1
|
Katsuma K, Shimada K, Tonai S, Mashiko D, Iida-Norita R, Kaneda Y, Miyata H, Ikawa M. The absence of both RIBC1 and RIBC2 induces decreased sperm motility and litter size in male mice. Andrology 2025. [PMID: 40265983 DOI: 10.1111/andr.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND RIBC1 (RIB43A domain with coiled-coils 1) and RIBC2 (RIB43A domain with coiled-coils 2) are homolog proteins of RIB43a which is localized to microtubules in the cilia and flagella of unicellular organisms. Cryo-electron microscopy and artificial intelligence studies showed that RIBC1 and RIBC2 are microtubule inner proteins (MIPs) localized in the inner lumen of the doublet microtubules (DMTs) in mouse sperm flagella. However, the function of RIBC1 and RIBC2 in mammalian reproduction and sperm flagella is still unknown. OBJECTIVE To clarify the function of RIBC1 and RIBC2 in mouse spermatozoa. MATERIALS AND METHODS We generated Ribc1 knockout (KO), Ribc2 KO, and Ribc1 and Ribc2 double-knockout (Ribc1/2 DKO) mice using the CRISPR/Cas9 system and analyzed their phenotypes. RESULTS We revealed that the loss of either RIBC1 or RIBC2 alone did not affect male fertility, but the absence of both caused a decrease in pup numbers. Sperm motility analysis showed that Ribc1 KO spermatozoa had reduced velocity, but Ribc2 KO sperm velocities were comparable with WT mice. However, Ribc1/2 DKO sperm velocities were significantly lower than those from Ribc1 KO mice. No structural abnormalities in the axonemal structure at the transmission electron microscope (TEM) level and no abnormalities in the flagellar waveform pattern were observed in Ribc1/2 DKO spermatozoa. DISCUSSION AND CONCLUSION Both RIBC1 and RIBC2 are not significant for maintaining the axonemal structure in mouse spermatozoa, but both proteins function cooperatively in sperm motility. This result may indicate that minor structural changes due to RIBC protein absence are not detected at the TEM level, and RIBC2 function depends on RIBC1 in sperm motility. We think that reduced litter size in Ribc1/2 DKO mice is caused by reduced sperm motility due to minor structural abnormalities caused by the loss of two RIBC proteins.
Collapse
Affiliation(s)
- Kento Katsuma
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shingo Tonai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Mashiko
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Xia X, Shimogawa MM, Wang H, Liu S, Wijono A, Langousis G, Kassem AM, Wohlschlegel JA, Hill KL, Zhou ZH. Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms. Science 2025; 387:eadr3314. [PMID: 40080582 DOI: 10.1126/science.adr3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
The flagellum of Trypanosoma brucei drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of T. brucei flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michelle M Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Samuel Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Angeline Wijono
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ahmad M Kassem
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Leung MR, Sun C, Zeng J, Anderson JR, Niu Q, Huang W, Noteborn WEM, Brown A, Zeev-Ben-Mordehai T, Zhang R. Structural diversity of axonemes across mammalian motile cilia. Nature 2025; 637:1170-1177. [PMID: 39743588 PMCID: PMC11779644 DOI: 10.1038/s41586-024-08337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii1, structures of mammalian axonemes are incomplete1-5. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body. Here we use cryoelectron microscopy, cryoelectron tomography and proteomics to resolve the 96-nm modular repeat of axonemal doublet microtubules (DMTs) from both sperm flagella and epithelial cilia of the oviduct, brain ventricles and respiratory tract. We find that sperm DMTs are the most specialized, with epithelial cilia having only minor differences across tissues. We build a model of the mammalian sperm DMT, defining the positions and interactions of 181 proteins including 34 newly identified proteins. We elucidate the composition of radial spoke 3 and uncover binding sites of kinases associated with regeneration of ATP and regulation of ciliary motility. We discover a sperm-specific, axoneme-tethered T-complex protein ring complex (TRiC) chaperone that may contribute to construction or maintenance of the long flagella of mammalian sperm. We resolve axonemal dyneins in their prestroke states, illuminating conformational changes that occur during ciliary movement. Our results illustrate how elements of chemical and mechanical regulation are embedded within the axoneme, providing valuable resources for understanding the aetiology of ciliopathy and infertility, and exemplifying the discovery power of modern structural biology.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chen Sun
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jianwei Zeng
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Willem E M Noteborn
- Netherlands Centre for Electron Nanoscopy (NeCEN), Leiden University, Leiden, the Netherlands
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Tzviya Zeev-Ben-Mordehai
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Zimmermann N, Ishikawa T. Comparative structural study on axonemal and cytoplasmic dyneins. Cytoskeleton (Hoboken) 2024; 81:681-690. [PMID: 39073294 DOI: 10.1002/cm.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Ellaway JIJ, Anyango S, Nair S, Zaki HA, Nadzirin N, Powell HR, Gutmanas A, Varadi M, Velankar S. Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:034701. [PMID: 38774441 PMCID: PMC11106648 DOI: 10.1063/4.0000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
Studying protein dynamics and conformational heterogeneity is crucial for understanding biomolecular systems and treating disease. Despite the deposition of over 215 000 macromolecular structures in the Protein Data Bank and the advent of AI-based structure prediction tools such as AlphaFold2, RoseTTAFold, and ESMFold, static representations are typically produced, which fail to fully capture macromolecular motion. Here, we discuss the importance of integrating experimental structures with computational clustering to explore the conformational landscapes that manifest protein function. We describe the method developed by the Protein Data Bank in Europe - Knowledge Base to identify distinct conformational states, demonstrate the resource's primary use cases, through examples, and discuss the need for further efforts to annotate protein conformations with functional information. Such initiatives will be crucial in unlocking the potential of protein dynamics data, expediting drug discovery research, and deepening our understanding of macromolecular mechanisms.
Collapse
Affiliation(s)
- Joseph I. J. Ellaway
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Stephen Anyango
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Sreenath Nair
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Hossam A. Zaki
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Nurul Nadzirin
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Harold R. Powell
- Imperial College London, Department of Life Sciences, London, United Kingdom
| | - Aleksandras Gutmanas
- WaveBreak Therapeutics Ltd., Clarendon House, Clarendon Road, Cambridge, United Kingdom
| | - Mihaly Varadi
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| |
Collapse
|
6
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
9
|
Zhang T, Cui S, Xiong X, Liu Y, Cao Q, Xia XG, Zhou H. PIH1D3-knockout rats exhibit full ciliopathy features and dysfunctional pre-assembly and loading of dynein arms in motile cilia. Front Cell Dev Biol 2023; 11:1282787. [PMID: 37900281 PMCID: PMC10601634 DOI: 10.3389/fcell.2023.1282787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Recessive mutation of the X-linked gene, PIH1 domain-containing protein 3 (PIH1D3), causes familial ciliopathy. PIH1D3 deficiency is associated with the defects of dynein arms in cilia, but how PIH1D3 specifically affects the structure and function of dynein arms is not understood yet. To gain insights into the underlying mechanisms of the disease, it is crucial to create a reliable animal model. In humans, rats, and mice, one copy of the PIH1D3 gene is located on the X chromosome. Interestingly, mice have an additional, intronless copy of the Pih1d3 gene on chromosome 1. To develop an accurate disease model, it is best to manipulate the X-linked PIH1D3 gene, which contains essential regulatory sequences within the introns for precise gene expression. This study aimed to develop a tailored rat model for PIH1D3-associated ciliopathy with the ultimate goal of uncovering the intricate molecular mechanisms responsible for ciliary defects in the disease. Methods: Novel Pih1d3-knockout (KO) rats were created by using TALEN-mediated non-homologous DNA recombination within fertilized rat eggs and, subsequently, underwent a comprehensive characterization through a battery of behavioral and pathological assays. A series of biochemical and histological analyses were conducted to elucidate the identity of protein partners that interact with PIH1D3, thus shedding light on the intricate molecular mechanisms involved in this context. Results: PIH1D3-KO rats reproduced the cardinal features of ciliopathy including situs inversus, defects in spermatocyte survival and mucociliary clearance, and perinatal hydrocephalus. We revealed the novel function of PIH1D3 in cerebrospinal fluid circulation and elucidated the mechanism by which PIH1D3 deficiency caused communicating hydrocephalus. PIH1D3 interacted with the proteins required for the pre-assembly and uploading of outer (ODA) and inner dynein arms (IDA), regulating the integrity of dynein arm structure and function in cilia. Conclusion: PIH1D3-KO rats faithfully reproduced the cardinal features of ciliopathy associated with PIH1D3 deficiency. PIH1D3 interacted with the proteins responsible for the pre-assembly and uploading of dynein arms in cilia, and its deficiency led to dysfunctional cilia and, thus, to ciliopathy by affecting the pre-assembly and uploading of dynein arms. The resultant rat model is a valuable tool for the mechanistic study of PIH1D3-caused diseases.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| |
Collapse
|
10
|
Walton T, Gui M, Velkova S, Fassad MR, Hirst RA, Haarman E, O'Callaghan C, Bottier M, Burgoyne T, Mitchison HM, Brown A. Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature 2023; 618:625-633. [PMID: 37258679 PMCID: PMC10266980 DOI: 10.1038/s41586-023-06140-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.
Collapse
Affiliation(s)
- Travis Walton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Simona Velkova
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Eric Haarman
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christopher O'Callaghan
- Infection, Immunity & Inflammation Department, NIHR GOSH BRC, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mathieu Bottier
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thomas Burgoyne
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Ishikawa T. Architecture of intraflagellar transport complexes. Nat Struct Mol Biol 2023; 30:570-573. [PMID: 37198269 DOI: 10.1038/s41594-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute Villigen, Villigen, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|