1
|
Xu YL, Xia YT, Zhang MM, Li YJ, Tao XX, Li K, Yang QQ, Tian X, Wu JB, Shi YT, Wang JY, Zeng XY. Red nucleus mGluR4 and mGluR8 inhibit nociception and the development of neuropathic pain by restraining the expressions of TNF-α and IL-1β. Neuropharmacology 2025; 271:110387. [PMID: 40010564 DOI: 10.1016/j.neuropharm.2025.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Metabotropic glutamate receptors (mGluR) participate in pain modulation and mediate different effects in nociceptive stimuli, relying on the receptor subtype activated and its anatomical location. Here, we addressed the functions of mGluR Ⅲ group (mGluR4, mGluR6, mGluR7, and mGluR8) in the red nucleus (RN) in nociception and the development of neuropathic pain induced by spared nerve injury (SNI) using male rats. Our results showed that mGluR4, mGluR7, and mGluR8, except for mGluR6, were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the expressions of mGluR4 and mGluR8 rather than mGluR7 were reduced in the RN contralateral to the nerve lesion. Unilateral administration of mGluR Ⅲ antagonist MSOP to the RN of normal rats decreased the PWT of contralateral hindpaw and evoked pronounced mechanical allodynia, which was blocked by mGluR4 agonist VU0155041 or mGluR8 agonist AZ12216052 instead of mGluR7 agonist AMN082. Moreover, administration of VU0155041 or AZ12216052 to the RN contralateral to the nerve injury at 2 weeks post-SNI alleviated SNI-induced neuropathic pain. Further studies indicated that administration of MSOP to the RN of normal rats increased the expressions of nociceptive factors TNF-α and IL-1β, which were blocked by VU0155041 or AZ12216052 instead of AMN082. Additionally, administration of VU0155041 or AZ12216052 to the RN at 2 weeks post-SNI inhibited the overexpressions of TNF-α and IL-1β induced by SNI. These findings suggest that red nucleus mGluR4 and mGluR8 instead of mGluR7 inhibit nociception and the development of neuropathic pain by restraining the expressions of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Ya-Li Xu
- Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yu-Tong Xia
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ke Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ji-Bo Wu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ya-Ting Shi
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Wang WT, Feng F, Zhang MM, Tian X, Yang QQ, Li YJ, Tao XX, Xu YL, Dou E, Wang JY, Zeng XY. Red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. Neurochem Int 2024; 179:105840. [PMID: 39181245 DOI: 10.1016/j.neuint.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist β-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than β-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1β in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1β, these effects were reversed by EGLU instead of β-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1β in normal rats, while intrarubral injection of EGLU rather than β-NAAG significantly boosted the expressions of TNF-α and IL-1β. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - E Dou
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Group II metabotropic glutamate receptor activation suppresses ATP currents in rat dorsal root ganglion neurons. Neuropharmacology 2023; 227:109443. [PMID: 36709909 DOI: 10.1016/j.neuropharm.2023.109443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,β-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,β-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,β-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
|
4
|
Group II metabotropic glutamate receptor activation attenuates acid-sensing ion channel currents in rat primary sensory neurons. J Biol Chem 2023; 299:102953. [PMID: 36731795 PMCID: PMC9976456 DOI: 10.1016/j.jbc.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.
Collapse
|
5
|
Kinetic fingerprinting of metabotropic glutamate receptors. Commun Biol 2023; 6:104. [PMID: 36707695 PMCID: PMC9883448 DOI: 10.1038/s42003-023-04468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Dimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry. We show that 5 out of 8 homodimeric receptors develop characteristic glutamate-induced on- and off-kinetics, as do 11 out of 28 heterodimers. Glutamate-responsive heterodimers were identified within each group, between groups I and II as well as between groups II and III, but not between groups I and III. The glutamate-responsive heterodimers showed heterogeneous activation and deactivation kinetics. Interestingly, mGluR7, not generating a kinetic response in homodimers, showed fast on-kinetics in mGluR2/7 and mGluR3/7 while off-kinetics retained the speed of mGluR2 or mGluR3 respectively. In conclusion, glutamate-induced conformational changes in heterodimers appear within each group and between groups if one group II subunit is present.
Collapse
|
6
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Shannonhouse J, Bernabucci M, Gomez R, Son H, Zhang Y, Ai CH, Ishida H, Kim YS. Meclizine and Metabotropic Glutamate Receptor Agonists Attenuate Severe Pain and Ca 2+ Activity of Primary Sensory Neurons in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2022; 42:6020-6037. [PMID: 35772967 PMCID: PMC9351649 DOI: 10.1523/jneurosci.1064-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects ∼68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and Group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of dorsal root ganglia (DRG) neurons in vivo For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)-3,4-DCPG, the Group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)-3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that Group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persists several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Using in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/dorsal root ganglia (DRG) at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor (mGluR) agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.
Collapse
Affiliation(s)
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Chih-Hsuan Ai
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
8
|
Li YL, Chang XR, Ma JT, Zhao X, Yin LT, Yan LJ, Guo JH, Zhang C, Yang XR. Activation of peripheral group III metabotropic glutamate receptors suppressed formalin-induced nociception. Clin Exp Pharmacol Physiol 2021; 49:319-326. [PMID: 34657305 DOI: 10.1111/1440-1681.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Intraplantar injection of formalin produces persistent spontaneous nociception and hyperalgesia. The underlying mechanism, however, remains unclear. The present study was, therefore, designed to determine the roles of peripheral group III metabotropic glutamate receptors (mGluRs) in formalin-evoked spontaneous nociception. Pre-treatment with intraplantar injections of L-serine-O-phosphate (L-SOP), a group III mGluRs agonist, significantly inhibited formalin-induced nociceptive behaviours and decreased Fos production in the spinal dorsal horn. The inhibitory effects of L-SOP were abolished completely by pre-treatment with the group III mGluR antagonist (RS)-a-methylserine-O-phosphate (M-SOP). These data suggest that the activation of group III mGluRs in the periphery may play a differential role in formalin-induced nociception. In addition, L-SOP decreased the formalin-induced upregulation of tumour necrosis factor-α (TNF-α) as well as interleukine-1β (IL-1β) expression in the spinal cord, suggesting that activation of peripheral group III mGluRs reduces formalin-induced nociception through inhibition of the pro-inflammatory cytokines in the spinal cord. Therefore, the agonists acting peripheral group III mGluRs possess therapeutic effectiveness in chronic pain.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xin-Rui Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Jin-Teng Ma
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Li-Tian Yin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jun-Hong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Ce Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xiao-Rong Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| |
Collapse
|
9
|
Chen S, Kadakia F, Davidson S. Group II metabotropic glutamate receptor expressing neurons in anterior cingulate cortex become sensitized after inflammatory and neuropathic pain. Mol Pain 2021; 16:1744806920915339. [PMID: 32326814 PMCID: PMC7227149 DOI: 10.1177/1744806920915339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex is a limbic region associated with the emotional processing of pain. How neuropathic and inflammatory pain models alter the neurophysiology of specific subsets of neurons in the anterior cingulate cortex remains incompletely understood. Here, we used a GRM2Cre:tdtomato reporter mouse line to identify a population of pyramidal neurons selectively localized to layer II/III of the murine anterior cingulate cortex. GRM2encodes the group II metabotropic glutamate receptor subtype 2 which possesses analgesic properties in mouse and human models, although its function in the anterior cingulate cortex is not known. The majority of GRM2-tdtomato anterior cingulate cortex neurons expressed GRM2gene product in situ but did not overlap with cortical markers of local inhibitory interneurons, parvalbumin or somatostatin. Physiological properties of GRM2-tdtomato anterior cingulate cortex neurons were investigated using whole-cell patch clamp techniques in slice from animals with neuropathic or inflammatory pain, and controls. After hind-paw injection of Complete Freund’s Adjuvant or chronic constriction injury, GRM2-tdtomato anterior cingulate cortex neurons exhibited enhanced excitability as measured by an increase in the number of evoked action potentials and a decreased rheobase. This hyperexcitability was reversed pharmacologically by bath application of the metabotropic glutamate receptor subtype 2 agonist (2R, 4R)-4-Aminopyrrolidine-2,4-dicarboxylate APDC (1 µM) in both inflammatory and neuropathic models. We conclude that layer II/III pyramidal GRM2-tdtomato anterior cingulate cortex neurons express functional group II metabotropic glutamate receptors and undergo changes to membrane biophysical properties under conditions of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Feni Kadakia
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Gerra MC, Carnevali D, Pedersen IS, Donnini C, Manfredini M, González-Villar A, Triñanes Y, Pidal-Miranda M, Arendt-Nielsen L, Carrillo-de-la-Peña MT. DNA methylation changes in genes involved in inflammation and depression in fibromyalgia: a pilot study. Scand J Pain 2020; 21:372-383. [PMID: 34387961 DOI: 10.1515/sjpain-2020-0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present pilot study aims to investigate DNA methylation changes of genes related to fibromyalgia (FM) development and its main comorbid symptoms, including sleep impairment, inflammation, depression and other psychiatric disorders. Epigenetic modifications might trigger or perpetuate complex interplay between pain transduction/transmission, central pain processing and experienced stressors in vulnerable individuals. METHODS We conducted DNA methylation analysis by targeted bisulfite NGS sequencing testing differential methylation in 112 genomic regions from leukocytes of eight women with FM and their eight healthy sisters as controls. RESULTS Tests for differentially methylated regions and cytosines brought focus on the GRM2 gene, encoding the metabotropic glutamate receptor2. The slightly increased DNA methylation observed in the GRM2 region of FM patients may confirm the involvement of the glutamate pathway in this pathological condition. Logistic regression highlighted the simultaneous association of methylation levels of depression and inflammation-related genes with FM. CONCLUSIONS Altogether, the results evidence the glutamate pathway involvement in FM and support the idea that a combination of methylated and unmethylated genes could represent a risk factor to FM or its consequence, more than single genes. Further studies on the identified biomarkers could contribute to unravel the causative underlying FM mechanisms, giving reliable directions to research, improving the diagnosis and effective therapies.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI®, Aalborg University, Aalborg, Denmark
| | - Davide Carnevali
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University Hospital and Aalborg University, Molecular Diagnostics, Aalborg, Denmark
| | - Claudia Donnini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Alberto González-Villar
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda Triñanes
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marina Pidal-Miranda
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI®, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
11
|
Martinez D, Rogers RC, Hermann GE, Hasser EM, Kline DD. Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2020; 318:R545-R564. [PMID: 31967862 PMCID: PMC7099463 DOI: 10.1152/ajpregu.00319.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.
Collapse
Affiliation(s)
- Diana Martinez
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | | | - Eileen M. Hasser
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Activation of peripheral group III metabotropic glutamate receptors inhibits pain transmission by decreasing neuronal excitability in the CFA-inflamed knee joint. Neurosci Lett 2019; 694:111-115. [DOI: 10.1016/j.neulet.2018.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022]
|
13
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Yudin Y, Rohacs T. Inhibitory G i/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Mol Pain 2018; 14:1744806918763646. [PMID: 29580154 PMCID: PMC5882016 DOI: 10.1177/1744806918763646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, which are major transducers for extracellular signaling molecules, and their activation usually modulates the primary transduction pathways. Receptors that couple to phospholipase C via heterotrimeric Gq/11 proteins and those that activate adenylate cyclase via Gs are considered excitatory; they positively regulate somatosensory transduction and they play roles in inflammatory sensitization and pain, and in some cases also in inducing itch. On the other hand, receptors that couple to Gi/o proteins, such as opioid or GABAB receptors, are generally inhibitory. Their activation counteracts the effect of Gs-stimulation by inhibiting adenylate cyclase, as well as exerts effects on ion channels, usually resulting in decreased excitability. This review will summarize knowledge on Gi-coupled receptors in sensory neurons, focusing on their roles in ion channel regulation and discuss their potential as targets for analgesic and antipruritic medications.
Collapse
Affiliation(s)
- Yevgen Yudin
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
15
|
Mazzitelli M, Palazzo E, Maione S, Neugebauer V. Group II Metabotropic Glutamate Receptors: Role in Pain Mechanisms and Pain Modulation. Front Mol Neurosci 2018; 11:383. [PMID: 30356691 PMCID: PMC6189308 DOI: 10.3389/fnmol.2018.00383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the nervous system and plays a critical role in nociceptive processing and pain modulation. G-protein coupled metabotropic glutamate receptors (mGluRs) are widely expressed in the central and peripheral nervous system, and they mediate neuronal excitability and synaptic transmission. Eight different mGluR subtypes have been identified so far, and are classified into Groups I-III. Group II mGluR2 and mGluR3 couple negatively to adenylyl cyclase through Gi/Go proteins, are mainly expressed presynaptically, and typically inhibit the release of neurotransmitters, including glutamate and GABA. Group II mGluRs have consistently been linked to pain modulation; they are expressed in peripheral, spinal and supraspinal elements of pain-related neural processing. Pharmacological studies have shown anti-nociceptive/analgesic effects of group II mGluR agonists in preclinical models of acute and chronic pain, although much less is known about mechanisms and sites of action for mGluR2 and mGluR3 compared to other mGluRs. The availability of orthosteric and new selective allosteric modulators acting on mGluR2 and mGluR3 has provided valuable tools for elucidating (subtype) specific contributions of these receptors to the pathophysiological mechanisms of pain and other disorders and their potential as therapeutic targets. This review focuses on the important role of group II mGluRs in the neurobiology of pain mechanisms and behavioral modulation, and discusses evidence for their therapeutic potential in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Enza Palazzo
- Section of Pharmacology L. Donatelli, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sabatino Maione
- Section of Pharmacology L. Donatelli, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
16
|
Sheahan TD, Valtcheva MV, McIlvried LA, Pullen MY, Baranger DA, Gereau RW. Metabotropic Glutamate Receptor 2/3 (mGluR2/3) Activation Suppresses TRPV1 Sensitization in Mouse, But Not Human, Sensory Neurons. eNeuro 2018; 5:ENEURO.0412-17.2018. [PMID: 29662945 PMCID: PMC5898698 DOI: 10.1523/eneuro.0412-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
The use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2 (PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority of Trpv1+ mouse and human sensory neurons expressed Grm2 and/or Grm3, and in both mice and humans, Grm2 was expressed in a greater percentage of sensory neurons than Grm3. Although we demonstrated a functional difference in the modulation of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference. Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or positive allosteric modulators.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manouela V. Valtcheva
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David A.A. Baranger
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
- BRAIN Laboratory, Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
17
|
Lian YN, Lu Q, Chang JL, Zhang Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int J Neurosci 2017; 128:283-290. [DOI: 10.1080/00207454.2017.1387112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Na Lian
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jin-Long Chang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
18
|
Johnson MP, Muhlhauser MA, Nisenbaum ES, Simmons RMA, Forster BM, Knopp KL, Yang L, Morrow D, Li DL, Kennedy JD, Swanson S, Monn JA. Broad spectrum efficacy with LY2969822, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934747, in rodent pain models. Br J Pharmacol 2017; 174:822-835. [PMID: 28177520 DOI: 10.1111/bph.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE A body of evidence suggests activation of metabotropic glutamate 2/3 (mGlu2/3 ) receptors would be an effective analgesic in chronic pain conditions. Thus, the analgesic properties of a novel mGlu2/3 receptor agonist prodrug were investigated. EXPERIMENTAL APPROACH After oral absorption, the prodrug LY2969822 rapidly converts to the brain penetrant, potent and subtype-selective mGlu2/3 receptor agonist LY2934747. Behavioural assessments of allodynia, hyperalgesia and nocifensive behaviours were determined in preclinical pain models after administration of LY2969822 0.3-10 mg·kg-1 . In addition, the ability of i.v. LY2934747 to modulate dorsal horn spinal cord wide dynamic range (WDR) neurons in spinal nerve ligated (SNL) rats was assessed. KEY RESULTS Following treatment with LY2934747, the spontaneous activity and electrically-evoked wind-up of WDR neurons in rats that had undergone spinal nerve ligation and developed mechanical allodynia were suppressed. In a model of sensitization, orally administered LY2969822 prevented the nociceptive behaviours induced by an intraplantar injection of formalin. The on-target nature of this effect was confirmed by blockade with an mGlu2/3 receptor antagonist. LY2969822 prevented capsaicin-induced tactile hypersensitivity, reversed the SNL-induced tactile hypersensitivity and reversed complete Freund's adjuvant - induced mechanical hyperalgesia. The mGlu2/3 receptor agonist prodrug demonstrated efficacy in visceral pain models, including a colorectal distension model and partially prevented the nocifensive behaviours in the mouse acetic acid writhing model. CONCLUSIONS AND IMPLICATIONS Following oral administration of the prodrug LY2969822, the mGlu2/3 receptor agonist LY2934747 was formed and this attenuated pain behaviours across a broad range of preclinical pain models.
Collapse
Affiliation(s)
- Michael P Johnson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark A Muhlhauser
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eric S Nisenbaum
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Rosa M A Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Beth M Forster
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Lijuan Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dominic L Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jeffrey D Kennedy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - James A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
19
|
Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem 2017; 141:507-519. [DOI: 10.1111/jnc.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Ida Marabese
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Livio Luongo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Francesca Guida
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Vito de Novellis
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| |
Collapse
|
20
|
Davidson S, Golden JP, Copits BA, Ray PR, Vogt SK, Valtcheva MV, Schmidt RE, Ghetti A, Price T, Gereau RW. Group II mGluRs suppress hyperexcitability in mouse and human nociceptors. Pain 2016; 157:2081-2088. [PMID: 27218869 PMCID: PMC4988887 DOI: 10.1097/j.pain.0000000000000621] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We introduce a strategy for preclinical research wherein promising targets for analgesia are tested in rodent and subsequently validated in human sensory neurons. We evaluate group II metabotropic glutamate receptors, the activation of which is efficacious in rodent models of pain. Immunohistochemical analysis showed positive immunoreactivity for mGlu2 in rodent dorsal root ganglia (DRG), peripheral fibers in skin, and central labeling in the spinal dorsal horn. We also found mGlu2-positive immunoreactivity in human neonatal and adult DRG. RNA-seq analysis of mouse and human DRG revealed a comparative expression profile between species for group II mGluRs and for opioid receptors. In rodent sensory neurons under basal conditions, activation of group II mGluRs with a selective group II agonist produced no changes to membrane excitability. However, membrane hyperexcitability in sensory neurons exposed to the inflammatory mediator prostaglandin E2 (PGE2) was prevented by (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC). In human sensory neurons from donors without a history of chronic pain, we show that PGE2 produced hyperexcitability that was similarly blocked by group II mGluR activation. These results reveal a mechanism for peripheral analgesia likely shared by mice and humans and demonstrate a translational research strategy to improve preclinical validation of novel analgesics using cultured human sensory neurons.
Collapse
Affiliation(s)
- Steve Davidson
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Judith P. Golden
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Bryan A. Copits
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Pradipta R. Ray
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Sherri K. Vogt
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Manouela V. Valtcheva
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Robert E. Schmidt
- Washington University in St. Louis, School of Medicine Department of Neuropathology, St. Louis, MO. 63110
| | | | - Theodore Price
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Robert W. Gereau
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| |
Collapse
|
21
|
Govea RM, Zhou S, Carlton SM. Group III mGluR8 negatively modulates TRPA1. Neuroscience 2016; 334:134-147. [PMID: 27497709 DOI: 10.1016/j.neuroscience.2016.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023]
Abstract
Several lines of evidence indicate group III metabotropic glutamate receptors (mGluRs) have systemic anti-hyperalgesic effects. We hypothesized this could occur through modulation of TRP channels on nociceptors. This study used a multifaceted approach to examine the interaction between group III mGluRs (mGluR8) and transient receptor potential ankyrin 1 (TRPA1) on cutaneous nociceptors in rats. Ca2+ imaging studies demonstrated co-localization and functional coupling of TRPA1 and mGluR8, since 1μM (S)-3,4-dicarboxyphenylglycine (DCPG) (mGluR8 agonist) significantly reduced Ca2+ mobilization produced by 30μM mustard oil (MO), a TRPA1 agonist. Behavioral studies demonstrated that 10mM MO produced mechanical hypersensitivity when topically applied to the hind paw, significantly decreasing paw withdrawal threshold (PWT) from 15g to 6g. However, administration of 30μM DCPG prior to 10mM MO reversed this hypersensitivity such that PWT was not significantly different from baseline. At the single-fiber level, compared to vehicle, 30μM MO significantly increased nociceptor activity and decreased mechanical threshold. However, 30μM DCPG reversed both of these MO-induced effects. Furthermore, DCPG significantly reduced the number of MO-induced mechanically sensitive fibers. Inhibition of protein kinase A (PKA) using Rp-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (RpCAMPS) (PKA inhibitor, 1 and 10μM) significantly reduced MO-induced Ca2+ mobilization. Taken together, these results show that group III mGluRs negatively modulate TRPA1 activity on cutaneous nociceptors. Furthermore, it is likely that this modulation occurs intracellularly at the level of the cAMP/PKA pathway. This study demonstrates that group III agonists may be effective in the treatment of mechanical hypersensitivity which can develop as a result of inflammation, nerve injury, chemotherapy and other disease states.
Collapse
Affiliation(s)
- R M Govea
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States
| | - S Zhou
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States
| | - S M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States.
| |
Collapse
|
22
|
Rogoz K, Aresh B, Freitag FB, Pettersson H, Magnúsdóttir EI, Larsson Ingwall L, Haddadi Andersen H, Franck MCM, Nagaraja C, Kullander K, Lagerström MC. Identification of a Neuronal Receptor Controlling Anaphylaxis. Cell Rep 2016; 14:370-9. [DOI: 10.1016/j.celrep.2015.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/20/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
|
23
|
Chiechio S. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:63-89. [DOI: 10.1016/bs.apha.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
Kiritoshi T, Neugebauer V. Group II mGluRs modulate baseline and arthritis pain-related synaptic transmission in the rat medial prefrontal cortex. Neuropharmacology 2015; 95:388-94. [PMID: 25912637 DOI: 10.1016/j.neuropharm.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
The medial prefrontal cortex (mPFC) serves executive control functions that are impaired in neuropsychiatric disorders and pain. Therefore, restoring normal synaptic transmission and output is a desirable goal. Group II metabotropic glutamate receptors mGluR2 and mGluR3 are highly expressed in the mPFC, modulate synaptic transmission, and have been targeted for neuropsychiatric disorders. Their pain-related modulatory effects in the mPFC remain to be determined. Here we evaluated their ability to restore pyramidal output in an arthritis pain model. Whole-cell patch-clamp recordings of layer V mPFC pyramidal cells show that a selective group II mGluR agonist (LY379268) decreased synaptically evoked spiking in brain slices from normal and arthritic rats. Effects were concentration-dependent and reversed by a selective antagonist (LY341495). LY379268 decreased monosynaptic excitatory postsynaptic currents (EPSCs) and glutamate-driven inhibitory postsynaptic currents (IPSCs) in the pain model. Effects on EPSCs preceded those on IPSCs and could explain the overall inhibitory effect on pyramidal output. LY379268 decreased frequency, but not amplitude, of miniature EPSCs without affecting miniature IPSCs. LY341495 alone increased synaptically evoked spiking under normal conditions and in the pain model. In conclusion, group II mGluRs act on glutamatergic synapses to inhibit direct excitatory transmission and feedforward inhibition onto pyramidal cells. Their net effect is decreased pyramidal cell output. Facilitatory effects of a group II antagonist suggest the system may be tonically active to control pyramidal output. Failure to release the inhibitory tone and enhance mPFC output could be a mechanism for the development or persistence of a disease state such as pain.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
25
|
Jeske NA. Peripheral scaffolding and signaling pathways in inflammatory pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:31-52. [PMID: 25744669 DOI: 10.1016/bs.pmbts.2014.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral injury precipitates the release and accumulation of extracellular molecules at the site of injury. Although these molecules exist in various forms, they activate specific receptor classes expressed on primary afferent neurons to mediate cellular and behavioral responses to both nonpainful and painful stimuli. These inflammatory mediators and subsequent receptor-mediated effects exist to warn an organism of future injury, thereby resulting in protection and rehabilitation of the wounded tissue. In this chapter, inflammatory mediators, their target receptor classes, and downstream signaling pathways are identified and discussed within the context of inflammatory hyperalgesia. Furthermore, scaffolding mechanisms that exist to support inflammatory signaling in peripheral afferent neuronal tissues specifically are identified and discussed. Together, the mediators, pathways, and scaffolding mechanisms involved in inflammatory hyperalgesia provide a unique knowledge point from which new therapeutic targets can be understood.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, UT Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
26
|
Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr Opin Pharmacol 2015; 20:64-72. [DOI: 10.1016/j.coph.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
27
|
Kolber BJ. mGluRs Head to Toe in Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:281-324. [DOI: 10.1016/bs.pmbts.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Sousa-Valente J, Andreou AP, Urban L, Nagy I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 2014; 171:2508-27. [PMID: 24283624 DOI: 10.1111/bph.12532] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators.
Collapse
Affiliation(s)
- J Sousa-Valente
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
29
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptors: a target for pain relief and beyond. Eur J Neurosci 2014; 39:444-54. [PMID: 24494684 DOI: 10.1111/ejn.12398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system, controlling the majority of synapses. Apart from neurodegenerative diseases, growing evidence suggests that glutamate is involved in psychiatric and neurological disorders, including pain. Glutamate signaling is mediated via ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). So far, drugs acting via modulation of glutamatergic system are few in number, and all are associated with iGluRs and important side effects. The glutamatergic system may be finely modulated by mGluRs. Signaling via these receptors is slower and longer-lasting, and permits fine-tuning of glutamate transmission. There have been eight mGluRs cloned to date (mGluR1-mGluR8), and these are further divided into three groups on the basis of sequence homology, pharmacological profile, and second messenger signaling. The pattern of expression of mGluRs along the pain neuraxis makes them suitable substrates for the design of novel analgesics. This review will focus on the supraspinal mGluRs, whose pharmacological manipulation generates a variety of effects, which depend on the synaptic location, the cell type on which they are located, and the expression in particular pain modulation areas, such as the periaqueductal gray, which plays a major role in the descending modulation of pain, and the central nucleus of the amygdala, which is an important center for the processing of emotional information associated with pain. A particular emphasis will also be given to the novel selective mGluR subtype ligands, as well as positive and negative allosteric modulators, which have permitted discrimination of the individual roles of the different mGluR subtypes, and subtle modulation of central nervous system functioning and related disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | | | | | | |
Collapse
|
30
|
Abstract
Nociceptive primary afferents have three surprising properties: they are highly complex in their expression of neurotransmitters and receptors and most probably participate in autocrine and paracrine interactions; they are capable of exerting tonic and activity-dependent inhibitory control over incoming nociceptive input; they can generate signals in the form of dorsal root reflexes that are transmitted antidromically out to the periphery and these signals can result in neurogenic inflammation in the innervated tissue. Thus, nociceptive primary afferents are highly complicated structures, capable of modifying input before it is ever transmitted to the central nervous system and capable of altering the tissue they innervate.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77554, USA
| |
Collapse
|
31
|
Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor. J Neurosci 2014; 33:18951-65. [PMID: 24285900 DOI: 10.1523/jneurosci.1221-13.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain.
Collapse
|
32
|
A model of synaptic plasticity: activation of mGluR I induced long-term theta oscillations in medial septal diagonal band of rat brain slice. Neurol Sci 2013; 35:551-7. [PMID: 24057118 DOI: 10.1007/s10072-013-1543-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023]
Abstract
This study aimed to establish a model of synaptic plasticity by the activation of metabotropic glutamate receptor (mGluR) I in rat medial septal diagonal band (MSDB). Electrophysiological experiment was performed to record the theta frequency oscillation activities in rat MSDB slices. The data were recorded and analyzed with Spike 2 (CED, Cambridge, UK). Application of aminocyclopentane-1, 3-dicarboxylic acid (ACPD) to MSDB slices produced theta frequency oscillations (4-12 Hz) which persisted for hours after ACPD washout, suggesting the existence of a form of synaptic plasticity in long-term oscillations (LTOs). Addition of NMDA receptor antagonist AP5 (50 μM) caused no significant change in area power. In contrast, AMPA/Kainate receptor antagonist NBQX administration partially reduced the area power. Infusion of ZD7288, a hyperpolarization-activated channel (Ih) inhibitor, caused additional reduction to control level. Comparable effects were also observed with administration of DHPG (3, 5-dihydroxyphenylglycine) which also elicited LTOs. mGluR I activation induced theta oscillation and this activity maintained hours after drug washout. Both AMPA and hyperpolarization-activated channel make an essential contribution to LTO. Our study herein established a model of synaptic plasticity.
Collapse
|
33
|
Acetylcholine encodes long-lasting presynaptic plasticity at glutamatergic synapses in the dorsal striatum after repeated amphetamine exposure. J Neurosci 2013; 33:10405-26. [PMID: 23785153 DOI: 10.1523/jneurosci.0014-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence.
Collapse
|
34
|
Evidence for glutamate as a neuroglial transmitter within sensory ganglia. PLoS One 2013; 8:e68312. [PMID: 23844184 PMCID: PMC3699553 DOI: 10.1371/journal.pone.0068312] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.
Collapse
|
35
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
36
|
Matsuta Y, Mally AD, Zhang F, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Contribution of opioid and metabotropic glutamate receptor mechanisms to inhibition of bladder overactivity by tibial nerve stimulation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R126-33. [PMID: 23576608 DOI: 10.1152/ajpregu.00572.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The contribution of metabotropic glutamate receptors (mGluR) and opioid receptors to inhibition of bladder overactivity by tibial nerve stimulation (TNS) was investigated in cats under α-chloralose anesthesia using LY341495 (a group II mGluR antagonist) and naloxone (an opioid receptor antagonist). Slow infusion cystometry was used to measure the volume threshold (i.e., bladder capacity) for inducing a large bladder contraction. After measuring the bladder capacity during saline infusion, 0.25% acetic acid (AA) was infused to irritate the bladder, activate the nociceptive C-fiber bladder afferents, and induce bladder overactivity. AA significantly (P < 0.0001) reduced bladder capacity to 26.6 ± 4.7% of saline control capacity. TNS (5 Hz, 0.2 ms) at 2 and 4 times the threshold (T) intensity for inducing an observable toe movement significantly increased bladder capacity to 62.2 ± 8.3% at 2T (P < 0.01) and 80.8 ± 9.2% at 4T (P = 0.0001) of saline control capacity. LY341495 (0.1-5 mg/kg iv) did not change bladder overactivity, but completely suppressed the inhibition induced by TNS at a low stimulus intensity (2T) and partially suppressed the inhibition at high intensity (4T). Following administration of LY341495, naloxone (0.01 mg/kg iv) completely eliminated the high-intensity TNS-induced inhibition. However, without LY341495 treatment a 10 times higher dose (0.1 mg/kg) of naloxone was required to completely block TNS inhibition. These results indicate that interactions between group II mGluR and opioid receptor mechanisms contribute to TNS inhibition of AA-induced bladder overactivity. Understanding neurotransmitter mechanisms underlying TNS inhibition of bladder overactivity is important for the development of new treatments for bladder disorders.
Collapse
Affiliation(s)
- Yosuke Matsuta
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee KS, Park EH, Cho HY, Kim YI, Han HC. Peripheral group II and III metabotropic glutamate receptors in the knee joint attenuate carrageenan-induced nociceptive behavior in rats. Neurosci Lett 2013; 542:21-5. [PMID: 23500028 DOI: 10.1016/j.neulet.2013.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/15/2013] [Accepted: 03/01/2013] [Indexed: 11/15/2022]
Abstract
This study sought to evaluate whether peripheral group II and III metabotropic glutamate receptors (mGluRs) in the knee joint have inhibitory effects on carrageenan-induced nociceptive behavior. To this end, changes in weight load and hind paw withdrawal threshold were measured in rats following the administration of specific peripheral group II and III mGluR agonists 30min before (induction phase) and 4h after (maintenance phase) the injection of carrageenan (1%, 50μl). During the induction phase of arthritic pain, a significant recovery of reduced weight load occurred after the administration of 500μM APDC ((2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate; group II agonist) and 100 and 500μM L-AP4 (l-2-amino-4-phosphonobutylate; group III agonist). Similarly, 100 and 500μM APDC and 500μM L-AP4 significantly reduced mechanical hyperalgesia during the induction phase. In the maintenance phase, APDC at all doses (10, 100 and 500μM) and 100 and 500μM L-AP4 significantly counteracted the reduction in weight load, and APDC and L-AP4 at all doses (10, 100 and 500μM) inhibited mechanical hyperalgesia. The current study suggests that peripheral group II and III mGluRs in the knee joint negatively modulates nociceptive behavior during both the induction and maintenance phases of carrageenan-induced arthritic pain.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Health and Fitness Management, Woosong University, Daejeon 300-718, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci 2013; 32:14709-21. [PMID: 23077056 DOI: 10.1523/jneurosci.1634-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The number of functional transient receptor potential vanilloid 1 (TRPV1) channels at the surface, especially at the peripheral terminals of primary sensory neurons, regulates heat sensitivity, and increased surface localization of TRPV1s contributes to heat hyperalgesia. However, the mechanisms for regulating TRPV1 surface localization are essentially unknown. Here, we show that cyclin-dependent kinase 5 (Cdk5), a new player in thermal pain sensation, positively regulates TRPV1 surface localization. Active Cdk5 was found to promote TRPV1 anterograde transport in vivo, suggesting a regulatory role of Cdk5 in TRPV1 membrane trafficking. TRPV1-containing vesicles bind to the forkhead-associated (FHA) domain of the KIF13B (kinesin-3 family member 13B) and are thus delivered to the cell surface. Overexpression of Cdk5 or its activator p35 promoted and inhibition of Cdk5 activity prevented the KIF13B-TRPV1 association, indicating that Cdk5 promotes TRPV1 anterograde transport by mediating the motor-cargo association. Cdk5 phosphorylates KIF13B at Thr-506, a residue located in the FHA domain. T506A mutation reduced the motor-cargo interaction and the cell-permeable TAT-T506 peptide, targeting to the Thr-506, decreased TRPV1 surface localization, demonstrating the essential role of Thr-506 phosphorylation in TRPV1 transport. Moreover, complete Freund's adjuvant (CFA) injection-induced activation of Cdk5 increased the anterograde transport of TRPV1s, contributing to the development and possibly the maintenance of heat hyperalgesia, whereas intrathecal delivery of the TAT-T506 peptide alleviated CFA-induced heat hyperalgesia in rats. Thus, Cdk5 regulation of TRPV1 membrane trafficking is a fundamental mechanism controlling the heat sensitivity of nociceptors, and moderate inhibition of Thr-506 phosphorylation during inflammation might be helpful for the treatment of inflammatory thermal pain.
Collapse
|
39
|
Julio-Pieper M, O'Connor RM, Dinan TG, Cryan JF. Regulation of the brain-gut axis by group III metabotropic glutamate receptors. Eur J Pharmacol 2012; 698:19-30. [PMID: 23123053 DOI: 10.1016/j.ejphar.2012.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 01/14/2023]
Abstract
L-glutamate is produced by a great variety of peripheral tissues in both health and disease. Like other components of the glutamatergic system, metabotropic glutamate (mGlu) receptors also have a widespread distribution outside the central nervous system (CNS). In particular, group III mGlu receptors have been recently found in human stomach and colon revealing an extraordinary potential for these receptors in the treatment of peripheral disorders, including gastrointestinal dysfunction. The significance of these findings is that pharmacological tools originally designed for mGlu receptors in the CNS may also be directed towards new disease targets in the periphery. Targeting mGlu receptors can also be beneficial in the treatment of disorders involving central components together with gastrointestinal dysfunction, such as irritable bowel syndrome, which can be co-morbid with anxiety and depression. Conversely, the development of more specific therapeutic approaches for mGlu ligands both centrally as in the gut will depend on the elucidation of tissue-specific elements in mGlu receptor signalling.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av Universidad 330, Curauma, Valparaíso, Chile.
| | | | | | | |
Collapse
|
40
|
Li JY, Wang X, Ji PT, Li XF, Guan GH, Jiang XS, Zhou GS, Hua F, Wang N. Peripheral nerve injury decreases the expression of metabolic glutamate receptor 7 in dorsal root ganglion neurons. Neurosci Lett 2012; 531:52-6. [PMID: 23085525 DOI: 10.1016/j.neulet.2012.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
Group II and III metabolic glutamate receptors (mGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Previous pharmacological evidences show that activation of mGluR7 could inhibit nociceptive reception. However, the distribution and expression patterns of mGluR7 after peripheral injury remain unclear. Herein we found that mGluR7 was expressed in the rat peptidergic dorsal root ganglion (DRG) neurons and large neurons, but rarely in isolectin B4 positive neurons. Sciatic nerve ligation experiment showed that mGluR7 was anterogradely transported from cell body to the peripheral site. Furthermore, after peripheral nerve injury, mGluR7 expression was down-regulated in both peptidergic and large DRG neurons. Our work suggests that mGluR7 might be involved in the regulation of pathological pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Jian-You Li
- Orthopedics Department, Huzhou Central Hospital, 198 Hongqi Road, Huzhou 313000, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|