1
|
Abulude IJ, Luna ICR, Varela AS, Camilli A, Kadouri DE, Guo X. Using AlphaFold-Multimer to study novel protein-protein interactions of predation essential hypothetical proteins in Bdellovibrio. FRONTIERS IN BIOINFORMATICS 2025; 5:1566486. [PMID: 40297267 PMCID: PMC12034629 DOI: 10.3389/fbinf.2025.1566486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Bdellovibrio bacteriovorus is the most studied member of a group of small motile Gram-negative bacteria called Bdellovibrio and Like Organisms (BALOs). B. bacteriovorus can prey on Gram-negative bacteria, including multi-drug resistant pathogens, and has been proposed as an alternative to antibiotics. Although the life cycle of B. bacteriovorus is well characterized, some molecular aspects of B. bacteriovorus-prey interaction are poorly understood. Hypothetical proteins with unestablished functions have been implicated in B. bacteriovorus predation by many studies. Our approach to characterize these proteins employing Alphafold has revealed novel interactions among attack phase-hypothetical proteins, which may be involved in less understood mechanisms of the Bdellovibrio attack phase. Here, we overlapped attack phase genes from B. bacteriovorus transcriptomic data sets and from transposon sequencing data sets to generate a set of proteins that are both expressed at the attack phase and are necessary for predation, which we termed Attack Phase Predation-Essential Proteins (AP-PEP). By applying Markov Cluster Algorithm and AlphaFold-Multimer to analyze the protein network and interaction partners of the AP-PEPs, we predicted high-confidence protein-protein interactions and two structurally similar but unique novel protein complexes formed among proteins of the Bd2209-Bd2212 and Bd2723-Bd2726 operons. Furthermore, we confirmed the interaction between hypothetical proteins Bd0075 and Bd0474 using the Bacteria Adenylate Cyclase Two-Hybrid system. In addition, we confirmed that the C-terminal domain of Bd0075, which contains Tetratricopeptide repeat motifs, participates principally in its interaction with Bd0474. This study revealed previously unknown cooperation among predation essential hypothetical proteins in the attack phase B. bacteriovorus and has paved the way for further work to understand molecular mechanisms of BALO predation processes.
Collapse
Affiliation(s)
- Ibukun John Abulude
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Isabel Cristina Rodríguez Luna
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Alejandro Sánchez Varela
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| |
Collapse
|
2
|
Caulton SG, Lovering AL. Moving toward a better understanding of the model bacterial predator Bdellovibrio bacteriovorus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001380. [PMID: 37535060 PMCID: PMC10482364 DOI: 10.1099/mic.0.001380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.
Collapse
Affiliation(s)
- Simon G. Caulton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
3
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
4
|
Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility. PLoS Genet 2022; 18:e1010164. [PMID: 35622882 PMCID: PMC9140294 DOI: 10.1371/journal.pgen.1010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial second messengers are important for regulating diverse bacterial lifestyles. Cyclic di-GMP (c-di-GMP) is produced by diguanylate cyclase enzymes, named GGDEF proteins, which are widespread across bacteria. Recently, hybrid promiscuous (Hypr) GGDEF proteins have been described in some bacteria, which produce both c-di-GMP and a more recently identified bacterial second messenger, 3′,3′-cyclic-GMP-AMP (cGAMP). One of these proteins was found in the predatory Bdellovibrio bacteriovorus, Bd0367. The bd0367 GGDEF gene deletion strain was found to enter prey cells, but was incapable of leaving exhausted prey remnants via gliding motility on a solid surface once predator cell division was complete. However, it was unclear which signal regulated this process. We show that cGAMP signalling is active within B. bacteriovorus and that, in addition to producing c-di-GMP and some c-di-AMP, Bd0367 is a primary producer of cGAMP in vivo. Site-directed mutagenesis of serine 214 to an aspartate rendered Bd0367 into primarily a c-di-GMP synthase. B. bacteriovorus strain bd0367S214D phenocopies the bd0367 deletion strain by being unable to glide on a solid surface, leading to an inability of new progeny to exit from prey cells post-replication. Thus, this process is regulated by cGAMP. Deletion of bd0367 was also found to be incompatible with wild-type flagellar biogenesis, as a result of an acquired mutation in flagellin chaperone gene homologue fliS, implicating c-di-GMP in regulation of swimming motility. Thus the single Bd0367 enzyme produces two secondary messengers by action of the same GGDEF domain, the first reported example of a synthase that regulates multiple second messengers in vivo. Unlike roles of these signalling molecules in other bacteria, these signal to two separate motility systems, gliding and flagellar, which are essential for completion of the bacterial predation cycle and prey exit by B. bacteriovorus. Secondary messengers are important signalling molecules in bacteria and a recently discovered one, called cGAMP, has recently been shown to be made by some enzymes which had previously been known to produce another secondary messenger, c-di-GMP. One of these “hybrid promiscuous” enzymes (Bd0367) is found in Bdellovibrio bacteriovorus, a bacterium that preys upon other bacteria, burrowing inside them and consuming them from within. Previous gene deletion work had shown that Bd0367 was essential in signalling for Bdellovibrio to leave the remains of its prey cell by gliding motility after predation was complete and it was thought that this was due to c-di-GMP signalling. However, here, we show that this gliding motility is actually regulated by cGAMP signalling and that c-di-GMP signalling is involved in swimming motility. A single enzyme produces two different molecules, signalling to two discrete motility systems, both of which are required for successful completion of the bacterium’s predatory lifestyle in prey on solid surfaces or in liquids.
Collapse
|
5
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
6
|
Studies on Bd0934 and Bd3507, Two Secreted Nucleases from Bdellovibrio bacteriovorus, Reveal Sequential Release of Nucleases during the Predatory Cycle. J Bacteriol 2020; 202:JB.00150-20. [PMID: 32601070 PMCID: PMC7925074 DOI: 10.1128/jb.00150-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria. Bdellovibrio bacteriovorus is an obligate predatory bacterium that invades and kills a broad range of Gram-negative prey cells, including human pathogens. Its potential therapeutic application has been the subject of increased research interest in recent years. However, an improved understanding of the fundamental molecular aspects of the predatory life cycle is crucial for developing this bacterium as a “living antibiotic.” During intracellular growth, B. bacteriovorus secretes an arsenal of hydrolases, which digest the content of the host cell to provide growth nutrients for the predator, e.g., prey DNA is completely degraded by the nucleases. Here, we have, on a genetic and molecular level, characterized two secreted DNases from B. bacteriovorus, Bd0934 and Bd3507, and determined the temporal expression profile of other putative secreted nucleases. We conclude that Bd0934 and Bd3507 are likely a part of the predatosome but are not essential for the predation, host-independent growth, prey biofilm degradation, and self-biofilm formation. The detailed temporal expression analysis of genes encoding secreted nucleases revealed that these enzymes are produced in a sequential orchestrated manner. This work contributes to our understanding of the sequential breakdown of the prey nucleic acid by the nucleases secreted during the predatory life cycle of B. bacteriovorus. IMPORTANCE Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria.
Collapse
|
7
|
Caulton SG, Lovering AL. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr Opin Microbiol 2020; 56:74-80. [DOI: 10.1016/j.mib.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023]
|
8
|
Enomoto G, Kamiya A, Okuda Y, Narikawa R, Ikeuchi M. Tlr0485 is a cAMP-activated c-di-GMP phosphodiesterase in a cyanobacterium Thermosynechococcus. J GEN APPL MICROBIOL 2020; 66:147-152. [PMID: 32224605 DOI: 10.2323/jgam.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Second messenger molecules are crucial components of environmental signaling systems to integrate multiple inputs and elicit physiological responses. Among various kinds of second messengers, cyclic nucleotides cAMP and cyclic di-GMP (c-di-GMP) play pivotal roles in bacterial environmental responses. However, how these signaling systems are interconnected for a concerted regulation of cellular physiology remains elusive. In a thermophilic cyanobacterium Thermosynechococcus vulcanus strain RKN, incident light color is sensed by cyanobacteriochrome photoreceptors to transduce the light information to the levels of c-di-GMP, which induces cellular aggregation probably via cellulose synthase activation. Herein, we identified that Tlr0485, which is composed of a cGMP-specific phosphodiesterases, adenylate cyclases, and FhlA (GAF) domain and an HD-GYP domain, is a cAMP-activated c-di-GMP phosphodiesterase. We also show biochemical evidence that the two class-III nucleotide cyclases, Cya1 and Cya2, are both adenylate cyclases to produce cAMP in T. vulcanus. The prevalence of cAMP-activated c-di-GMP phosphodiesterase genes in cyanobacterial genomes suggests that the direct crosstalk between cAMP and c-di-GMP signaling systems may be crucial for cyanobacterial environmental responses.
Collapse
Affiliation(s)
- Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Institute for Biology III, Faculty of Biology, University of Freiburg
| | - Ayako Kamiya
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
| | - Yukiko Okuda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
| | - Rei Narikawa
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Department of Biological Science, Faculty of Science, Shizuoka University
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Faculty of Education and Integrated Arts and Sciences, Waseda University
| |
Collapse
|
9
|
Cadby IT, Basford SM, Nottingham R, Meek R, Lowry R, Lambert C, Tridgett M, Till R, Ahmad R, Fung R, Hobley L, Hughes WS, Moynihan PJ, Sockett RE, Lovering AL. Nucleotide signaling pathway convergence in a cAMP-sensing bacterial c-di-GMP phosphodiesterase. EMBO J 2019; 38:e100772. [PMID: 31355487 PMCID: PMC6717892 DOI: 10.15252/embj.2018100772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial usage of the cyclic dinucleotide c‐di‐GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c‐di‐GMP metabolism, particularly on regulatory mechanisms governing control of EAL c‐di‐GMP phosphodiesterases. Herein, we provide high‐resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full‐length cAMP‐bound form reveals the sensory N‐terminus to be a domain‐swapped variant of the cNMP/CRP family, which in the cAMP‐activated state holds the C‐terminal EAL enzyme in a phosphodiesterase‐active conformation. Using a truncation mutant, we trap both a half‐occupied and inactive apo‐form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c‐di‐GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c‐di‐GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing “action potentials” to be generated by each GGDEF protein to effect their specific functions.
Collapse
Affiliation(s)
- Ian T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sarah M Basford
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Ruth Nottingham
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Richard Meek
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rebecca Lowry
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Carey Lambert
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Matthew Tridgett
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rob Till
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rashidah Ahmad
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rowena Fung
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Laura Hobley
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - William S Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick J Moynihan
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - R Elizabeth Sockett
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|