there was a significant recurrence of seizures within 24 h postexposure only in the MDZ-treated group, as revealed in the raw EEG data and their representation in the frequency domain using a fast Fourier transform and in spectral analysis over 24 hours. In contrast to the high efficacy of LY293558 + caramiphen, MDZ is not an effective treatment for SE induced by soman in young animals.
Collapse
Affiliation(s)
- Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - James P Apland
- Neurotoxicology Branch, the United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
34
|
Germann AL, Steinbach JH, Akk G. Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties. Curr Neuropharmacol 2020; 17:843-851. [PMID: 30520374 PMCID: PMC7052843 DOI: 10.2174/1570159x17666181206092418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
The co-agonist concerted transition model is a simple and practical solution to analyze various aspects of GABAA receptor function. Several model-based predictions have been verified experimentally in previous reports. We review here the practical implications of the model and demonstrate how it enables simplification of the experimental procedure and data analysis to characterize the effects of mutations or properties of novel ligands. Specifically, we show that the value of EC50 and the magnitude of current response are directly affected by basal activity, and that coapplication of a background agonist acting at a distinct site or use of a gain-of-function mutation can be employed to enable studies of weak activators or mutated receptors with impaired gating. We also show that the ability of one GABAergic agent to potentiate the activity elicited by another is a computable value that depends on the level of constitutive activity of the ion channel and the ability of each agonist to directly activate the receptor. Significantly, the model accurately accounts for situations where the paired agonists interact with the same site compared to distinct sites on the receptor.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
36
|
Terejko K, Kaczor PT, Michałowski MA, Dąbrowska A, Mozrzymas JW. The C loop at the orthosteric binding site is critically involved in GABA A receptor gating. Neuropharmacology 2019; 166:107903. [PMID: 31972511 DOI: 10.1016/j.neuropharm.2019.107903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023]
Abstract
GABAA receptors (GABAARs) play a crucial role in mammalian adult brain inhibition. The dysfunction of GABAergic drive is related to such disorders as epilepsy, schizophrenia, and depression. Substantial progress has recently been made in describing the static structure of GABAARs, but the molecular mechanisms that underlie the activation process remain elusive. The C loop of the GABAAR structure shows the largest movement upon ligand binding to the orthosteric binding site, a phenomenon that is referred to as "capping." The C loop is known to be involved in agonist binding, but its role in the gating of Cys-loop receptors is still debated. Herein, we investigated this issue by analyzing the impact of a β2F200 residue mutation of the C loop on gating properties of α1β2γ2 GABAARs. Extensive analyses and the modeling of current responses to saturating agonist application demonstrated that this mutation strongly affected preactivation, opening, closing and desensitization, i.e. all considered gating steps. Single-channel analysis revealed that the β2F200 mutation slowed all shut time components, and open times were shortened. Model fitting of these single-channel data further confirmed that the β2F200 mutation strongly affected all of the gating characteristics. We also found that this mutation altered receptor sensitivity to the benzodiazepine flurazepam, which was attributable to a change in preactivation kinetics. In silico analysis indicated that the β2F200 mutation resulted in distortion of the C loop structure, causing the movement of its tip from the binding site. Altogether, we provide the first evidence that C loop critically controls GABAAR gating.
Collapse
Affiliation(s)
- Katarzyna Terejko
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland.
| | - Przemysław T Kaczor
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Michał A Michałowski
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Agnieszka Dąbrowska
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland.
| |
Collapse
|
37
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF. Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019; 133:104406. [PMID: 30798006 DOI: 10.1016/j.nbd.2019.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
One of the devastating effects of acute exposure to organophosphates, like nerve agents, is the induction of severe and prolonged status epilepticus (SE), which can cause death, or brain damage if death is prevented. Seizures after exposure are initiated by muscarinic receptor hyperstimulation-after inhibition of acetylcholinesterase by the organophosphorus agent and subsequent elevation of acetylcholine-but they are reinforced and sustained by glutamatergic hyperexcitation, which is the primary cause of brain damage. Diazepam is the FDA-approved anticonvulsant for the treatment of nerve agent-induced SE, and its replacement by midazolam is currently under consideration. However, clinical data derived from the treatment of SE of any etiology, as well as studies on the control of nerve agent-induced SE in animal models, have indicated that diazepam and midazolam control seizures only temporarily, their antiseizure efficacy is reduced as the latency of treatment from the onset of SE increases, and their neuroprotective efficacy is limited or absent. Here, we review data on the discovery of a novel anticonvulsant and neuroprotectant, LY293558, an AMPA/GluK1 receptor antagonist. Treatment of soman-exposed immature, young-adult, and aged rats with LY293558, terminates SE with limited recurrence of seizures, significantly protects from brain damage, and prevents long-term behavioral deficits, even when LY293558 is administered 1 h post-exposure. More beneficial effects and complete neuroprotection is obtained when LY293558 administration is combined with caramiphen, which antagonizes NMDA receptors. Further efficacy studies may bring the LY293558 + caramiphen combination therapy on the pathway to approval for human use.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States of America.
| | - Maria F Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
38
|
Feng J, Zhang Q, Zhang C, Wen Z, Zhou X. The Effect of sequential bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum level of BDNF and GABA in patients with primary insomnia. Brain Behav 2019; 9:e01206. [PMID: 30609300 PMCID: PMC6379591 DOI: 10.1002/brb3.1206] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of sequential bilateral low-frequency repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on patients with primary insomnia (PI). METHODS A total of 32 eligible right-handed participants diagnosed by PI according to International classification of sleep disorders (ICD-3) were recruited into this study. Participants received 10 daily sessions of sequential bilateral 1 Hz rTMS over DLPFC. Before and after the whole procedure of rTMS, patients were assessed by Pittsburgh Sleep Quality Index (PSQI) for the severity of sleep disturbance. Meanwhile, serum concentration of brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) in patients was measured by ELISA and UPLC, respectively. Moreover, the amplitude of MEPs reflecting the right cortical excitability was examined. Finally, Pearson correlation analysis was performed to evaluate the correlation among the change of these variables. RESULTS After rTMS treatment, the PSQI score was markedly decreased as compared to pre-rTMS; the concentrations of serum BDNF and GABA were significantly higher; the amplitude of MEPs was markedly reduced. Pearson correlation analysis revealed that the change of PSQI score was negatively associated with the alteration of serum BDNF level and serum GABA level, and positively associated with the change of MEPs amplitude; the change of MEPs amplitude was negatively associated with fold change in the serum BDNF level and the serum GABA level; the increase in serum GABA level was positively associated with the serum BDNF level. CONCLUSIONS A sequential bilateral low-frequency rTMS over DLPFC significantly improves primary insomnia probably by increasing the level of BDNF and GABA in the brain and reducing cortical excitability.
Collapse
Affiliation(s)
- Jie Feng
- Department of NeurologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qing Zhang
- Laboratory of Neurological, Department of Neurology, Changzhou No.2 People’s HospitalThe Affiliated Hospital of Nanjing Medical UniversityChangzhouChina
| | - Chengliang Zhang
- Laboratory of Neurological, Department of Neurology, Changzhou No.2 People’s HospitalThe Affiliated Hospital of Nanjing Medical UniversityChangzhouChina
| | - Zhongmin Wen
- Department of NeurologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xianju Zhou
- Laboratory of Neurological, Department of Neurology, Changzhou No.2 People’s HospitalThe Affiliated Hospital of Nanjing Medical UniversityChangzhouChina
- Department of Neurology, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
39
|
Payghan PV, Nath Roy S, Bhattacharyya D, Ghoshal N. Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): A computational study revealing the structural basis of selectivity. J Biomol Struct Dyn 2019; 37:3065-3080. [DOI: 10.1080/07391102.2018.1508367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
40
|
Steinbach JH, Akk G. Applying the Monod-Wyman-Changeux Allosteric Activation Model to Pseudo-Steady-State Responses from GABA A Receptors. Mol Pharmacol 2019; 95:106-119. [PMID: 30333132 PMCID: PMC6277929 DOI: 10.1124/mol.118.113787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The Monod-Wyman-Changeux (MWC) cyclic model was described as a kinetic scheme to explain enzyme function and modulation more than 50 years ago and was proposed as a model for understanding the activation of transmitter-gated channels soon afterward. More recently, the MWC model has been used to describe the activation of the GABAA receptor by the transmitter, GABA, and drugs that bind to separate sites on the receptor. It is most interesting that the MWC formalism can also describe the interactions among drugs that activate the receptor. In this review, we describe properties of the MWC model that have been explored experimentally using the GABAA receptor, summarize analytical expressions for activation and interaction for drugs, and briefly review experimental results.
Collapse
Affiliation(s)
- Joe Henry Steinbach
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
41
|
Raffa RB, Pergolizzi JV. <i>Commentary</i>: Benzodiazepine (BZD) and Related BZD-Receptor Agonists: Basic Science Reasons to Limit to Four Weeks or Less. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/pp.2019.108029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Kisiel M, Jatczak-Śliwa M, Mozrzymas JW. Protons modulate gating of recombinant α 1β 2γ 2 GABA A receptor by affecting desensitization and opening transitions. Neuropharmacology 2018; 146:300-315. [PMID: 30326242 DOI: 10.1016/j.neuropharm.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
Abstract
Protons are potent modulators of GABAA receptors (GABAARs) and α1Phe64 residue was implicated in their pH sensitivity. Recently, we have demonstrated that this residue is involved in flipping transitions which precede channel opening. We thus re-addressed the mechanism of GABAAR modulation by protons by considering the gating scheme extended by flipping. The impact of pH changes was examined on currents mediated by wild-type α1β2γ2 receptors or by their α1Phe64Leu or α1Phe64Cys mutants and elicited by saturating concentrations of full (GABA) or partial (piperidine-4-sulfonic acid) agonists. To describe the impact of extracellular pH on receptor gating, we combined macroscopic analysis of currents elicited by rapid agonist applications with single-channel studies. Acidification (pH 6.0) increased current amplitudes (in the case of leucine mutants effect was stronger when P4S was used) and decreased the rate and the extent of desensitization whereas alkalization (pH 8.0) had the opposite but weaker effect. Deactivation kinetics for wild-type receptors was slowed down by acidification while in the case of mutants this effect was observed upon alkalization. Moreover, α1Phe64 mutations enhanced GABAAR sensitivity to alkaline pH. Single-channel analysis revealed that acidification prolonged burst durations and affected shut but not open time distributions. Model simulations for macroscopic and single-channel activity indicated a novel mechanism in which protons primarily affected opening and desensitization rates but not flipping/unflipping. This evidence for the impact of protons on the receptor gating together with previously demonstrated effect on the agonist binding, point to a complex effect of extracellular pH on GABAAR macromolecule.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Molecular Physiology and Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
43
|
Nicholson MW, Sweeney A, Pekle E, Alam S, Ali AB, Duchen M, Jovanovic JN. Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca 2+/calcineurin signalling downstream of GABAA receptors. Mol Psychiatry 2018; 23:1851-1867. [PMID: 29904150 PMCID: PMC6232101 DOI: 10.1038/s41380-018-0100-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Benzodiazepines facilitate the inhibitory actions of GABA by binding to γ-aminobutyric acid type A receptors (GABAARs), GABA-gated chloride/bicarbonate channels, which are the key mediators of transmission at inhibitory synapses in the brain. This activity underpins potent anxiolytic, anticonvulsant and hypnotic effects of benzodiazepines in patients. However, extended benzodiazepine treatments lead to development of tolerance, a process which, despite its important therapeutic implications, remains poorly characterised. Here we report that prolonged exposure to diazepam, the most widely used benzodiazepine in clinic, leads to a gradual disruption of neuronal inhibitory GABAergic synapses. The loss of synapses and the preceding, time- and dose-dependent decrease in surface levels of GABAARs, mediated by dynamin-dependent internalisation, were blocked by Ro 15-1788, a competitive benzodiazepine antagonist, and bicuculline, a competitive GABA antagonist, indicating that prolonged enhancement of GABAAR activity by diazepam is integral to the underlying molecular mechanism. Characterisation of this mechanism has revealed a metabotropic-type signalling downstream of GABAARs, involving mobilisation of Ca2+ from the intracellular stores and activation of the Ca2+/calmodulin-dependent phosphatase calcineurin, which, in turn, dephosphorylates GABAARs and promotes their endocytosis, leading to disassembly of inhibitory synapses. Furthermore, functional coupling between GABAARs and Ca2+ stores was sensitive to phospholipase C (PLC) inhibition by U73122, and regulated by PLCδ, a PLC isoform found in direct association with GABAARs. Thus, a PLCδ/Ca2+/calcineurin signalling cascade converts the initial enhancement of GABAARs by benzodiazepines to a long-term downregulation of GABAergic synapses, this potentially underpinning the development of pharmacological and behavioural tolerance to these widely prescribed drugs.
Collapse
Affiliation(s)
| | - Aaron Sweeney
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eva Pekle
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sabina Alam
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Afia B Ali
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Michael Duchen
- Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, London, UK
| | | |
Collapse
|
44
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
45
|
Jatczak-Śliwa M, Terejko K, Brodzki M, Michałowski MA, Czyzewska MM, Nowicka JM, Andrzejczak A, Srinivasan R, Mozrzymas JW. Distinct Modulation of Spontaneous and GABA-Evoked Gating by Flurazepam Shapes Cross-Talk Between Agonist-Free and Liganded GABA A Receptor Activity. Front Cell Neurosci 2018; 12:237. [PMID: 30210295 PMCID: PMC6121034 DOI: 10.3389/fncel.2018.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial inhibitory role in the CNS. Benzodiazepines (BDZs) are positive modulators of specific subtypes of GABAARs, but the underlying mechanism remains obscure. Early studies demonstrated the major impact of BDZs on binding and more recent investigations indicated gating, but it is unclear which transitions are affected. Moreover, the upregulation of GABAAR spontaneous activity by BDZs indicates their impact on receptor gating but the underlying mechanisms remain unknown. Herein, we investigated the effect of a BDZ (flurazepam) on the spontaneous and GABA-induced activity for wild-type (WT, α1β2γ2) and mutated (at the orthosteric binding site α1F64) GABAARs. Surprisingly, in spite of the localization at the binding site, these mutations increased the spontaneous activity. Flurazepam (FLU) upregulated this activity for mutants and WT receptors to a similar extent by affecting opening/closing transitions. Spontaneous activity affected GABA-evoked currents and is manifested as an overshoot after agonist removal that depended on the modulation by BDZs. We explain the mechanism of this phenomenon as a cross-desensitization of ligand-activated and spontaneously active receptors. Moreover, due to spontaneous activity, FLU-pretreatment and co-application (agonist + FLU) protocols yielded distinct results. We provide also the first evidence that GABAAR may enter the desensitized state in the absence of GABA in a FLU-dependent manner. Based on our data and model simulations, we propose that FLU affects agonist-induced gating by modifying primarily preactivation and desensitization. We conclude that the mechanisms of modulation of spontaneous and ligand-activated GABAAR activity concerns gating but distinct transitions are affected in spontaneous and agonist-evoked activity.
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Katarzyna Terejko
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Michał A Michałowski
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Marta M Czyzewska
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | - Joanna M Nowicka
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | - Anna Andrzejczak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
46
|
Knoflach F, Hernandez MC, Bertrand D. Methods for the Discovery of Novel Compounds Modulating a Gamma-Aminobutyric Acid Receptor Type A Neurotransmission. J Vis Exp 2018. [PMID: 30175997 PMCID: PMC6128072 DOI: 10.3791/57842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This manuscript presents a step-by-step protocol for screening compounds at gamma-aminobutyric acid type A (GABAA) receptors and its use towards the identification of novel molecules active in preclinical assays from an in vitro recombinant receptor to their pharmacological effects at native receptors in rodent brain slices. For compounds binding at the benzodiazepine site of the receptor, the first step is to set up a primary screen that consists of developing radioligand binding assays on cell membranes expressing the major GABAA subtypes. Then, taking advantage of the heterologous expression of rodent and human GABAA receptors in Xenopus oocytes or HEK 293 cells, it is possible to explore, in electrophysiological assays, the physiological properties of the different receptor subtypes and the pharmacological properties of the identified compounds. The Xenopus oocyte system will be presented here, starting with the isolation of the oocytes and their microinjection with different mRNAs, up to the pharmacological characterization using two-electrode voltage clamps. Finally, recordings conducted in rodent brain slices will be described that are used as a secondary physiological test to assess the activity of molecules at their native receptors in a well-defined neuronal circuit. Extracellular recordings using population responses of multiple neurons are demonstrated together with the drug application.
Collapse
Affiliation(s)
- Frédéric Knoflach
- Discovery Neuroscience, Pharma Research and Early Development, Roche Innovation Center Basel
| | | | | |
Collapse
|
47
|
The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci 2018; 39:659-671. [DOI: 10.1016/j.tips.2018.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
|
48
|
Gielen M, Corringer P. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J Physiol 2018; 596:1873-1902. [PMID: 29484660 PMCID: PMC5978336 DOI: 10.1113/jp275100] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast neurotransmission in the nervous system. Their dysfunction is associated with psychiatric, neurological and neurodegenerative disorders such as schizophrenia, epilepsy and Alzheimer's disease. Understanding their biophysical and pharmacological properties, at both the functional and the structural level, thus holds many therapeutic promises. In addition to their agonist-elicited activation, most pLGICs display another key allosteric property, namely desensitization, in which they enter a shut state refractory to activation upon sustained agonist binding. While the activation mechanisms of several pLGICs have been revealed at near-atomic resolution, the structural foundation of desensitization has long remained elusive. Recent structural and functional data now suggest that the activation and desensitization gates are distinct, and are located at both sides of the ion channel. Such a 'dual gate mechanism' accounts for the marked allosteric effects of channel blockers, a feature illustrated herein by theoretical kinetics simulations. Comparison with other classes of ligand- and voltage-gated ion channels shows that this dual gate mechanism emerges as a common theme for the desensitization and inactivation properties of structurally unrelated ion channels.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors UnitInstitut PasteurCNRS UMR 3571ParisFrance
| | | |
Collapse
|
49
|
Dhir A, Rogawski MA. Determination of minimal steady-state plasma level of diazepam causing seizure threshold elevation in rats. Epilepsia 2018; 59:935-944. [PMID: 29682729 PMCID: PMC5934328 DOI: 10.1111/epi.14069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Diazepam, administered by the intravenous, oral, or rectal routes, is widely used for the management of acute seizures. Dosage forms for delivery of diazepam by other routes of administration, including intranasal, intramuscular, and transbuccal, are under investigation. In predicting what dosages are necessary to terminate seizures, the minimal exposure required to confer seizure protection must be known. Here we administered diazepam by continuous intravenous infusion to obtain near-steady-state levels, which allowed an assessment of the minimal levels that elevate seizure threshold. METHODS The thresholds for various behavioral seizure signs (myoclonic jerk, clonus, and tonus) were determined with the timed intravenous pentylenetetrazol seizure threshold test in rats. Diazepam was administered to freely moving animals by continuous intravenous infusion via an indwelling jugular vein cannula. Blood samples for assay of plasma levels of diazepam and metabolites were recovered via an indwelling cannula in the contralateral jugular vein. RESULTS The pharmacokinetic parameters of diazepam following a single 80-μg/kg intravenous bolus injection were determined using a noncompartmental pharmacokinetic approach. The derived parameters Vd , CL, t1/2α (distribution half-life) and t1/2β (terminal half-life) for diazepam were, respectively, 608 mL, 22.1 mL/min, 13.7 minutes, and 76.8 minutes, respectively. Various doses of diazepam were continuously infused without or with an initial loading dose. At the end of the infusions, the thresholds for various behavioral seizure signs were determined. The minimal plasma diazepam concentration associated with threshold elevations was estimated at approximately 70 ng/mL. The active metabolites nordiazepam, oxazepam, and temazepam achieved levels that are expected to make only minor contributions to the threshold elevations. SIGNIFICANCE Diazepam elevates seizure threshold at steady-state plasma concentrations lower than previously recognized. The minimally effective plasma concentration provides a reference that may be considered when estimating the diazepam exposure required for acute seizure treatment.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Michael A. Rogawski
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
50
|
Full Protection Against Soman-Induced Seizures and Brain Damage by LY293558 and Caramiphen Combination Treatment in Adult Rats. Neurotox Res 2018; 34:511-524. [PMID: 29713995 DOI: 10.1007/s12640-018-9907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Acute exposure to nerve agents induces status epilepticus (SE), which causes brain damage or death. LY293558, an antagonist of AMPA and GluK1 kainate receptors is a very effective anticonvulsant and neuroprotectant against soman; however, some neuronal damage is still present after treatment of soman-exposed rats with LY293558. Here, we have tested whether combining LY293558 with an NMDA receptor antagonist can eliminate the residual damage. For this purpose, we chose caramiphen (CRM), an antimuscarinic compound with NMDA receptor antagonistic properties. Adult male rats were exposed to 1.2 × LD50 soman, and at 20 min after soman exposure, were injected with atropine + HI-6, or atropine + HI-6 + LY293558 (15 mg/kg), or atropine + HI-6 + LY293558 + CRM (50 mg/kg). We found that (1) the LY293558 + CRM treatment terminated SE significantly faster than LY293558 alone; (2) after cessation of the initial SE, seizures did not return in the LY293558 + CRM-treated group, during 72 h of monitoring; (3) power spectrum analysis of continuous EEG recordings for 7 days post-exposure showed increased delta and decreased gamma power that lasted beyond 24 h post-exposure only in the rats who did not receive anticonvulsant treatment; (4) spontaneous recurrent seizures appeared on day 7 only in the group that did not receive anticonvulsant treatment; (5) significant neuroprotection was achieved by LY293558 administration, while the rats who received LY293558 + CRM displayed no neurodegeneration; (6) body weight loss and recovery in the LY293558 + CRM-treated rats did not differ from those in control rats who were not exposed to soman. The data show that treatment with LY293558 + CRM provides full antiseizure and neuroprotective efficacy against soman.
Collapse
|