1
|
Hashmi F, Kane PM. V-ATPase Disassembly at the Yeast Lysosome-Like Vacuole Is a Phenotypic Driver of Lysosome Dysfunction in Replicative Aging. Aging Cell 2025; 24:e14487. [PMID: 39817304 PMCID: PMC12074022 DOI: 10.1111/acel.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V1 and V0 subcomplexes in aging cells, with release of V1 subunit C (Vma5) from the lysosome-like vacuole into the cytosol. Disassembly is observed after > 5 cell divisions and results in overall vacuole alkalinization. Caloric restriction, an established mechanism for reversing many age-related outcomes, prevents V-ATPase disassembly in older cells and preserves vacuolar pH homeostasis. Reversible disassembly is controlled in part by the activity of two opposing and conserved factors: the Regulator of Acidification of Vacuoles and Endosomes (RAVE) complex and Oxr1. The RAVE complex promotes V-ATPase assembly and a rav1∆ mutant shortens replicative lifespan; Oxr1 promotes disassembly and an oxr1∆ mutation extends the lifespan. Importantly, the level of Rav2, a subunit of the RAVE complex, declines in aged cells, and Rav2 overexpression delays V-ATPase disassembly with age. These data indicate that reduced V-ATPase assembly contributes to the loss of lysosomal acidification with age, which affects replicative lifespan.
Collapse
Affiliation(s)
- Fiza Hashmi
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Patricia M. Kane
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| |
Collapse
|
2
|
Pepe S, Aprile D, Castroflorio E, Marte A, Giubbolini S, Hopestone S, Parsons A, Soares T, Benfenati F, Oliver PL, Fassio A. TBC1D24 interacts with the v-ATPase and regulates intraorganellar pH in neurons. iScience 2025; 28:111515. [PMID: 39758816 PMCID: PMC11699390 DOI: 10.1016/j.isci.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V1) and proton transport (V0) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions. Here, we reveal that TBC1D24 interacts with the v-ATPase in the brain. Using a constitutive Tbc1d24 knockout mouse model, we observed accumulation of lysosomes and non-degraded lipid materials in neuronal tissue. In Tbc1d24 knockout neurons, we detected V1 mis-localization with increased pH at endo-lysosomal compartments and autophagy impairment. Furthermore, synaptic vesicles endocytosis and reacidification were impaired. Thus, we demonstrate that TBC1D24 is a positive regulator of v-ATPase activity in neurons suggesting that alteration of pH homeostasis could underlie disorders associated with TBC1D24 and the v-ATPase.
Collapse
Affiliation(s)
- Sara Pepe
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Enrico Castroflorio
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Simone Giubbolini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Samir Hopestone
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Parsons
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Tânia Soares
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Peter L. Oliver
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
3
|
Knight K, Park JB, Oot RA, Khan MM, Roh SH, Wilkens S. Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H +-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632502. [PMID: 39829782 PMCID: PMC11741422 DOI: 10.1101/2025.01.10.632502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The vacuolar ATPase (V-ATPase; V1Vo) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase Vo proton channel subcomplex. Here, we present an in-depth characterization of three anti-Vo Nbs using biochemical and biophysical in vitro experiments. We find that the Nbs bind Vo with high affinity, with one Nb inhibiting holoenzyme activity and another one preventing enzyme assembly. Using cryoEM, we find that two of the Nbs bind the c subunit ring of the Vo on the lumen side of the complex. Additionally, we show that one of the Nbs raised against yeast Vo can pull down human V-ATPase (HsV1Vo). Our research demonstrates Nb versatility to target and modulate the activity of the V-ATPase, and highlights the potential for future therapeutic Nb development.
Collapse
Affiliation(s)
- Kassidy Knight
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jun Bae Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Present address: Department of Cancer Biology, Lerner research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Present address: Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soung-Hun Roh
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Hashmi F, Kane PM. V-ATPase Disassembly at the Yeast Lysosome-Like Vacuole Is a Phenotypic Driver of Lysosome Dysfunction in Replicative Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604825. [PMID: 39091794 PMCID: PMC11291124 DOI: 10.1101/2024.07.23.604825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V1 and V0 subcomplexes in aging cells, with release of V1 subunit C (Vma5) from the lysosome-like vacuole into the cytosol. Disassembly is observed after ≥5 cell divisions and results in overall vacuole alkalinization. Caloric restriction, an established mechanism for reversing many age-related outcomes, prevents V-ATPase disassembly in older cells and preserves vacuolar pH homeostasis. Reversible disassembly is controlled in part by the activity of two opposing and conserved factors, the RAVE complex and Oxr1. The RAVE complex promotes V-ATPase assembly and a rav1Δ mutant shortens replicative lifespan; Oxr1 promotes disassembly and an oxr1Δ mutation extends lifespan. Importantly, the level of Rav2, a subunit of the RAVE complex, declines in aged cells, and Rav2 overexpression delays V-ATPase disassembly with age. These data indicate that reduced V-ATPase assembly contributes to the loss of lysosome acidification with age, which affects replicative lifespan.
Collapse
Affiliation(s)
- Fiza Hashmi
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
5
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
6
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
7
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
8
|
Oot RA, Wilkens S. Human V-ATPase function is positively and negatively regulated by TLDc proteins. Structure 2024; 32:989-1000.e6. [PMID: 38593795 PMCID: PMC11246223 DOI: 10.1016/j.str.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Bucknor EMV, Johnson E, Efthymiou S, Alvi JR, Sultan T, Houlden H, Maroofian R, Karimiani EG, Finelli MJ, Oliver PL. Neuroinflammation and Lysosomal Abnormalities Characterise the Essential Role for Oxidation Resistance 1 in the Developing and Adult Cerebellum. Antioxidants (Basel) 2024; 13:685. [PMID: 38929124 PMCID: PMC11201099 DOI: 10.3390/antiox13060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Loss-of-function mutations in the TLDc family of proteins cause a range of severe childhood-onset neurological disorders with common clinical features that include cerebellar neurodegeneration, ataxia and epilepsy. Of these proteins, oxidation resistance 1 (OXR1) has been implicated in multiple cellular pathways related to antioxidant function, transcriptional regulation and cellular survival; yet how this relates to the specific neuropathological features in disease remains unclear. Here, we investigate a range of loss-of-function mouse model systems and reveal that constitutive deletion of Oxr1 leads to a rapid and striking neuroinflammatory response prior to neurodegeneration that is associated with lysosomal pathology. We go on to show that neuroinflammation and cell death in Oxr1 knockouts can be completely rescued by the neuronal expression of Oxr1, suggesting that the phenotype is driven by the cell-intrinsic defects of neuronal cells lacking the gene. Next, we generate a ubiquitous, adult inducible knockout of Oxr1 that surprisingly displays rapid-onset ataxia and cerebellar neurodegeneration, establishing for the first time that the distinctive pathology associated with the loss of Oxr1 occurs irrespective of developmental stage. Finally, we describe two new homozygous human pathogenic variants in OXR1 that cause neurodevelopmental delay, including a novel stop-gain mutation. We also compare functionally two missense human pathogenic mutations in OXR1, including one newly described here, that cause different clinical phenotypes but demonstrate partially retained neuroprotective activity against oxidative stress. Together, these data highlight the essential role of Oxr1 in modulating neuroinflammatory and lysosomal pathways in the mammalian brain and support the hypothesis that OXR1 protein dosage may be critical for pathological outcomes in disease.
Collapse
Affiliation(s)
- Eboni M. V. Bucknor
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Errin Johnson
- The Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Javeria R. Alvi
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore 54660, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore 54660, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Ehsan G. Karimiani
- Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW18 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 009851, Iran
| | - Mattéa J. Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
10
|
Klössel S, Zhu Y, Amado L, Bisinski DD, Ruta J, Liu F, González Montoro A. Yeast TLDc domain proteins regulate assembly state and subcellular localization of the V-ATPase. EMBO J 2024; 43:1870-1897. [PMID: 38589611 PMCID: PMC11066047 DOI: 10.1038/s44318-024-00097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Yeast vacuoles perform crucial cellular functions as acidic degradative organelles, storage compartments, and signaling hubs. These functions are mediated by important protein complexes, including the vacuolar-type H+-ATPase (V-ATPase), responsible for organelle acidification. To gain a more detailed understanding of vacuole function, we performed cross-linking mass spectrometry on isolated vacuoles, detecting many known as well as novel protein-protein interactions. Among these, we identified the uncharacterized TLDc-domain-containing protein Rtc5 as a novel interactor of the V-ATPase. We further analyzed the influence of Rtc5 and of Oxr1, the only other yeast TLDc-domain-containing protein, on V-ATPase function. We find that both Rtc5 and Oxr1 promote the disassembly of the vacuolar V-ATPase in vivo, counteracting the role of the RAVE complex, a V-ATPase assembly chaperone. Furthermore, Oxr1 is necessary for the retention of a Golgi-specific subunit of the V-ATPase in this compartment. Collectively, our results shed light on the in vivo roles of yeast TLDc-domain proteins as regulators of the V-ATPase, highlighting the multifaceted regulation of this crucial protein complex.
Collapse
Affiliation(s)
- Samira Klössel
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Ying Zhu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Lucia Amado
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Daniel D Bisinski
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany
| | - Ayelén González Montoro
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany.
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
11
|
Khan MM, Wilkens S. Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase. EMBO Rep 2024; 25:2323-2347. [PMID: 38565737 PMCID: PMC11094088 DOI: 10.1038/s44319-024-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.
Collapse
Affiliation(s)
- Md Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Yanagisawa S, Bukhari ZA, Parra KJ, Frasch WD. Eukaryotic yeast V 1-ATPase rotary mechanism insights revealed by high-resolution single-molecule studies. Front Mol Biosci 2024; 11:1269040. [PMID: 38567099 PMCID: PMC10985318 DOI: 10.3389/fmolb.2024.1269040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Vacuolar ATP-dependent proton pumps (V-ATPases) belong to a super-family of rotary ATPases and ATP synthases. The V1 complex consumes ATP to drive rotation of a central rotor that pumps protons across membranes via the Vo complex. Eukaryotic V-ATPases are regulated by reversible disassembly of subunit C, V1 without C, and VO. ATP hydrolysis is thought to generate an unknown rotary state that initiates regulated disassembly. Dissociated V1 is inhibited by subunit H that traps it in a specific rotational position. Here, we report the first single-molecule studies with high resolution of time and rotational position of Saccharomyces cerevisiae V1-ATPase lacking subunits H and C (V1ΔHC), which resolves previously elusive dwells and angular velocity changes. Rotation occurred in 120° power strokes separated by dwells comparable to catalytic dwells observed in other rotary ATPases. However, unique V1ΔHC rotational features included: 1) faltering power stroke rotation during the first 60°; 2) a dwell often occurring ∼45° after the catalytic dwell, which did not increase in duration at limiting MgATP; 3) a second dwell, ∼2-fold longer occurring 112° that increased in duration and occurrence at limiting MgATP; 4) limiting MgATP-dependent decreases in power stroke angular velocity where dwells were not observed. The results presented here are consistent with MgATP binding to the empty catalytic site at 112° and MgADP released at ∼45°, and provide important new insight concerning the molecular basis for the differences in rotary positions of substrate binding and product release between V-type and F-type ATPases.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zain A. Bukhari
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Karlett J. Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Wayne D. Frasch
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
14
|
Mitra C, Winkley S, Kane PM. Human V-ATPase a-subunit isoforms bind specifically to distinct phosphoinositide phospholipids. J Biol Chem 2023; 299:105473. [PMID: 37979916 PMCID: PMC10755780 DOI: 10.1016/j.jbc.2023.105473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.
Collapse
Affiliation(s)
- Connie Mitra
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Samuel Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
15
|
Lin X, Wang W, Yang M, Damseh N, de Sousa MML, Jacob F, Lång A, Kristiansen E, Pannone M, Kissova M, Almaas R, Kuśnierczyk A, Siller R, Shahrour M, Al-Ashhab M, Abu-Libdeh B, Tang W, Slupphaug G, Elpeleg O, Bøe SO, Eide L, Sullivan GJ, Rinholm JE, Song H, Ming GL, van Loon B, Edvardson S, Ye J, Bjørås M. A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial-temporal regulation of histone arginine methylation in neurodevelopment. Genome Biol 2023; 24:216. [PMID: 37773136 PMCID: PMC10540402 DOI: 10.1186/s13059-023-03037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nadirah Damseh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Lång
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elise Kristiansen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Marco Pannone
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Miroslava Kissova
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Richard Siller
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Maher Shahrour
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
- Department of Newborn and Developmental Paediatrics, Toronto, ON, Canada
| | - Motee Al-Ashhab
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Wannan Tang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Orly Elpeleg
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johanne Egge Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Simon Edvardson
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel.
| | - Jing Ye
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway.
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
17
|
Tuli F, Kane PM. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Front Mol Biosci 2023; 10:1168680. [PMID: 37398550 PMCID: PMC10313074 DOI: 10.3389/fmolb.2023.1168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.
Collapse
Affiliation(s)
| | - Patricia M. Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
18
|
Mitra C, Kane PM. Human V-ATPase a-subunit isoforms bind specifically to distinct phosphoinositide phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538068. [PMID: 37162989 PMCID: PMC10168244 DOI: 10.1101/2023.04.24.538068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
V-ATPases are highly conserved multi-subunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue and organelle specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms. We hypothesize that the aNT domains of the human isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. Bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP binding sites, potential binding sites in the HuaNT domains were identified by sequence comparisons and existing subunit structures and models. Mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data also suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.
Collapse
Affiliation(s)
- Connie Mitra
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
19
|
Tuli F, Kane PM. Chimeric a-subunit isoforms generate functional yeast V-ATPases with altered regulatory properties in vitro and in vivo. Mol Biol Cell 2023; 34:ar14. [PMID: 36598799 PMCID: PMC10011726 DOI: 10.1091/mbc.e22-07-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
V-ATPases are highly regulated proton pumps that acidify organelles. The V-ATPase a-subunit is a two-domain protein containing a C-terminal transmembrane domain responsible for proton transport and an N-terminal cytosolic domain (aNT) that is a regulatory hub, integrating environmental inputs to regulate assembly, localization, and V-ATPase activity. The yeast Saccharomyces cerevisiae encodes only two organelle-specific a-isoforms, Stv1 in the Golgi and Vph1 in the vacuole. On the basis of recent structures, we designed chimeric yeast aNTs in which the globular proximal and distal ends are exchanged. The Vph1 proximal-Stv1 distal (VPSD) aNT chimera binds to the glucose-responsive RAVE assembly factor in vitro but exhibits little binding to PI(3,5)P2. The Stv1 proximal-Vph1 distal (SPVD) aNT lacks RAVE binding but binds more tightly to phosphoinositides than Vph1 or Stv1. When attached to the Vph1 C-terminal domain in vivo, both chimeras complement growth defects of a vph1∆ mutant, but only the SPVD chimera exhibits wild-type V-ATPase activity. Cells containing the SPVD chimera adapt more slowly to a poor carbon source than wild-type cells but grow more rapidly than wild-type cells after a shift to alkaline pH. This is the first example of a "redesigned" V-ATPase with altered regulatory properties and adaptation to specific stresses.
Collapse
Affiliation(s)
- Farzana Tuli
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
20
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
21
|
Tu H, Han Y, Wang Z, Li J. Clustered tree regression to learn protein energy change with mutated amino acid. Brief Bioinform 2022; 23:6702668. [PMID: 36124753 DOI: 10.1093/bib/bbac374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Accurate and effective prediction of mutation-induced protein energy change remains a great challenge and of great interest in computational biology. However, high resource consumption and insufficient structural information of proteins severely limit the experimental techniques and structure-based prediction methods. Here, we design a structure-independent protocol to accurately and effectively predict the mutation-induced protein folding free energy change with only sequence, physicochemical and evolutionary features. The proposed clustered tree regression protocol is capable of effectively exploiting the inherent data patterns by integrating unsupervised feature clustering by K-means and supervised tree regression using XGBoost, and thus enabling fast and accurate protein predictions with different mutations, with an average Pearson correlation coefficient of 0.83 and an average root-mean-square error of 0.94kcal/mol. The proposed sequence-based method not only eliminates the dependence on protein structures, but also has potential applications in protein predictions with rare structural information.
Collapse
Affiliation(s)
- Hongwei Tu
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqiang Han
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilong Wang
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinjin Li
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Tan YZ, Abbas YM, Wu JZ, Wu D, Keon KA, Hesketh GG, Bueler SA, Gingras AC, Robinson CV, Grinstein S, Rubinstein JL. CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7. Life Sci Alliance 2022; 5:e202201527. [PMID: 35794005 PMCID: PMC9263379 DOI: 10.26508/lsa.202201527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.6% of complexes bound mEAK-7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK-7 showed that mEAK-7's TLDc domain interacts with V-ATPase's stator, whereas its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, unlike the yeast TLDc protein Oxr1p, exogenous mEAK-7 does not inhibit V-ATPase and mEAK-7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that the mEAK-7:V-ATPase interaction is disrupted by ATP-induced rotation of the rotor. Comparison of Oxr1p and mEAK-7 binding explains this difference. These results show that V-ATPase binding by TLDc domain proteins can lead to effects ranging from strong inhibition to formation of labile interactions that are sensitive to the enzyme's activity.
Collapse
Affiliation(s)
- Yong Zi Tan
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Yazan M Abbas
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
24
|
Wang R, Qin Y, Xie XS, Li X. Molecular basis of mEAK7-mediated human V-ATPase regulation. Nat Commun 2022; 13:3272. [PMID: 35672408 PMCID: PMC9174246 DOI: 10.1038/s41467-022-30899-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
The activity of V-ATPase is well-known to be regulated by reversible dissociation of its V1 and Vo domains in response to growth factor stimulation, nutrient sensing, and cellular differentiation. The molecular basis of its regulation by an endogenous modulator without affecting V-ATPase assembly remains unclear. Here, we discover that a lysosome-anchored protein termed (mammalian Enhancer-of-Akt-1-7 (mEAK7)) binds to intact V-ATPase. We determine cryo-EM structure of human mEAK7 in complex with human V-ATPase in native lipid-containing nanodiscs. The structure reveals that the TLDc domain of mEAK7 engages with subunits A, B, and E, while its C-terminal domain binds to subunit D, presumably blocking V1-Vo torque transmission. Our functional studies suggest that mEAK7, which may act as a V-ATPase inhibitor, does not affect the activity of V-ATPase in vitro. However, overexpression of mEAK7 in HCT116 cells that stably express subunit a4 of V-ATPase represses the phosphorylation of ribosomal protein S6. Thus, this finding suggests that mEAK7 potentially links mTOR signaling with V-ATPase activity.
Collapse
Affiliation(s)
- Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yu Qin
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao-Song Xie
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|