1
|
Lysenkov SP, Muzhenya DV, Tuguz AR, Urakova TU, Shumilov DS, Thakushinov IA, Thakushinov RA, Tatarkova EA, Urakova DM. Cholinergic deficiency in the cholinergic system as a pathogenetic link in the formation of various syndromes in COVID-19. CHINESE J PHYSIOL 2023; 66:1-13. [PMID: 36814151 DOI: 10.4103/cjop.cjop-d-22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
According to recent data, several mechanisms of viral invasion of the central nervous system (CNS) have been proposed, one of which is both direct penetration of the virus through afferent nerve fibers and damage to the endothelium of cerebral vessels. It has been proven that the SARS-CoV-2 virus affects pathologically not only the human cardiorespiratory system but is also associated with a wide range of neurological diseases, cerebrovascular accidents, and neuromuscular pathologies. However, the observed post-COVID symptom complex in patients, manifested in the form of headache, "fog in the head," high temperature, muscle weakness, lowering blood pressure, does it make us think about the pathophysiological mechanisms that contribute to the development of this clinical picture? One possible explanation is a disruption in the signaling of the acetylcholine system (AChS) in the body. Viral invasions, and in particular COVID-19, can negatively affect the work of the AChS, disrupting its coordination activities. Therefore, the main goal of this literature review is to analyze the information and substantiate the possible mechanisms for the occurrence of post-COVID syndrome in people who have had COVID-19 from the standpoint of AChS dysfunctions.
Collapse
Affiliation(s)
- Sergey Petrovich Lysenkov
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | | | - Aminat Ramazanovna Tuguz
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Tamara Ur'evna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | - Dmitriy Sergeevich Shumilov
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | | | | | - Elena Anatolevna Tatarkova
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Diana Muratovna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| |
Collapse
|
2
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Li ZL, Gou CY, Wang WH, Li Y, Cui Y, Duan JJ, Chen Y. A novel effect of PDLIM5 in α7 nicotinic acetylcholine receptor upregulation and surface expression. Cell Mol Life Sci 2022; 79:64. [PMID: 35013841 PMCID: PMC11072317 DOI: 10.1007/s00018-021-04115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widespread throughout the central nervous system. Signaling through nAChRs contributes to numerous higher-order functions, including memory and cognition, as well as abnormalities such as nicotine addiction and neurodegenerative disorders. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated remain unclear. Here, we show that the PDZ-LIM domain family protein PDLIM5 binds to α7nAChRs and plays a role in nicotine-induced α7nAChRs upregulation and surface expression. We find that chronic exposure to 1 μM nicotine upregulated α7, β2-contained nAChRs and PDLIM5 in cultured hippocampal neurons, and the upregulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, in primary hippocampal neurons, α7nAChRs and β2nAChRs display distinct patterns of expression, with α7nAChRs colocalized more with PDLIM5. Furthermore, PDLIM5 interacts with α7nAChRs, but not β2nAChRs in native brain neurons. Knocking down of PDLIM5 in SH-SY5Y abolishes nicotine-induced upregulation of α7nAChRs. In primary hippocampal neurons, using shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs-mediated currents. Proteomics analysis and isothermal titration calorimetry (ITC) results show that PDLIM5 interacts with α7nAChRs through the PDZ domain, and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in the regulation of α7nAChRs, which may be relevant to plastic changes in the nervous system.
Collapse
Affiliation(s)
- Zi-Lin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chen-Yu Gou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Wen-Hui Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuan Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Yu Cui
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Jing-Jing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Vallés AS, Barrantes FJ. Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment. Biomolecules 2021; 11:1697. [PMID: 34827695 PMCID: PMC8615865 DOI: 10.3390/biom11111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days. This panoply of lateral domains subserves the great variety of demands of cell physiology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized into spatially delimited nanodomains that execute separate functions in the synapse. This review discusses the functional relevance of compartmentalization and nanodomain organization in synaptic transmission and plasticity and exemplifies the importance of this parcelization in various neurotransmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
5
|
Patel VR, Salinas AM, Qi D, Gupta S, Sidote DJ, Goldschen-Ohm MP. Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel. Nat Commun 2021; 12:6459. [PMID: 34753946 PMCID: PMC8578382 DOI: 10.1038/s41467-021-26816-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
Ligand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in non-native lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. Kinetic modeling suggests that binding of the second ligand is either independent of the first ligand or exhibits up to ~10-fold positive binding cooperativity. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.
Collapse
Affiliation(s)
- Vishal R Patel
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Arturo M Salinas
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Darong Qi
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Shipra Gupta
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - David J Sidote
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
6
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Li N, Liu K, Dong S, Ou L, Li J, Lai M, Wang Y, Bao Y, Shi H, Wang X, Wang S. Identification of CHRNB4 as a Diagnostic/Prognostic Indicator and Therapeutic Target in Human Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:571167. [PMID: 33304845 PMCID: PMC7701245 DOI: 10.3389/fonc.2020.571167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors and there is a lack of biomarkers for ESCC diagnosis and prognosis. Family subunits of cholinergic nicotinic receptor genes (CHRNs) are involved in smoking behavior and tumor cell proliferation. Previous researches have shown similar molecular features and pathogenic mechanisms among ESCC, head and neck squamous cell carcinoma (HNSC), and lung squamous cell carcinoma (LUSC). Using edgeR, three mutual differentially expressed genes of CHRNs were found to be significantly upregulated at the mRNA level in ESCC, LUSC, and HNSC compared to matched normal tissues. Kaplan–Meier survival analysis showed that high expression of CHRNB4 was associated with unfavorable prognosis in ESCC and HNSC. The specific expression analysis revealed that CHRNB4 is highly expressed selectively in squamous cell carcinomas compared to adenocarcinoma. Cox proportional hazards regression analysis was performed to find that just the single gene CHRNB4 has enough independent prognostic ability, with the area under curve surpassing the tumor-node-metastasis (TNM) staging-based model, the most commonly used model in clinical application in ESCC. In addition, an effective prognostic nomogram was established combining the TNM stage, gender of patients, and expression of CHRNB4 for ESCC patients, revealing an excellent prognostic ability when compared to the model of CHRNB4 alone or TNM. Gene Set Enrichment Analysis results suggested that the expression of CHRNB4 was associated with cancer-related pathways, such as the mTOR pathway. Cell Counting Kit-8, cloning formation assay, and western blot proved that CHRNB4 knockdown can inhibit the proliferation of ESCC cells via the Akt/mTOR and ERK1/2/mTOR pathways, which might facilitate the prolonged survival of patients. Furthermore, we conducted structure-based molecular docking, and potential modulators against CHRNB4 were screened from FDA approved drugs. These findings suggested that CHRNB4 specifically expressed in SCCs, and may serve as a promising biomarker for diagnosis and prognosis prediction, and it can even become a therapeutic target of ESCC patients.
Collapse
Affiliation(s)
- Nan Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Ling Ou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Minshan Lai
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yue Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yucheng Bao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Huijie Shi
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiao Wang
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
8
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
9
|
Hannan S, Minere M, Harris J, Izquierdo P, Thomas P, Tench B, Smart TG. GABA AR isoform and subunit structural motifs determine synaptic and extrasynaptic receptor localisation. Neuropharmacology 2019; 169:107540. [PMID: 30794836 DOI: 10.1016/j.neuropharm.2019.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
GABAA receptors (GABAARs) are the principal inhibitory neurotransmitter receptors in the central nervous system. They control neuronal excitability by synaptic and tonic forms of inhibition mostly mediated by different receptor subtypes located in specific cell membrane subdomains. A consensus suggests that α1-3βγ comprise synaptic GABAARs, whilst extrasynaptic α4βδ, α5βγ and αβ isoforms largely underlie tonic inhibition. Although some structural features that enable the spatial segregation of receptors are known, the mobility of key synaptic and extrasynaptic GABAARs are less understood, and yet this is a key determinant of the efficacy of GABA inhibition. To address this aspect, we have incorporated functionally silent α-bungarotoxin binding sites (BBS) into prominent hippocampal GABAAR subunits which mediate synaptic and tonic inhibition. Using single particle tracking with quantum dots we demonstrate that GABAARs that are traditionally considered to mediate synaptic or tonic inhibition are all able to access inhibitory synapses. These isoforms have variable diffusion rates and are differentially retained upon entering the synaptic membrane subdomain. Interestingly, α2 and α4 subunits reside longer at synapses compared to α5 and δ subunits. Furthermore, a high proportion of extrasynaptic δ-containing receptors exhibited slower diffusion compared to δ subunits at synapses. A chimera formed from δ-subunits, with the intracellular domain of γ2L, reversed this behaviour. In addition, we observed that receptor activation affected the diffusion of extrasynaptic, but not of synaptic GABAARs. Overall, we conclude that the differential mobility profiles of key synaptic and extrasynaptic GABAARs are determined by receptor subunit composition and intracellular structural motifs. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Marielle Minere
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Joseph Harris
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Becky Tench
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Regulation of Neuronal Na,K-ATPase by Extracellular Scaffolding Proteins. Int J Mol Sci 2018; 19:ijms19082214. [PMID: 30060621 PMCID: PMC6121408 DOI: 10.3390/ijms19082214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Neuronal activity leads to an influx of Na⁺ that needs to be rapidly cleared. The sodium-potassium ATPase (Na,K-ATPase) exports three Na⁺ ions and imports two K⁺ ions at the expense of one ATP molecule. Na,K-ATPase turnover accounts for the majority of energy used by the brain. To prevent an energy crisis, the energy expense for Na⁺ clearance must provide an optimal effect. Here we report that in rat primary hippocampal neurons, the clearance of Na⁺ ions is more efficient if Na,K-ATPase is laterally mobile in the membrane than if it is clustered. Using fluorescence recovery after photobleaching and single particle tracking analysis, we show that the ubiquitous α1 and the neuron-specific α3 catalytic subunits as well as the supportive β1 subunit of Na,K-ATPase are highly mobile in the plasma membrane. We show that cross-linking of the β1 subunit with polyclonal antibodies or exposure to Modulator of Na,K-ATPase (MONaKA), a secreted protein which binds to the extracellular domain of the β subunit, clusters the α3 subunit in the membrane and restricts its mobility. We demonstrate that clustering, caused by cross-linking or by exposure to MONaKA, reduces the efficiency in restoring intracellular Na⁺. These results demonstrate that extracellular interactions with Na,K-ATPase regulate the Na⁺ extrusion efficiency with consequences for neuronal energy balance.
Collapse
|
11
|
Pituitary adenylate cyclase activating polypeptide induces long-term, transcription-dependent plasticity and remodeling at autonomic synapses. Mol Cell Neurosci 2017; 85:170-182. [DOI: 10.1016/j.mcn.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
|
12
|
Moravcova R, Melkes B, Novotny J. TRH receptor mobility in the plasma membrane is strongly affected by agonist binding and by interaction with some cognate signaling proteins. J Recept Signal Transduct Res 2017; 38:20-26. [PMID: 29137494 DOI: 10.1080/10799893.2017.1398756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins. METHODS We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP). RESULTS FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling. CONCLUSION These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.
Collapse
Affiliation(s)
- Radka Moravcova
- a Department of Physiology, Faculty of Science , Charles University , Prague , Czech Republic
| | - Barbora Melkes
- a Department of Physiology, Faculty of Science , Charles University , Prague , Czech Republic
| | - Jiri Novotny
- a Department of Physiology, Faculty of Science , Charles University , Prague , Czech Republic
| |
Collapse
|
13
|
Vasilyeva NA, Murzina GB, Kireev II, Pivovarov AS. Influence of Membrane Receptor Lateral Diffusion on the Short-Term Depression of Acetylcholine-Induced Current in Helix Neurons. Cell Mol Neurobiol 2017; 37:1443-1455. [PMID: 28236056 PMCID: PMC11482138 DOI: 10.1007/s10571-017-0475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
We have studied how various drugs increasing the rate of nicotinic acetylcholine receptors (nAChRs) lateral diffusion affect the depression of ACh-induced current in land snail Helix lucorum neurons responsible for defensive behavior. The acetylcholine (ACh) iontophoretic application protocol imitated the behavioral habituation protocol for the intact animal. We found that the drugs decreasing cholesterol level in cell membranes as methyl-β-cyclodextrin 1 mM and Ro 48-8071 2 µM, and polyclonal antibodies to actin-binding proteins as spectrin 5 µg/ml and merlin 2.5 µg/ml have changed the dynamic of ACh-current depression. The nAChRs lateral diffusion coefficient was obtained by fluorescence recovery after photobleaching. A curve fitting model specially created for analysis of short-term choline sensitivity depression in snail neurons helped us evaluate separately the contribution of nAChRs lateral diffusion, their endocytosis and exocytosis to observed effects during electrophysiological experiments. Taken together, we hypothesize that nAChRs lateral diffusion plays an important role in the cellular correlate of habituation in land snail Helix lucorum neurons.
Collapse
Affiliation(s)
- Natalia A Vasilyeva
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Galina B Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Igor I Kireev
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, building 40, Moscow, Russia, 119234
| | - Arkady S Pivovarov
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234.
| |
Collapse
|
14
|
Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1289-1300. [PMID: 27600870 DOI: 10.1007/s00210-016-1293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
15
|
Hannan S, Gerrow K, Triller A, Smart TG. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation. Cell Rep 2016; 16:1962-73. [PMID: 27498877 PMCID: PMC4987283 DOI: 10.1016/j.celrep.2016.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 07/09/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kim Gerrow
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Antoine Triller
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Neves AR, Nunes C, Reis S. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:12-8. [PMID: 26456556 DOI: 10.1016/j.bbamem.2015.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022]
Abstract
Resveratrol is a polyphenol compound with great value in cancer therapy, cardiovascular protection, and neurodegenerative disorders. The mechanism by which resveratrol exerts such pleiotropic effects is not yet clear and there is a huge need to understand the influence of this compound on the regulation of lipid domains formation on membrane structure. The aim of the present study was to reveal potential molecular interactions between resveratrol and lipid rafts found in cell membranes by means of Förster resonance energy transfer, DPH fluorescence quenching, and triton X-100 detergent resistance assay. Liposomes composed of egg phosphatidylcholine, cholesterol, and sphingomyelin were used as model membranes. The results revealed that resveratrol induces phase separation and formation of liquid-ordered domains in bilayer structures. The formation of such tightly packed lipid rafts is important for different signal transduction pathways, through the regulation of membrane-associating proteins, that can justify several pharmacological activities of this compound.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Oyola-Cintrón J, Caballero-Rivera D, Ballester L, Baéz-Pagán CA, Martínez HL, Vélez-Arroyo KP, Quesada O, Lasalde-Dominicci JA. Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components. J Biol Chem 2015; 290:26790-800. [PMID: 26354438 DOI: 10.1074/jbc.m115.678573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.
Collapse
Affiliation(s)
| | | | | | | | - Hernán L Martínez
- the California State University Dominguez Hills, Carson, California 90747
| | | | - Orestes Quesada
- Physical Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, 00931 and
| | | |
Collapse
|
18
|
Leishmania donovani infection enhances lateral mobility of macrophage membrane protein which is reversed by liposomal cholesterol. PLoS Negl Trop Dis 2014; 8:e3367. [PMID: 25474261 PMCID: PMC4256160 DOI: 10.1371/journal.pntd.0003367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background The protozoan parasite Leishmania donovani (LD) reduces cellular cholesterol of the host possibly for its own benefit. Cholesterol is mostly present in the specialized compartment of the plasma membrane. The relation between mobility of membrane proteins and cholesterol depletion from membrane continues to be an important issue. The notion that leishmania infection alters the mobility of membrane proteins stems from our previous study where we showed that the distance between subunits of IFNγ receptor (R1 and R2) on the cell surface of LD infected cell is increased, but is restored to normal by liposomal cholesterol treatment. Methodology/Principal Findings We determined the lateral mobility of a membrane protein in normal, LD infected and liposome treated LD infected cells using GFP-tagged PLCδ1 as a probe. The mobility of PLCδ1 was computationally analyzed from the time lapse experiment using boundary distance plot and radial profile movement. Our results showed that the lateral mobility of the membrane protein, which is increased in infection, is restored to normal upon liposomal cholesterol treatment. The results of FRAP experiment lent further credence to the above notion. The membrane proteins are intimately linked with cellular actin and alteration of cellular actin may influence lateral mobility. We found that F-actin is decreased in infection but is restored to normal upon liposomal cholesterol treatment as evident from phalloidin staining and also from biochemical analysis by immunoblotting. Conclusions/Significances To our knowledge this is the first direct demonstration that LD parasites during their intracellular life cycle increases lateral mobility of membrane proteins and decreases F-actin level in infected macrophages. Such defects may contribute to ineffective intracellular signaling and other cellular functions. The protozoan parasites, Leishmania donovani, replicate within the macrophages of the mammalian hosts. During its intracellular lifecycle, the parasite induces a wide variety of defects in the membrane homeostasis. Membrane bound receptor molecules are important for interacting with external stimuli. Our study very clearly showed that there is an increase in the mobility of membrane protein coupled with decrease in F-actin in infected cells, which may be corrected by liposomal cholesterol treatment. This observation indicates that intracellular parasite may alter the membrane biology of infected cells which may dampen overall cellular function.
Collapse
|
19
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
20
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
21
|
Dotti CG, Esteban JA, Ledesma MD. Lipid dynamics at dendritic spines. Front Neuroanat 2014; 8:76. [PMID: 25152717 PMCID: PMC4126552 DOI: 10.3389/fnana.2014.00076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.
Collapse
|
22
|
Almarza G, Sánchez F, Barrantes FJ. Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS One 2014; 9:e100346. [PMID: 24971757 PMCID: PMC4074099 DOI: 10.1371/journal.pone.0100346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 11/23/2022] Open
Abstract
To what extent do cholesterol-rich lipid platforms modulate the supramolecular organization of the nicotinic acetylcholine receptor (AChR)? To address this question, the dynamics of AChR particles at high density and its cholesterol dependence at the surface of mammalian cells were studied by combining total internal reflection fluorescence microscopy and single-particle tracking. AChR particles tagged with a monovalent ligand, fluorescent α-bungarotoxin (αBTX), exhibited two mobile pools: i) a highly mobile one undergoing simple Brownian motion (16%) and ii) one with restricted motion (∼50%), the rest being relatively immobile (∼44%). Depletion of membrane cholesterol by methyl-α-cyclodextrin increased the fraction of the first pool to 22% and 33% after 15 and 40 min, respectively; the pool undergoing restricted motion diminished from 50% to 44% and 37%, respectively. Monoclonal antibody binding results in AChR crosslinking-internalization after 2 h; here, antibody binding immobilized within minutes ∼20% of the totally mobile AChR. This proportion dramatically increased upon cholesterol depletion, especially during the initial 10 min (83.3%). Thus, antibody crosslinking and cholesterol depletion exhibited a mutually synergistic effect, increasing the average lifetime of cell-surface AChRs∼10 s to ∼20 s. The instantaneous (microscopic) diffusion coefficient D2-4 of the AChR obtained from the MSD analysis diminished from ∼0.001 µm2 s(-1) to ∼0.0001-0.00033 µm2 s(-1) upon cholesterol depletion, ∼30% of all particles falling into the stationary mode. Thus, muscle-type AChR exhibits heterogeneous motional regimes at the cell surface, modulated by the combination of intrinsic (its supramolecular organization) and extrinsic (membrane cholesterol content) factors.
Collapse
Affiliation(s)
- Gonzalo Almarza
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco Sánchez
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Abstract
Selective strengthening of specific glutamatergic synapses in the mammalian hippocampus is critical for encoding new memories. This is most commonly achieved by input-specific Hebbian-type plasticity involving glutamate-dependent coincident presynaptic and postsynaptic depolarization. Our results demonstrate a novel mechanism by which nicotinic signaling, independently of coincident fast glutamatergic transmission, increases synaptic strength in the hippocampus. Electrophysiological recordings from rat hippocampal neurons in culture revealed that 1-3 h of exposure to 1 μm nicotine, even with action potentials being blocked, produced increases in both the frequency and amplitude of miniature EPSCs. Possible mechanisms were analyzed both in mouse organotypic slice culture and in rat cell culture by inducing the cells to express super-ecliptic pHluorin-tagged GluA1-containing AMPA receptors, which fluoresce only on the cell surface. Pharmacological and genetic manipulation of the cells, in combination with fluorescence-recovery-after-photobleaching experiments, revealed that nicotine, acting through α7-containing nicotinic acetylcholine receptors on the postsynaptic neuron, induces the stabilization and accumulation of GluA1-containing AMPA receptors on dendritic spines. The process relies on intracellular calcium signaling, PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] interactions with members of the PSD-95 family, and lateral diffusion of the GluA1 receptors on the cell surface. These findings define a new avenue by which nicotinic signaling modulates synaptic mechanisms thought to subserve learning and memory.
Collapse
|
24
|
Functional Distribution and Regulation of Neuronal Nicotinic ACh Receptors in the Mammalian Brain. NICOTINIC RECEPTORS 2014. [DOI: 10.1007/978-1-4939-1167-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Lateral mobility of presynaptic α7-containing nicotinic receptors and its relevance for glutamate release. J Neurosci 2013; 33:17062-71. [PMID: 24155310 DOI: 10.1523/jneurosci.1482-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Surface diffusion of postsynaptic receptors shapes synaptic transmission. Presynaptic receptors also influence transmission, but the relevance of their mobility for synaptic function is unknown. Using single-particle tracking with quantum dots, we show that calcium-permeable α7-containing nicotinic acetylcholine receptors (α7-nAChRs), capable of promoting transmitter release, are mobile on presynaptic terminals but constrained in synaptic space on rat hippocampal neurons in culture. Additional immobilization of presynaptic α7-nAChRs by antibody crosslinking increases glutamate release capacity as seen in the frequency of spontaneous miniature postsynaptic currents and the size of the readily releasable pool of transmitter. Conversely, blocking glutamate release by targeting tetanus toxin to individual synapses increases α7-nAChR dwell time at presynaptic sites. The effects on release require functional α7-nAChRs and may to depend on CAST/ELKS (calpastatin/glutamine, leucine, lysine, and serine-rich protein), which an unbiased proteomic screen yielded. The results support a new homeostatic regulatory mechanism in which α7-nAChR restrain may be adjusted as needed at presynaptic sites via active zone proteins to maintain transmitter release capability.
Collapse
|
26
|
Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 2013; 86:1063-73. [DOI: 10.1016/j.bcp.2013.06.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
27
|
Goyal RK, Chaudhury A. Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 2013; 176:11-31. [PMID: 23535140 PMCID: PMC3677731 DOI: 10.1016/j.autneu.2013.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors.
Collapse
Affiliation(s)
- Raj K Goyal
- Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA.
| | | |
Collapse
|
28
|
Vadakkan KI. A supplementary circuit rule-set for the neuronal wiring. Front Hum Neurosci 2013; 7:170. [PMID: 23641209 PMCID: PMC3640191 DOI: 10.3389/fnhum.2013.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
Abstract
Limitations of known anatomical circuit rules necessitate the identification of supplementary rules. This is essential for explaining how associative sensory stimuli induce nervous system changes that generate internal sensations of memory, concurrent with triggering specific motor activities in response to specific cue stimuli. A candidate mechanism is rapidly reversible, yet stabilizable membrane hemi-fusion formed between the closely apposed postsynaptic membranes of different neurons at locations of convergence of sensory inputs during associative learning. The lateral entry of activity from the cue stimulus-activated postsynapse re-activates the opposite postsynapse through the hemi-fused area and induces the basic units of internal sensation (namely, semblions) as a systems property. Working, short-term and long-term memories can be viewed as functions of the number of re-activatible hemi-fusions present at the time of memory retrieval. Blocking membrane hemi-fusion either by the insertion of the herpes simplex virus (HSV) glycoproteins or by the deposition of insoluble intermediates of amyloid protein in the inter-postsynaptic extracellular matrix (ECM) space leads to cognitive impairments, supporting this mechanism. The introduction of membrane fusion blockers into the postsynaptic cell cytoplasm that attenuates long-term potentiation (LTP), a correlate of behavioral motor activities in response to memory retrieval, provides further support. The lateral spread of activity through the inter-postsynaptic membrane is capable of contributing to oscillating neuronal activity at certain neuronal orders. At the resting state these oscillations provide sub-threshold activation to many neurons at higher orders, including motor neurons maintaining them at a low initiation threshold for motor activity.
Collapse
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
29
|
Brusés JL. Cell surface localization of α3β4 nicotinic acetylcholine receptors is regulated by N-cadherin homotypic binding and actomyosin contractility. PLoS One 2013; 8:e62435. [PMID: 23626818 PMCID: PMC3633863 DOI: 10.1371/journal.pone.0062435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and α3β4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of α3β4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. α3β4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of α3β4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the β-catenin binding region or the entire cytoplasmic domain showed control levels of α3β4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect α3β4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in α3β4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of α3β4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of α3β4 nAChRs presumably through interactions with a particular pool of F-actin.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America.
| |
Collapse
|
30
|
Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 2012; 27:187-99. [PMID: 22875450 DOI: 10.1152/physiol.00002.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
31
|
Chang JC, Kovtun O, Blakely RD, Rosenthal SJ. Labeling of neuronal receptors and transporters with quantum dots. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:605-19. [PMID: 22887823 PMCID: PMC3753009 DOI: 10.1002/wnan.1186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to efficiently visualize protein targets in cells is a fundamental goal in biological research. Recently, quantum dots (QDots) have emerged as a powerful class of fluorescent probes for labeling membrane proteins in living cells because of breakthrough advances in QDot surface chemistry and biofunctionalization strategies. This review discusses the increasing use of QDots for fluorescence imaging of neuronal receptors and transporters. The readers are briefly introduced to QDot structure, photophysical properties, and common synthetic routes toward the generation of water-soluble QDots. The following section highlights several reports of QDot application that seek to unravel molecular aspects of neuronal receptor and transporter regulation and trafficking. This article is closed with a prospectus of the future of derivatized QDots in neurobiological and pharmacological research.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
32
|
PMCA2 via PSD-95 controls calcium signaling by α7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci 2012; 32:6894-905. [PMID: 22593058 DOI: 10.1523/jneurosci.5972-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons, which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with plasma membrane calcium-ATPase pump isoform 2 (PMCA2). Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95 (postsynaptic density-95), which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2, PSD-95, and α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons.
Collapse
|
33
|
Richards CI, Luong K, Srinivasan R, Turner SW, Dougherty DA, Korlach J, Lester HA. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. NANO LETTERS 2012; 12:3690-4. [PMID: 22668081 PMCID: PMC3397148 DOI: 10.1021/nl301480h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We exploit the optical and spatial features of subwavelength nanostructures to examine individual receptors on the plasma membrane of living cells. Receptors were sequestered in portions of the membrane projected into zero-mode waveguides. Using single-step photobleaching of green fluorescent protein incorporated into individual subunits, the resulting spatial isolation was used to measure subunit stoichiometry in α4β4 and α4β2 nicotinic acetylcholine and P2X2 ATP receptors. We also show that nicotine and cytisine have differential effects on α4β2 stoichiometry.
Collapse
Affiliation(s)
- Christopher I. Richards
- Division of Biology 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
- Department of Chemistry, University of Kentucky, Chemistry-Physics Building, Lexington, KY 40506
| | - Khai Luong
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025
| | - Rahul Srinivasan
- Division of Biology 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | | | - Dennis A. Dougherty
- Division of Chemistry & Chemical Engineering 164-30, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | - Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025
| | - Henry A. Lester
- Division of Biology 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| |
Collapse
|
34
|
Mercer AJ, Szalewski RJ, Jackman SL, Van Hook MJ, Thoreson WB. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse. J Neurophysiol 2012; 107:3468-78. [PMID: 22442573 DOI: 10.1152/jn.00779.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synaptic communication requires proper coupling between voltage-gated Ca(2+) (Ca(V)) channels and synaptic vesicles. In photoreceptors, L-type Ca(V) channels are clustered close to synaptic ribbon release sites. Although clustered, Ca(V) channels move continuously within a confined domain slightly larger than the base of the ribbon. We hypothesized that expanding Ca(V) channel confinement domains should increase the number of channel openings needed to trigger vesicle release. Using single-particle tracking techniques, we measured the expansion of Ca(V) channel confinement domains caused by depletion of membrane cholesterol with cholesterol oxidase or methyl-β-cyclodextrin. With paired whole cell recordings from cones and horizontal cells, we then determined the number of Ca(V) channel openings contributing to cone Ca(V) currents (I(Ca)) and the number of vesicle fusion events contributing to horizontal cell excitatory postsynaptic currents (EPSCs) following cholesterol depletion. Expansion of Ca(V) channel confinement domains reduced the peak efficiency of release, decreasing the number of vesicle fusion events accompanying opening of each Ca(V) channel. Cholesterol depletion also inhibited exocytotic capacitance increases evoked by brief depolarizing steps. Changes in efficiency were not due to changes in I(Ca) amplitude or glutamate receptor properties. Replenishing cholesterol restored Ca(V) channel domain size and release efficiency to control levels. These results indicate that cholesterol is important for organizing the cone active zone. Furthermore, the finding that cholesterol depletion impairs coupling between channel opening and vesicle release by allowing Ca(V) channels to move further from release sites shows that changes in presynaptic Ca(V) channel mobility can be a mechanism for adjusting synaptic strength.
Collapse
Affiliation(s)
- Aaron J Mercer
- Dept. of Ophthalmology and Visual Sciences, Univ. of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.
Collapse
Affiliation(s)
- Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
36
|
Gutiérrez LM. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:109-37. [PMID: 22449488 DOI: 10.1016/b978-0-12-394306-4.00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cortical cytoskeleton is a dense network of filamentous actin (F-actin) that participates in the events associated with secretion from neuroendocrine cells. This filamentous web traps secretory vesicles, acting as a retention system that blocks the access of vesicles to secretory sites during the resting state, and it mediates their active directional transport during stimulation. The changes in the cortical cytoskeleton that drive this functional transformation have been well documented, particularly in cultured chromaffin cells. At the biochemical level, alterations in F-actin are governed by the activity of molecular motors like myosins II and V and by other calcium-dependent proteins that influence the polymerization and cross-linking of F-actin structures. In addition to modulating vesicle transport, the F-actin cortical network and its associated motor proteins also influence the late phases of the secretory process, including membrane fusion and the release of active substances through the exocytotic fusion pore. Here, we discuss the potential interactions between the F-actin cortical web and proteins such as SNAREs during secretion. We also discuss the role of the cytoskeleton in organizing the molecular elements required to sustain regulated exocytosis, forming a molecular structure that foments the efficient release of neurotransmitters and hormones.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
37
|
Heine M. Surface traffic in synaptic membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:197-219. [PMID: 22351057 DOI: 10.1007/978-3-7091-0932-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The precision of signal transmission in chemical synapses is highly dependent on the structural alignment between pre- and postsynaptic components. The thermal agitation of transmembrane signaling molecules by surrounding lipid molecules and activity-driven changes in the local protein interaction affinities indicate a dynamic molecular traffic of molecules within synapses. The observation of local protein surface dynamics starts to be a useful tool to determine the contribution of intracellular and extracellular structures in organizing a plastic synapse. Local rearrangements by lateral diffusion in the synaptic and perisynaptic membrane induce fast density changes of signaling molecules and enable the synapse to change efficacy in short time scales. The degree of lateral mobility is restricted by many passive and active interactions inside and outside the membrane. AMPAR at the glutamatergic synapse are the best explored receptors in this respect and reviewed here as an example molecule. In addition, transsynaptic adhesion molecule complexes also appear highly dynamically in the synapse and do further support the importance of local surface traffic in subcellular compartments like synapses.
Collapse
Affiliation(s)
- Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| |
Collapse
|
38
|
Uteshev VV. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:603-38. [PMID: 22453962 DOI: 10.1007/978-94-007-2888-2_27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|
39
|
Kohl T, Lörinczi E, Pardo LA, Stühmer W. Rapid internalization of the oncogenic K+ channel K(V)10.1. PLoS One 2011; 6:e26329. [PMID: 22022602 PMCID: PMC3192180 DOI: 10.1371/journal.pone.0026329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022] Open
Abstract
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells.
Collapse
Affiliation(s)
- Tobias Kohl
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Eva Lörinczi
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Luis A. Pardo
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Walter Stühmer
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| |
Collapse
|
40
|
Gnanasekaran A, Sundukova M, van den Maagdenberg AMJM, Fabbretti E, Nistri A. Lipid rafts control P2X3 receptor distribution and function in trigeminal sensory neurons of a transgenic migraine mouse model. Mol Pain 2011; 7:77. [PMID: 21958474 PMCID: PMC3193817 DOI: 10.1186/1744-8069-7-77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/29/2011] [Indexed: 11/29/2022] Open
Abstract
Background A genetic knock-in mouse model expressing the R192Q mutation of the α1-subunit of the CaV2.1 channels frequently found in patients with familial hemiplegic migraine shows functional upregulation of ATP-sensitive P2X3 receptors of trigeminal sensory neurons that transduce nociceptive inputs to the brainstem. In an attempt to understand the basic mechanisms linked to the upregulation of P2X3 receptor activity, we investigated the influence of the lipid domain of these trigeminal sensory neurons on receptor compartmentalization and function. Results Knock-in neurons were strongly enriched with lipid rafts containing a larger fraction of P2X3 receptors at membrane level. Pretreatment with the CaV2.1 channel blocker ω-agatoxin significantly decreased the lipid raft content of KI membranes. After pharmacologically disrupting the cholesterol component of lipid rafts, P2X3 receptors became confined to non-raft compartments and lost their functional potentiation typically observed in KI neurons with whole-cell patch-clamp recording. Following cholesterol depletion, all P2X3 receptor currents decayed more rapidly and showed delayed recovery indicating that alteration of the lipid raft milieu reduced the effectiveness of P2X3 receptor signalling and changed their desensitization process. Kinetic modeling could reproduce the observed data when slower receptor activation was simulated and entry into desensitization was presumed to be faster. Conclusions The more abundant lipid raft compartment of knock-in neurons was enriched in P2X3 receptors that exhibited stronger functional responses. These results suggest that the membrane microenvironment of trigeminal sensory neurons is an important factor in determining sensitization of P2X3 receptors and could contribute to a migraine phenotype by enhancing ATP-mediated responses.
Collapse
Affiliation(s)
- Aswini Gnanasekaran
- Neurobiology Sector and Italian Institute of Technology Unit, International School for Advanced Studies, Trieste, Italy
| | | | | | | | | |
Collapse
|
41
|
Vadakkan KI. Processing Semblances Induced through Inter-Postsynaptic Functional LINKs, Presumed Biological Parallels of K-Lines Proposed for Building Artificial Intelligence. FRONTIERS IN NEUROENGINEERING 2011; 4:8. [PMID: 21845180 PMCID: PMC3145916 DOI: 10.3389/fneng.2011.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/10/2011] [Indexed: 11/29/2022]
Abstract
The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation - namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky's K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system.
Collapse
Affiliation(s)
- Kunjumon I. Vadakkan
- Division of Neurology, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
42
|
Lalo U, Roberts JA, Evans RJ. Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation. J Biol Chem 2011; 286:30591-30599. [PMID: 21757694 PMCID: PMC3162419 DOI: 10.1074/jbc.m111.253153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Jonathan A Roberts
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
43
|
Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 2011; 31:4397-406. [PMID: 21430141 DOI: 10.1523/jneurosci.5921-10.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
At most synapses, presynaptic Ca(2+) channels are positioned near vesicle release sites, and increasing this distance reduces synaptic strength. We examined the lateral membrane mobility of presynaptic L-type Ca(2+) channels at photoreceptor ribbon synapses of the tiger salamander (Ambystoma tigrinum) retina. Movements of individual Ca(2+) channels were tracked by coupling quantum dots to an antibody against the extracellular α(2)δ(4) Ca(2+) channel subunit. α(2)δ(4) antibodies labeled photoreceptor terminals and colocalized with antibodies to synaptic vesicle glycoprotein 2 and voltage-gated Ca(2+) channel 1.4 (Ca(V)1.4) α(1) subunits. The results show that Ca(2+) channels are dynamic and move within a confined region beneath the synaptic ribbon. The size of this confinement area is regulated by actin and membrane cholesterol. Fusion of nearby synaptic vesicles caused jumps in Ca(2+) channel position, propelling them toward the outer edge of the confinement domain. Channels rebounded rapidly toward the center. Thus, although Ca(V) channels are mobile, molecular scaffolds confine them beneath the ribbon to maintain neurotransmission even at high release rates.
Collapse
|
44
|
Colón-Sáez JO, Yakel JL. The α7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol 2011; 589:3163-74. [PMID: 21540349 DOI: 10.1113/jphysiol.2011.209494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) play an important role in cellular events such as neurotransmitter release, second messenger cascades, cell survival and apoptosis. In addition, they are a therapeutic target for the treatment of neurological disorders such as Alzheimer's disease and schizophrenia, and drugs that potentiate α7 nAChRs through the regulation of desensitization are currently being developed. Recently, these channels were found to be localized into lipid rafts. Here we show that the disruption of lipid rafts in rat primary hippocampal neurons, through cholesterol-scavenging drugs (methyl-β-cyclodextrin) and the enzymatic breakdown of sphingomyelin (sphingomyelinase), results in significant changes in the desensitization kinetics of native and expressed α7 nAChRs. These effects can be prevented by cotreatment with cholesterol and sphingomyelin, and can be mimicked by treatment with cholesterol and sphingomyelin synthesis inhibitors (mevastatin and myriocin, respectively), suggesting that the effects on desensitization kinetics are indeed due to changes in the levels of cholesterol and sphingomyelin in the plasma membrane. These data provide new insights into themechanism of desensitization of α7 nAChRs by providing evidence that the lipid composition of the plasma membrane can modulate the activity of the α7 nAChRs.
Collapse
Affiliation(s)
- José O Colón-Sáez
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
45
|
Di Angelantonio S, De Stefano ME, Piccioni A, Lombardi L, Gotti C, Paggi P. Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiol Dis 2010; 41:528-37. [PMID: 21056666 DOI: 10.1016/j.nbd.2010.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/27/2010] [Accepted: 10/27/2010] [Indexed: 01/07/2023] Open
Abstract
In the sympathetic superior cervical ganglion (SCG), nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission. We previously demonstrated that in SCG neurons of mdx mice, an animal model for Duchenne muscular dystrophy, lack of dystrophin causes a decrease, compared to the wild-type, in post-synaptic nAChRs containing the α3 subunit associated with β2 and/or β4 (α3β2/β4-nAChRs), but not in those containing the α7 subunit. Here we show, by whole cell patch-clamp recordings from cultured SCG neurons, that both nicotine and acetylcholine-evoked currents through α3β2/β4-nAChRs are significantly reduced in mdx mice compared to the wild-type, while those through α7-nAChR are unaffected. This reduction associates with that of protein levels of α3, β2 and β4 subunits. Therefore, we suggest that, in mdx mouse SCG neurons, lack of dystrophin, by specifically affecting membrane stabilization of α3β2/β4-nAChRs, could determine an increase in receptor internalization and degradation, with consequent reduction in the fast intraganglionic cholinergic transmission.
Collapse
Affiliation(s)
- Silvia Di Angelantonio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Italy
| | | | | | | | | | | |
Collapse
|