1
|
Chen YH, Wang ZB, Liu XP, Mao ZQ. Cerebrospinal fluid LMO4 as a synaptic biomarker linked to Alzheimer's disease pathology and cognitive decline. J Alzheimers Dis 2025; 105:216-227. [PMID: 40105503 DOI: 10.1177/13872877251326286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundLIM-domain-only 4 (LMO4) is involved in neurodevelopment and synaptic plasticity, but its role in the pathogenesis of Alzheimer's disease (AD) remains unclear.ObjectiveTo investigate the association between cerebrospinal fluid (CSF) LMO4 levels and core AD biomarkers, neurodegeneration, and cognitive decline.MethodsWe included 703 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Associations between CSF LMO4 and AD biomarkers (Aβ42, Ptau181, amyloid PET) and postmortem neuropathology were evaluated. We also explored cross-sectional and longitudinal associations between CSF LMO4 and neurodegeneration and cognitive function. Receiver operating characteristic (ROC) analysis assessed the diagnostic accuracy of CSF LMO4 in distinguishing Aβ-positive from Aβ-negative participants and amyloid PET-confirmed AD cases. Mediation analysis explored the potential mediating role of CSF LMO4 between Aβ pathology and tau pathology.ResultsLMO4 levels were decreased in participants with abnormal Aβ levels and cognitive impairment. Lower CSF LMO4 levels were associated with increased Aβ and tau pathology, brain atrophy, cognitive decline, and postmortem neuropathology. CSF LMO4 partially mediated the relationship between Aβ and tau pathology and demonstrated acceptable discriminative ability in distinguishing Aβ-positive from Aβ-negative participants and amyloid PET-confirmed AD from non-AD cases.ConclusionsCSF LMO4 plays a crucial role in the pathogenesis and progression of AD and may represent a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Yu-Han Chen
- The First Clinical Medical School, Hebei North University, Zhangjiakou, China
| | - Zhi-Bo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Xi-Peng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Gujjala VA, Klimek I, Abyadeh M, Tyshkovskiy A, Oz N, Castro JP, Gladyshev VN, Newton J, Kaya A. A disease similarity approach identifies short-lived Niemann-Pick type C disease mice with accelerated brain aging as a novel mouse model for Alzheimer's disease and aging research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590328. [PMID: 38712089 PMCID: PMC11071364 DOI: 10.1101/2024.04.19.590328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Since its first description in 1906 by Dr. Alois Alzheimer, Alzheimer's disease (AD) has been the most common type of dementia. Initially thought to be caused by age-associated accumulation of plaques, in recent years, research has increasingly associated AD with lysosomal storage and metabolic disorders, and the explanation of its pathogenesis has shifted from amyloid and tau accumulation to oxidative stress and impaired lipid and glucose metabolism aggravated by hypoxic conditions. However, the underlying mechanisms linking those cellular processes and conditions to disease progression have yet to be defined. Here, we applied a disease similarity approach to identify unknown molecular targets of AD by using transcriptomic data from congenital diseases known to increase AD risk, namely Down Syndrome, Niemann Pick Disease Type C (NPC), and Mucopolysaccharidoses I. We uncovered common pathways, hub genes, and miRNAs across in vitro and in vivo models of these diseases as potential molecular targets for neuroprotection and amelioration of AD pathology, many of which have never been associated with AD. We then investigated common molecular alterations in brain samples from an NPC disease mouse model by juxtaposing them with brain samples of both human and mouse models of AD. Detailed phenotypic and molecular analyses revealed that the NPC mut mouse model can serve as a potential short-lived in vivo model for AD research and for understanding molecular factors affecting brain aging. This research represents the first comprehensive approach to congenital disease association with neurodegeneration and a new perspective on AD research while highlighting shortcomings and lack of correlation in diverse in vitro models. Considering the lack of an AD mouse model that recapitulates the physiological hallmarks of brain aging, the characterization of a short-lived NPC mouse model will further accelerate the research in these fields and offer a unique model for understanding the molecular mechanisms of AD from a perspective of accelerated brain aging.
Collapse
|
3
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
4
|
Ba R, Yang L, Zhang B, Jiang P, Ding Z, Zhou X, Yang Z, Zhao C. FOXG1 drives transcriptomic networks to specify principal neuron subtypes during the development of the medial pallium. SCIENCE ADVANCES 2023; 9:eade2441. [PMID: 36791184 PMCID: PMC9931217 DOI: 10.1126/sciadv.ade2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The medial pallium (MP) is the major forebrain region underlying learning and memory, spatial navigation, and emotion; however, the mechanisms underlying the specification of its principal neuron subtypes remain largely unexplored. Here, by postmitotic deletion of FOXG1 (a transcription factor linked to autism spectrum disorders and FOXG1 syndrome) and single-cell RNA sequencing of E17.5 MP in mice, we found that FOXG1 controls the specification of upper-layer retrosplenial cortical pyramidal neurons [RSC-PyNs (UL)], subiculum PyNs (SubC-PyNs), CA1-PyNs, CA3-PyNs, and dentate gyrus granule cells (DG-GCs) in the MP. We uncovered subtype-specific and subtype-shared FOXG1-regulated transcriptomic networks orchestrating MP neuron specification. We further demonstrated that FOXG1 transcriptionally represses Zbtb20, Prox1, and Epha4 to prevent CA3-PyN and DG-GC identities during the specification of RSC-PyNs (UL) and SubC-PyNs; FOXG1 directly activates Nr4a2 to promote SubC-PyN identity. We showed that TBR1, controlled by FOXG1 during CA1-PyN specification, was down-regulated. Thus, our study illuminates MP principal neuron subtype specification and related neuropathogenesis.
Collapse
Affiliation(s)
- Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pengfei Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhipeng Ding
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Zhou
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
6
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
7
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
8
|
Fritzsche S, Strauss C, Scheller C, Leisz S. Nimodipine Treatment Protects Auditory Hair Cells from Cisplatin-Induced Cell Death Accompanied by Upregulation of LMO4. Int J Mol Sci 2022; 23:ijms23105780. [PMID: 35628594 PMCID: PMC9145067 DOI: 10.3390/ijms23105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Ototoxicity is one of the main dose-limiting side effects of cisplatin chemotherapy and impairs the quality of life of tumor patients dramatically. Since there is currently no established standard therapy targeting hearing loss in cisplatin treatment, the aim of this study was to investigate the effect of nimodipine and its role in cell survival in cisplatin-associated hearing cell damage. To determine the cytotoxic effect, the cell death rate was measured using undifferentiated and differentiated UB/OC−1 and UB/OC−2 cells, after nimodipine pre-treatment and stress induction by cisplatin. Furthermore, immunoblot analysis and intracellular calcium measurement were performed to investigate anti-apoptotic signaling, which was associated with a reduced cytotoxic effect after nimodipine pre-treatment. Cisplatin’s cytotoxic effect was significantly attenuated by nimodipine up to 61%. In addition, nimodipine pre-treatment counteracted the reduction in LIM Domain Only 4 (LMO4) by cisplatin, which was associated with increased activation of Ak strain transforming/protein kinase B (Akt), cAMP response element-binding protein (CREB), and signal transducers and activators of transcription 3 (Stat3). Thus, nimodipine presents a potentially well-tolerated substance against the ototoxicity of cisplatin, which could result in a significant improvement in patients’ quality of life.
Collapse
|
9
|
Li X, Wang Q, Zhang DW, Wu D, Zhang SW, Wei ZR, Chen X, Li W. Hippocampus RNA Sequencing of Pentylenetetrazole-Kindled Rats and Upon Treatment of Novel Chemical Q808. Front Pharmacol 2022; 13:820508. [PMID: 35345815 PMCID: PMC8957222 DOI: 10.3389/fphar.2022.820508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
The expression of genes altered in epilepsy remains incomplete, particularly in the hippocampus, which exhibits exquisite vulnerability to epilepsy. Q808 is an innovation chemical compound that has potent anti-convulsant effect. Exploring its mechanism can not only explore the pathogenesis of epilepsy but also provide a theoretical basis for its clinical application. The present study aimed to use RNA sequencing (RNA-seq) to reveal the gene transcriptomic profile of chronic pentylenetetrazole (PTZ)-kindled seizure rats and the difference of the PTZ model rat before and after treatment with Q808. Quantitative real-time PCR (qRT-PCR) was performed to validate the RNA-seq results. The protein level was estimated with Western blot. Hippocampal transcriptomic analysis showed that 289 differentially expressed genes (DEGs) were confirmed in the PTZ-kindled seizure group compared with the vehicle control. Gene cluster analysis identified most of the DEGs linked to neuronal apoptosis, neurogenesis, neuronal projections, and neurotransmitter regulation. After analysis across the three groups, 23 hub genes and 21 pathways were identified, and qRT-PCR analysis confirmed that most of the mRNA levels of hub genes were consistent with the RNA-seq results. Q808 treatment increased the level of ACE, a GABA-related protein. Our analysis showed the comprehensive compendium of genes and pathways differentially expressed for PTZ-kindled seizure rats and upon Q808 treatment in PTZ-kindled seizure, which may provide a theoretical basis to explore the mechanism and unique efficacy of Q808 and the pathophysiology of epilepsy in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Dian-Wen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Si-Wei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng-Ren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Zhang L, Qin Z, Sharmin F, Lin W, Ricke KM, Zasloff MA, Stewart AFR, Chen HH. Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 156:105402. [PMID: 34044147 DOI: 10.1016/j.nbd.2021.105402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the beta-amyloid protein (APP) cause familial Alzheimer's disease. In hAPP-J20 mice expressing mutant APP, pharmacological inhibition or genetic ablation of the tyrosine phosphatase PTP1B prevents CA3 hippocampus neuron loss and cognitive decline. However, how targeting PTP1B affects the cellular mechanisms underlying these cognitive deficits remains unknown. Changes in synaptic strength at the hippocampus can affect information processing for learning and memory. While prior studies have focused on post-synaptic mechanisms to account for synaptic deficits in Alzheimer's disease models, presynaptic mechanisms may also be affected. Here, using whole cell patch-clamp recording, coefficient of variation (CV) analysis suggested a profound presynaptic deficit in long-term potentiation (LTP) of CA3:CA1 synapses in hAPP-J20 mice. While the membrane-impermeable ionotropic NMDA receptor (NMDAR) blocker norketamine in the post-synaptic recording electrode had no effect on LTP, additional bath application of the ionotropic NMDAR blockers MK801 could replicate the deficit in LTP in wild type mice. In contrast to LTP, the paired-pulse ratio and short-term facilitation (STF) were aberrantly increased in hAPP-J20 mice. These synaptic deficits in hAPP-J20 mice were associated with reduced phosphorylation of NMDAR GluN2B and the synaptic vesicle recycling protein NSF (N-ethylmaleimide sensitive factor). Phosphorylation of both proteins, together with synaptic plasticity and cognitive function, were restored by PTP1B ablation or inhibition by the PTP1B-selective inhibitor Trodusquemine. Taken together, our results indicate that PTP1B impairs presynaptic NMDAR-mediated synaptic plasticity required for spatial learning in a mouse model of Alzheimer's disease. Since Trodusquemine has undergone phase 1/2 clinical trials to treat obesity, it could be repurposed to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhang
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Zhaohong Qin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Fariba Sharmin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wei Lin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Konrad M Ricke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington, DC, 2007, USA
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada.
| | - Hsiao-Huei Chen
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
11
|
Qin Z, Zhang L, Zasloff MA, Stewart AFR, Chen HH. Ketamine's schizophrenia-like effects are prevented by targeting PTP1B. Neurobiol Dis 2021; 155:105397. [PMID: 34015491 DOI: 10.1016/j.nbd.2021.105397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
Subanesthetic doses of ketamine induce schizophrenia-like behaviors in mice including hyperlocomotion and deficits in working memory and sensorimotor gating. Here, we examined the effect of in vivo ketamine administration on neuronal properties and endocannabinoid (eCB)-dependent modulation of synaptic transmission onto layer 2/3 pyramidal neurons in brain slices of the prefrontal cortex, a region tied to the schizophrenia-like behavioral phenotypes of ketamine. Since deficits in working memory and sensorimotor gating are tied to activation of the tyrosine phosphatase PTP1B in glutamatergic neurons, we asked whether PTP1B contributes to these effects of ketamine. Ketamine increased membrane resistance and excitability of pyramidal neurons. Systemic pharmacological inhibition of PTP1B by Trodusquemine restored these neuronal properties and prevented each of the three main ketamine-induced behavior deficits. Ketamine also reduced mobilization of eCB by pyramidal neurons, while unexpectedly reducing their inhibitory inputs, and these effects of ketamine were blocked or occluded by PTP1B ablation in glutamatergic neurons. While ablation of PTP1B in glutamatergic neurons prevented ketamine-induced deficits in memory and sensorimotor gating, it failed to prevent hyperlocomotion (a psychosis-like phenotype). Taken together, these results suggest that PTP1B in glutamatergic neurons mediates ketamine-induced deficits in eCB mobilization, memory and sensorimotor gating whereas PTP1B in other cell types contributes to hyperlocomotion. Our study suggests that the PTP1B inhibitor Trodusquemine may represent a new class of fast-acting antipsychotic drugs to treat schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Li Zhang
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington D.C. 2007, USA
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology 2020; 45:1884-1895. [PMID: 32610340 PMCID: PMC7608138 DOI: 10.1038/s41386-020-0755-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a debilitating disorder affecting young adults displaying symptoms of cognitive impairment, anxiety, and early social isolation prior to episodes of auditory hallucinations. Cannabis use has been tied to schizophrenia-like symptoms, indicating that dysregulated endogenous cannabinoid signaling may be causally linked to schizophrenia. Previously, we reported that glutamatergic neuron-selective ablation of Lmo4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, impairs endocannabinoid (eCB) production from the metabotropic glutamate receptor mGluR5. These Lmo4-deficient mice display anxiety-like behaviors that are alleviated by local shRNA knockdown or pharmacological inhibition of PTP1B that restores mGluR5-dependent eCB production in the amygdala. Here, we report that these Lmo4-deficient mice also display schizophrenia-like behaviors: impaired working memory assessed in the Y maze and defective sensory gating by prepulse inhibition of the acoustic startle response. Modulation of inhibitory inputs onto layer 2/3 pyramidal neurons of the prefrontal cortex relies on eCB signaling from the brain-derived neurotrophic factor receptor trkB, rather than mGluR5, and this mechanism was defective in Lmo4-deficient mice. Genetic ablation of PTP1B in the glutamatergic neurons lacking Lmo4 restored tyrosine phosphorylation of trkB, trkB-mediated eCB signaling, and ameliorated schizophrenia-like behaviors. Pharmacological inhibition of PTP1B with trodusquemine also restored trkB phosphorylation and improved schizophrenia-like behaviors by restoring eCB signaling, since the CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide blocked this effect. Thus, activation of PTP1B in pyramidal neurons contributes to schizophrenia-like behaviors in Lmo4-deficient mice and genetic or pharmacological intervention targeting PTP1B ameliorates schizophrenia-related deficits.
Collapse
|
13
|
Calcium-induced calcium release and type 3 ryanodine receptors modulate the slow afterhyperpolarising current, sIAHP, and its potentiation in hippocampal pyramidal neurons. PLoS One 2020; 15:e0230465. [PMID: 32559219 PMCID: PMC7304577 DOI: 10.1371/journal.pone.0230465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
The slow afterhyperpolarising current, sIAHP, is a Ca2+-dependent current that plays an important role in the late phase of spike frequency adaptation. sIAHP is activated by voltage-gated Ca2+ channels, while the contribution of calcium from ryanodine-sensitive intracellular stores, released by calcium-induced calcium release (CICR), is controversial in hippocampal pyramidal neurons. Three types of ryanodine receptors (RyR1-3) are expressed in the hippocampus, with RyR3 showing a predominant expression in CA1 neurons. We investigated the specific role of CICR, and particularly of its RyR3-mediated component, in the regulation of the sIAHP amplitude and time course, and the activity-dependent potentiation of the sIAHP in rat and mouse CA1 pyramidal neurons. Here we report that enhancement of CICR by caffeine led to an increase in sIAHP amplitude, while inhibition of CICR by ryanodine caused a small, but significant reduction of sIAHP. Inhibition of ryanodine-sensitive Ca2+ stores by ryanodine or depletion by the SERCA pump inhibitor cyclopiazonic acid caused a substantial attenuation in the sIAHP activity-dependent potentiation in both rat and mouse CA1 pyramidal neurons. Neurons from mice lacking RyR3 receptors exhibited a sIAHP with features undistinguishable from wild-type neurons, which was similarly reduced by ryanodine. However, the lack of RyR3 receptors led to a faster and reduced activity-dependent potentiation of sIAHP. We conclude that ryanodine receptor-mediated CICR contributes both to the amplitude of the sIAHP at steady state and its activity-dependent potentiation in rat and mouse hippocampal pyramidal neurons. In particular, we show that RyR3 receptors play an essential and specific role in shaping the activity-dependent potentiation of the sIAHP. The modulation of activity-dependent potentiation of sIAHP by RyR3-mediated CICR contributes to plasticity of intrinsic neuronal excitability and is likely to play a critical role in higher cognitive functions, such as learning and memory.
Collapse
|
14
|
Schrank S, McDaid J, Briggs CA, Mustaly-Kalimi S, Brinks D, Houcek A, Singer O, Bottero V, Marr RA, Stutzmann GE. Human-Induced Neurons from Presenilin 1 Mutant Patients Model Aspects of Alzheimer's Disease Pathology. Int J Mol Sci 2020; 21:ijms21031030. [PMID: 32033164 PMCID: PMC7037274 DOI: 10.3390/ijms21031030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Traditional approaches to studying Alzheimer’s disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aβ42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Sarah Mustaly-Kalimi
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Deanna Brinks
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Aiden Houcek
- Lake Forest College, Lake Forest, IL 60045, USA;
| | - Oded Singer
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot 76100, Israel;
| | - Virginie Bottero
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Robert A. Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| |
Collapse
|
15
|
Stewart AFR, Chen HH. Activation of tyrosine phosphatases in the progression of Alzheimer's disease. Neural Regen Res 2020; 15:2245-2246. [PMID: 32594039 PMCID: PMC7749463 DOI: 10.4103/1673-5374.284986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability. Cell Rep 2019; 28:2427-2442.e6. [DOI: 10.1016/j.celrep.2019.07.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
|
17
|
Kuo T, Damle M, González BJ, Egli D, Lazar MA, Accili D. Induction of α cell-restricted Gc in dedifferentiating β cells contributes to stress-induced β-cell dysfunction. JCI Insight 2019; 5:128351. [PMID: 31120862 DOI: 10.1172/jci.insight.128351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetic β cell failure is associated with β cell dedifferentiation. To identify effector genes of dedifferentiation, we integrated analyses of histone methylation as a surrogate of gene activation status and RNA expression in β cells sorted from mice with multiparity-induced diabetes. Interestingly, only a narrow subset of genes demonstrated concordant changes to histone methylation and RNA levels in dedifferentiating β cells. Notable among them was the α cell signature gene Gc, encoding a vitamin D-binding protein. While diabetes was associated with Gc induction, Gc-deficient islets did not induce β cell dedifferentiation markers and maintained normal ex vivo insulin secretion in the face of metabolic challenge. Moreover, Gc-deficient mice exhibited a more robust insulin secretory response than normal controls during hyperglycemic clamps. The data are consistent with a functional role of Gc activation in β cell dysfunction, and indicate that multiparity-induced diabetes is associated with altered β cell fate.
Collapse
Affiliation(s)
- Taiyi Kuo
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Manashree Damle
- The Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan J González
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dieter Egli
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mitchell A Lazar
- The Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Domenico Accili
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
18
|
Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 2018; 26:3327-3341. [PMID: 28595361 DOI: 10.1093/hmg/ddx217] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Devon S Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jason G MacLaurin
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
19
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
20
|
Kim KS, Duignan KM, Hawryluk JM, Soh H, Tzingounis AV. The Voltage Activation of Cortical KCNQ Channels Depends on Global PIP2 Levels. Biophys J 2016; 110:1089-98. [PMID: 26958886 DOI: 10.1016/j.bpj.2016.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
The slow afterhyperpolarization (sAHP) is a calcium-activated potassium conductance with critical roles in multiple physiological processes. Pharmacological and genetic data suggest that KCNQ channels partly mediate the sAHP. However, these channels are not typically open within the observed voltage range of the sAHP. Recent work has shown that the sAHP is gated by increased PIP2 levels, which are generated downstream of calcium binding by neuronal calcium sensors such as hippocalcin. Here, we examined whether changes in PIP2 levels could shift the voltage-activation range of KCNQ channels. In HEK293T cells, expression of the PIP5 kinase PIPKIγ90, which increases global PIP2 levels, shifted the KCNQ voltage activation to within the operating range of the sAHP. Further, the sensitivity of this effect on KCNQ3 channels appeared to be higher than that on KCNQ2. Therefore, we predict that KCNQ3 plays an essential role in maintaining the sAHP under low PIP2 conditions. In support of this notion, we find that sAHP inhibition by muscarinic receptors that increase phosphoinositide turnover in neurons is enhanced in Kcnq3-knockout mice. Likewise, the presence of KCNQ3 is essential for maintaining the sAHP when hippocalcin is ablated, a condition that likely impairs PIP2 generation. Together, our results establish the relationship between PIP2 and the voltage dependence of cortical KCNQ channels (KCNQ2/3, KCNQ3/5, and KCNQ5), and suggest a possible mechanism for the involvement of KCNQ channels in the sAHP.
Collapse
Affiliation(s)
- Kwang S Kim
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Kevin M Duignan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Joanna M Hawryluk
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | | |
Collapse
|
21
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
22
|
Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc Natl Acad Sci U S A 2016; 113:E4895-903. [PMID: 27482086 DOI: 10.1073/pnas.1605216113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations.
Collapse
|
23
|
Lee KFH, Soares C, Thivierge JP, Béïque JC. Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development. Neuron 2016; 89:784-99. [PMID: 26853305 DOI: 10.1016/j.neuron.2016.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 09/21/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022]
Abstract
The mechanisms that instruct the assembly of fine-scale features of synaptic connectivity in neural circuits are only beginning to be understood. Using whole-cell electrophysiology, two-photon calcium imaging, and glutamate uncaging in hippocampal slices, we discovered a functional coupling between NMDA receptor activation and ryanodine-sensitive intracellular calcium release that dominates the spatiotemporal dynamics of activity-dependent calcium signals during synaptogenesis. This developmentally regulated calcium amplification mechanism was tuned to detect and bind spatially clustered and temporally correlated synaptic inputs and enacted a local cooperative plasticity rule between coactive neighboring synapses. Consistent with the hypothesis that synapse maturation is spatially regulated, we observed clustering of synaptic weights in developing dendritic arbors. These results reveal developmental features of NMDA receptor-dependent calcium dynamics and local plasticity rules that are suited to spatially guide synaptic connectivity patterns in emerging neural networks.
Collapse
Affiliation(s)
- Kevin F H Lee
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cary Soares
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Philippe Thivierge
- Centre for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Psychology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Centre for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Harb K, Magrinelli E, Nicolas CS, Lukianets N, Frangeul L, Pietri M, Sun T, Sandoz G, Grammont F, Jabaudon D, Studer M, Alfano C. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 2016; 5:e09531. [PMID: 26814051 PMCID: PMC4744182 DOI: 10.7554/elife.09531] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022] Open
Abstract
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.
Collapse
Affiliation(s)
- Kawssar Harb
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Elia Magrinelli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Céline S Nicolas
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Nikita Lukianets
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mariel Pietri
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, United States
| | - Guillaume Sandoz
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Franck Grammont
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Laboratoire J.A. Dieudonné, Nice, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Michele Studer
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Christian Alfano
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
25
|
Demicheva E, Cui YF, Bardwell P, Barghorn S, Kron M, Meyer AH, Schmidt M, Gerlach B, Leddy M, Barlow E, O'Connor E, Choi CH, Huang L, Veldman GM, Rus H, Shabanzadeh AP, Tassew NG, Monnier PP, Müller T, Calabresi PA, Schoemaker H, Mueller BK. Targeting repulsive guidance molecule A to promote regeneration and neuroprotection in multiple sclerosis. Cell Rep 2015; 10:1887-98. [PMID: 25801027 DOI: 10.1016/j.celrep.2015.02.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 12/24/2022] Open
Abstract
Repulsive guidance molecule A (RGMa) is a potent inhibitor of neuronal regeneration and a regulator of cell death, and it plays a role in multiple sclerosis (MS). In autopsy material from progressive MS patients, RGMa was found in active and chronic lesions, as well as in normal-appearing gray and white matter, and was expressed by cellular meningeal infiltrates. Levels of soluble RGMa in the cerebrospinal fluid were decreased in progressive MS patients successfully treated with intrathecal corticosteroid triamcinolone acetonide (TCA), showing functional improvements. In vitro, RGMa monoclonal antibodies (mAbs) reversed RGMa-mediated neurite outgrowth inhibition and chemorepulsion. In animal models of CNS damage and MS, RGMa antibody stimulated regeneration and remyelination of damaged nerve fibers, accelerated functional recovery, and protected the retinal nerve fiber layer as measured by clinically relevant optic coherence tomography. These data suggest that targeting RGMa is a promising strategy to improve functional recovery in MS patients.
Collapse
|
26
|
Abstract
The ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention. The transcriptional regulator LIM-only 4 (LMO4) is highly expressed in pyramidal neurons of the BLA, where it plays an important role in fear learning. Because the BLA also contributes to cue-reward learning, we investigated the role of BLA LMO4 in this process using Lmo4-deficient mice and RNA interference. Lmo4-deficient mice showed a selective deficit in conditioned reinforcement. Knockdown of LMO4 in the BLA, but not in the nucleus accumbens, recapitulated this deficit in wild-type mice. Molecular and electrophysiological studies identified a deficit in dopamine D2 receptor signaling in the BLA of Lmo4-deficient mice. These results reveal a novel, LMO4-dependent transcriptional program within the BLA that is essential to cue-reward learning.
Collapse
|
27
|
Baron KD, Al-Zahrani K, Conway J, Labrèche C, Storbeck CJ, Visvader JE, Sabourin LA. Recruitment and activation of SLK at the leading edge of migrating cells requires Src family kinase activity and the LIM-only protein 4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1683-92. [PMID: 25882817 DOI: 10.1016/j.bbamcr.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/20/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Ste20-like kinase SLK plays a pivotal role in cell migration and focal adhesion turnover and is regulated by the LIM domain-binding proteins Ldb1 and Ldb2. These adapter proteins have been demonstrated to interact with LMO4 in the organization of transcriptional complexes. Therefore, we have assessed the ability of LMO4 to also interact and regulate SLK activity. Our data show that LMO4 can directly bind to SLK and activate its kinase activity in vitro and in vivo. LMO4 can be co-precipitated with SLK following the induction of cell migration by scratch wounding and Cre-mediated deletion of LMO4 in conditional LMO4(fl/fl) fibroblasts inhibits cell migration and SLK activation. Deletion of LMO4 impairs Ldb1 and SLK recruitment to the leading edge of migrating cells. Supporting this, Src/Yes/Fyn-deficient cells (SYF) expressing very low levels of LMO4 do not recruit SLK to the leading edge. Re-expression of wildtype Myc-LMO4 in SYF cells, but not a mutant version, restores SLK localization and kinase activity. Overall, our data suggest that activation of SLK by haptotactic signals requires its recruitment to the leading edge by LMO4 in a Src-dependent manner. Furthermore, this establishes a novel cytosolic role for the transcriptional co-activator LMO4.
Collapse
Affiliation(s)
- Kyla D Baron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Khalid Al-Zahrani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jillian Conway
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Cédrik Labrèche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Storbeck
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jane E Visvader
- Walter and Eliza Hall Institute Biotechnology Centre, Bundoora, Victoria 3086, Australia
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, Canada.
| |
Collapse
|
28
|
Qin Z, Zhou X, Pandey NR, Vecchiarelli HA, Stewart CA, Zhang X, Lagace DC, Brunel JM, Béïque JC, Stewart AFR, Hill MN, Chen HH. Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling. Neuron 2015; 85:1319-31. [PMID: 25754825 DOI: 10.1016/j.neuron.2015.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, display reduced mGluR5 phosphorylation, eCB signaling, and profound anxiety that is reversed by genetic or pharmacological suppression of amygdalar PTP1B. Chronically stressed mice exhibited elevated plasma corticosterone, decreased LMO4 palmitoylation, elevated PTP1B activity, reduced amygdalar eCB levels, and anxiety behaviors that were restored by PTP1B inhibition or by glucocorticoid receptor antagonism. Consistently, corticosterone decreased palmitoylation of LMO4 and its inhibition of PTP1B in neuronal cells. Collectively, these data reveal a stress-responsive corticosterone-LMO4-PTP1B-mGluR5 cascade that impairs amygdalar eCB signaling and contributes to the development of anxiety.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xun Zhou
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Nihar R Pandey
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Haley A Vecchiarelli
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Chloe A Stewart
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xia Zhang
- Royal Ottawa Mental Health Centre, Ottawa, ON K1Z7K4, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille, Laboratory of Integrative Structural & Chemical Biology (iSCB), Aix-Marseille Université, 13385 Marseille Cedex 5, France
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
29
|
Qin Z, Pandey NR, Zhou X, Stewart CA, Hari A, Huang H, Stewart AF, Brunel JM, Chen HH. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochem Biophys Res Commun 2015; 458:21-7. [DOI: 10.1016/j.bbrc.2015.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 12/29/2022]
|
30
|
Jamesdaniel S. Downstream targets of Lmo4 are modulated by cisplatin in the inner ear of Wistar rats. PLoS One 2014; 9:e115263. [PMID: 25501662 PMCID: PMC4264883 DOI: 10.1371/journal.pone.0115263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/20/2014] [Indexed: 12/23/2022] Open
Abstract
Lmo4, a transcriptional regulator, appears to be a key player in mediating the cochlear pathology in cisplatin ototoxicity, as it controls cellular responses by modulating the formation of transcriptional complexes. We provided the first evidence of in vivo nitration of Lmo4 in cisplatin ototoxicity. Our data suggested that nitration of Lmo4 and associated decrease in its cochlear expression has the potential to play a pivotal role in cisplatin ototoxicity. However, the Lmo4 interactomes that signal the downstream events in the cochlea are poorly understood. Therefore, custom-made gene arrays were employed to evaluate the modulation of known binding partners or targets of Lmo4, in Wistar rats treated with 16 mg/kg cisplatin. RT-PCR analysis, 3 days post cisplatin treatment, indicated that cisplatin induced up/down regulation of multiple cochlear genes associated with Lmo4 signaling. The cochlear expression of Esr1 was significantly up-regulated by cisplatin treatment, while the expression of Stat3 was down-regulated. Co-treatment with Trolox, an otoprotective antioxidant, attenuated the cisplatin-induced modulation of 5 genes in the cochlea. Consistent with the changes observed at the gene level, immunoblots with anti-Stat3 indicated that cisplatin-induced decrease in cochlear protein levels were attenuated by Trolox co-treatment. These results suggest that cisplatin-induced decreases in the cochlear Lmo4 upon nitration, and associated modulation in the cochlear expression of its binding partners Esr1 and Jak1, probably facilitates the repression of Stat3, a downstream target of Lmo4 implicated in drug mediated apoptosis. Collectively, these findings provide insights on Lmo4 downstream events and indicate a potential role of Jak/Stat transcriptional machinery in relaying the Lmo4 protein signaling in cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Institute of Environmental Health Sciences and Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Joseph S, Kwan AH, Stokes PH, Mackay JP, Cubeddu L, Matthews JM. The structure of an LIM-only protein 4 (LMO4) and Deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4. PLoS One 2014; 9:e109108. [PMID: 25310299 PMCID: PMC4195752 DOI: 10.1371/journal.pone.0109108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Ann H. Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Philippa H. Stokes
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Liza Cubeddu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, University of Western Sydney, Campbelltown, NSW Australia
| | | |
Collapse
|
32
|
Pandey NR, Zhou X, Zaman T, Cruz SA, Qin Z, Lu M, Keyhanian K, Brunel JM, Stewart AF, Chen HH. LMO4 is required to maintain hypothalamic insulin signaling. Biochem Biophys Res Commun 2014; 450:666-72. [DOI: 10.1016/j.bbrc.2014.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
|
33
|
Castellano-Muñoz M, Ricci AJ. Role of intracellular calcium stores in hair-cell ribbon synapse. Front Cell Neurosci 2014; 8:162. [PMID: 24971053 PMCID: PMC4054790 DOI: 10.3389/fncel.2014.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular calcium stores control many neuronal functions such as excitability, gene expression, synaptic plasticity, and synaptic release. Although the existence of calcium stores along with calcium-induced calcium release (CICR) has been demonstrated in conventional and ribbon synapses, functional significance and the cellular mechanisms underlying this role remains unclear. This review summarizes recent experimental evidence identifying contribution of CICR to synaptic transmission and synaptic plasticity in the CNS, retina and inner ear. In addition, the potential role of CICR in the recruitment of vesicles to releasable pools in hair-cell ribbon synapses will be specifically discussed.
Collapse
Affiliation(s)
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine Stanford, CA, USA ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
34
|
LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia. J Neurosci 2014; 34:140-8. [PMID: 24381275 DOI: 10.1523/jneurosci.3419-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dramatic increase in the prevalence of obesity reflects a lack of progress in combating one of the most serious health problems of this century. Recent studies have improved our understanding of the appetitive network by focusing on the paraventricular hypothalamus (PVH), a key region responsible for the homeostatic balance of food intake. Here we show that mice with PVH-specific ablation of LIM domain only 4 (Lmo4) become rapidly obese when fed regular chow due to hyperphagia rather than to reduced energy expenditure. Brain slice recording of LMO4-deficient PVH neurons showed reduced basal cellular excitability together with reduced voltage-activated Ca(2+) currents. Real-time PCR quantification revealed that LMO4 regulates the expression of Ca(2+) channels (Cacna1h, Cacna1e) that underlie neuronal excitability. By increasing neuronal activity using designer receptors exclusively activated by designer drugs technology, we could suppress food intake of PVH-specific LMO4-deficient mice. Together, these results demonstrate that reduced neural activity in LMO4-deficient PVH neurons accounts for hyperphagia. Thus, maintaining PVH activity is important to prevent hyperphagia-induced obesity.
Collapse
|
35
|
Lukewich MK, Lomax AE. Endotoxemia enhances catecholamine secretion from male mouse adrenal chromaffin cells through an increase in Ca(2+) release from the endoplasmic reticulum. Endocrinology 2014; 155:180-92. [PMID: 24169560 DOI: 10.1210/en.2013-1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhanced epinephrine secretion from adrenal chromaffin cells (ACCs) is an important homeostatic response to severe systemic inflammation during sepsis. Evidence suggests that increased activation of ACCs by preganglionic sympathetic neurons and direct alterations in ACC function contribute to this response. However, the direct effects of sepsis on ACC function have yet to be characterized. We hypothesized that sepsis enhances epinephrine secretion from ACCs by increasing intracellular Ca(2+) signaling. Plasma epinephrine concentration was increased 5-fold in the lipopolysaccharide-induced endotoxemia model of sepsis compared with saline-treated control mice. Endotoxemia significantly enhanced stimulus-evoked epinephrine secretion from isolated ACCs in vitro. Carbon fiber amperometry revealed an increase in the number of secretory events during endotoxemia, without significant changes in spike amplitude, half-width, or quantal content. ACCs isolated up to 12 hours after the induction of endotoxemia exhibited larger stimulus-evoked Ca(2+) transients compared with controls. Similarly, ACCs from cecal ligation and puncture mice also exhibited enhanced Ca(2+) signaling. Although sepsis did not significantly affect ACC excitability or voltage-gated Ca(2+) currents, a 2-fold increase in caffeine (10 mM)-stimulated Ca(2+) transients was observed during endotoxemia. Depletion of endoplasmic reticulum Ca(2+) stores using cyclopiazonic acid (10 μM) abolished the effects of endotoxemia on catecholamine secretion from ACCs. These findings suggest that sepsis directly enhances catecholamine secretion from ACCs through an increase in Ca(2+) release from the endoplasmic reticulum. These alterations in ACC function are likely to amplify the effects of increased preganglionic sympathetic neuron activity to further enhance epinephrine levels during sepsis.
Collapse
Affiliation(s)
- Mark K Lukewich
- Departments of Biomedical and Molecular Sciences (M.K.L., A.E.L.) and Medicine, Gastrointestinal Diseases Research Unit (A.E.L.) and Centre for Neuroscience Studies (A.E.L.), Queen's University, Kingston, Ontario, Canada K7L 2V7
| | | |
Collapse
|
36
|
The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J Neurosci 2013; 33:12647-55. [PMID: 23904601 DOI: 10.1523/jneurosci.0746-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) counteracts leptin signaling and is a therapeutic target for obesity and diabetes. Here we found that LIM domain only 4 (LMO4) inhibits PTP1B activity by increasing the oxidized inactive form of PTP1B. Mice with neuronal ablation of LMO4 have elevated PTP1B activity and impaired hypothalamic leptin signaling, and a PTP1B inhibitor normalized PTP1B activity and restored leptin control of circulating insulin levels. LMO4 is palmitoylated at its C-terminal cysteine, and deletion of this residue prevented palmitoylation and retention of LMO4 at the endoplasmic reticulum and abolished its inhibitory effect on PTP1B. Importantly, LMO4 palmitoylation is sensitive to metabolic stress; mice challenged with a brief high-fat diet or acute intracerebroventricular infusion of saturated fatty acid had less palmitoylated LMO4, less oxidized PTP1B, and increased PTP1B activity in the hypothalamus. Thus, unleashed PTP1B activity attributable to loss of LMO4 palmitoylation may account for rapid loss of central leptin signaling after acute exposure to saturated fat.
Collapse
|
37
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|