1
|
Gonçalves Dias M, Dharmasena T, Gonzalez-Ferrer C, Maika JE, Miguel VN, Dou R, Rodriguez Gallo MC, Bredow M, Siegel KR, Uhrig RG, Simon R, Monaghan J. Catalytically inactive subgroup VIII receptor-like cytoplasmic kinases regulate the immune-triggered oxidative burst in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1553-1568. [PMID: 39673241 PMCID: PMC11981898 DOI: 10.1093/jxb/erae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana. Specifically, we focus on subgroup VIII RLCKs: MAZ and its paralog CARK6, as well as CARK7 and its paralog CARK9. We found that both MAZ and CARK7 associate with the calcium-dependent protein kinase CPK28 in planta and, furthermore, that CPK28 phosphorylates both MAZ and CARK7 on multiple residues in areas that are known to be critical for protein kinase activation. Genetic analysis suggested redundant roles for MAZ and CARK6 as negative regulators of the immune-triggered oxidative burst. We provide evidence that supports homo- and heterodimerization between CARK7 and MAZ, which may be a general feature of this subgroup. Multiple biochemical experiments indicated that neither MAZ nor CARK7 demonstrate catalytic protein kinase activity in vitro. Interestingly, we found that a mutant variant of MAZ incapable of protein kinase activity can complement maz-1 mutants, suggesting non-catalytic roles of MAZ in planta. Overall, our study identifies subgroup VIII RLCKs as new players in Arabidopsis immune signaling and highlights the importance of non-catalytic functions of protein kinases.
Collapse
Affiliation(s)
| | | | | | - Jan Eric Maika
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Ruoqi Dou
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Zeng Q, Peng F, Wang J, Wang S, Lu X, Bakhsh A, Li Y, Qaraevna BZ, Ye W, Yin Z. Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton. PHYSIOLOGIA PLANTARUM 2025; 177:e70031. [PMID: 39743670 DOI: 10.1111/ppl.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported. In this study, 77 MAP4K genes were identified in four Gossypium species. Protein characteristics, gene structures, conserved motifs and gene expression analysis were carried out. Genome-wide or fragment duplication has played an important role in the expansion of the GhMAP4K. Promoter cis-acting elements and expression patterns indicated that GhMAP4Ks are related to plant hormones (ABA, MeJA, GA, IAA, SA) and various stresses (drought, hypothermia and wound). Overexpressing GhMAP4K13 in Arabidopsis showed higher stem length in response to drought and salt stress. The wilting degree in virus-induced GhMAP4K13 gene silenced plants was substantially greater than wild type plants under drought and salt stress. Transcriptomic analysis showed that most differentially expressed genes were involved in the MAPK signaling pathway, carbon metabolism and porphyrin metabolism. Additionally, transgenic Arabidopsis and VIGS cotton showed that GhMAP4K13 was positively responsive to drought and salt stresses. This study will play an important role in understanding the function of the MAP4K gene family in response to abiotic stress in cotton.
Collapse
Affiliation(s)
- Qing Zeng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Hunan, China
| | - Junjuan Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuai Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuke Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yan Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bobokhonova Zebinisso Qaraevna
- Department cotton growing, genetics, breeding and seed, Tajik agrarian University named Shirinsho Shotemur Dushanbe, Republic of Tajikistan
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Ren N, Zhang G, Yang X, Chen J, Ni L, Jiang M. MAPKKK28 functions upstream of the MKK1-MPK1 cascade to regulate abscisic acid responses in rice. PLANT, CELL & ENVIRONMENT 2024; 47:5140-5157. [PMID: 39166350 DOI: 10.1111/pce.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaokun Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lan Ni
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Fu J, Wang H, Chen Y, Zhang C, Zou Y. The Multifaceted Ubiquitination of BIK1 During Plant Immunity in Arabidopsis thaliana. Int J Mol Sci 2024; 25:12187. [PMID: 39596247 PMCID: PMC11594851 DOI: 10.3390/ijms252212187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
As sessile organisms, the plant immune system plays a vital role in protecting plants from the widespread pathogens in the environment. The Arabidopsis thaliana (Arabidopsis) receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1) acts as a central regulator during plant immunity. As such, not only the BIK1 protein accumulation but also the attenuation is tightly regulated to ensure effective immune responses. Recent studies have highlighted the critical roles of ubiquitination in maintaining BIK1 homeostasis. Here, we review the latest advances in the ubiquitination of BIK1 in plant immunity, which is mediated by ubiquitin ligases PUB25/26, RHA3A/B, RGLG1/2, and PUB4. Additionally, we summarize and discuss the sites and types of BIK1 ubiquitination. Collectively, these analyses not only illustrate that the differential modifications on BIK1 by multiple ubiquitin ligases hold a crucial position in plant immunity but also provide a good example for future studies on ubiquitin-mediated modifications in plants.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Zou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
He H, Chen Z, Fan R, Zhang J, Zhu S, Wang J, Zhang Q, Gao A, Gong S, Zhang L, Li Y, Zhao Y, Krattinger SG, Shen QH, Li H, Wang Y. A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew. Nat Commun 2024; 15:6512. [PMID: 39095395 PMCID: PMC11297308 DOI: 10.1038/s41467-024-50909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.
Collapse
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Zhaozhao Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shanying Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiale Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qianyuan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Anli Gao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yitong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Pan L, Fonseca de Lima CF, Vu LD, van de Cotte B, De Winne N, Gevaert K, De Jaeger G, De Smet I. Heterodimerization domains in MAP4 KINASEs determine subcellular localization and activity in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1807-1817. [PMID: 38513700 DOI: 10.1093/plphys/kiae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024]
Abstract
Signal transduction relies largely on the activity of kinases and phosphatases that control protein phosphorylation. However, we still know very little about phosphorylation-mediated signaling networks. Plant MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) have recently gained more attention, given their role in a wide range of processes, including developmental processes and stress signaling. We analyzed MAP4K expression patterns and mapped protein-MAP4K interactions in Arabidopsis (Arabidopsis thaliana), revealing extensive coexpression and heterodimerization. This heterodimerization is regulated by the C-terminal, intrinsically disordered half of the MAP4K, and specifically by the coiled coil motif. The ability to heterodimerize is required for proper activity and localization of the MAP4Ks. Taken together, our results identify MAP4K-interacting proteins and emphasize the functional importance of MAP4K heterodimerization. Furthermore, we identified MAP4K4/TARGET OF TEMPERATURE3 (TOT3) and MAP4K5/TOT3-INTERACTING PROTEIN 5 (TOI5) as key regulators of the transition from cell division to elongation zones in the primary root tip.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
8
|
Li Y, Li Y, Zou X, Jiang S, Cao M, Chen F, Yin Y, Xiao W, Liu S, Guo X. Bioinformatic Identification and Expression Analyses of the MAPK-MAP4K Gene Family Reveal a Putative Functional MAP4K10-MAP3K7/8-MAP2K1/11-MAPK3/6 Cascade in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:941. [PMID: 38611471 PMCID: PMC11013086 DOI: 10.3390/plants13070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascades act as crucial signaling modules that regulate plant growth and development, response to biotic/abiotic stresses, and plant immunity. MAP3Ks can be activated through MAP4K phosphorylation in non-plant systems, but this has not been reported in plants to date. Here, we identified a total of 234 putative TaMAPK family members in wheat (Triticum aestivum L.). They included 48 MAPKs, 17 MAP2Ks, 144 MAP3Ks, and 25 MAP4Ks. We conducted systematic analyses of the evolution, domain conservation, interaction networks, and expression profiles of these TaMAPK-TaMAP4K (representing TaMAPK, TaMAP2K, TaMAP3K, and TaMAP4K) kinase family members. The 234 TaMAPK-TaMAP4Ks are distributed on 21 chromosomes and one unknown linkage group (Un). Notably, 25 of these TaMAP4K family members possessed the conserved motifs of MAP4K genes, including glycine-rich motif, invariant lysine (K) motif, HRD motif, DFG motif, and signature motif. TaMAPK3 and 6, and TaMAP4K10/24 were shown to be strongly expressed not only throughout the growth and development stages but also in response to drought or heat stress. The bioinformatics analyses and qRT-PCR results suggested that wheat may activate the MAP4K10-MEKK7-MAP2K11-MAPK6 pathway to increase drought resistance in wheat, and the MAP4K10-MAP3K8-MAP2K1/11-MAPK3 pathway may be involved in plant growth. In general, our work identified members of the MAPK-MAP4K cascade in wheat and profiled their potential roles during their response to abiotic stresses and plant growth based on their expression pattern. The characterized cascades might be good candidates for future crop improvement and molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - You Li
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha 410082, China
| | - Miyuan Cao
- College of Biology, Hunan University, Changsha 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| |
Collapse
|
9
|
De K, Pal D, Shanks CM, Yates TB, Feng K, Jawdy SS, Hassan MM, Prabhakar PK, Yang JY, Chapla D, Moremen KW, Urbanowicz B, Binder BM, Muchero W. The Plasminogen-Apple-Nematode (PAN) domain suppresses JA/ET defense pathways in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545202. [PMID: 37398012 PMCID: PMC10312691 DOI: 10.1101/2023.06.15.545202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Suppression of immune response is a phenomenon that enables biological processes such as gamete fertilization, cell growth, cell proliferation, endophyte recruitment, parasitism, and pathogenesis. Here, we show for the first time that the Plasminogen-Apple-Nematode (PAN) domain present in G-type lectin receptor-like kinases is essential for immunosuppression in plants. Defense pathways involving jasmonic acid and ethylene are critical for plant immunity against microbes, necrotrophic pathogens, parasites, and insects. Using two Salix purpurea G-type lectin receptor kinases, we demonstrated that intact PAN domains suppress jasmonic acid and ethylene signaling in Arabidopsis and tobacco. Variants of the same receptors with mutated residues in this domain could trigger induction of both defense pathways. Assessment of signaling processes revealed significant differences between receptors with intact and mutated PAN domain in MAPK phosphorylation, global transcriptional reprogramming, induction of downstream signaling components, hormone biosynthesis and resistance to Botrytis cinerea . Further, we demonstrated that the domain is required for oligomerization, ubiquitination, and proteolytic degradation of these receptors. These processes were completely disrupted when conserved residues in the domain were mutated. Additionally, we have tested the hypothesis in recently characterized Arabidopsis mutant which has predicted PAN domain and negatively regulates plant immunity against root nematodes. ern1.1 mutant complemented with mutated PAN shows triggered immune response with elevated WRKY33 expression, hyperphosphorylation of MAPK and resistant to necrotrophic fungus Botrytis cinerea . Collectively, our results suggest that ubiquitination and proteolytic degradation mediated by the PAN domain plays a role in receptor turn-over to suppress jasmonic acid and ethylene defense signaling in plants.
Collapse
|
10
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
11
|
Xu X, Gevaert K, De Smet I, Vu LD. Targeted Profiling of Protein Phosphorylation in Plants. Methods Mol Biol 2023; 2718:167-179. [PMID: 37665460 DOI: 10.1007/978-1-0716-3457-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Proteins are crucial for controlling different cellular processes by perceiving and converting external environmental cues into cellular responses. Therefore, regulation of protein activities is pivotal for the development and survival of an organism. This is often mediated by posttranslational modifications, which usually are carried out on specific residues of a target protein by a "writer" protein. The (reversible) modifications of different residues may lead to different signaling outputs. In the case of protein phosphorylation, one of the most common posttranslational modifications, this writer protein is a protein kinase. In this chapter, we report a comprehensive and versatile workflow to identify the phosphorylation profile of a target protein in plants from a putative kinase-target pair by combining an in planta phosphorylation assay and mass spectrometry analysis.
Collapse
Affiliation(s)
- Xiangyu Xu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou J, Menke FLH, Trujillo M, Zipfel C, Macho AP. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 2022; 41:e107257. [PMID: 36314733 PMCID: PMC9713774 DOI: 10.15252/embj.2020107257] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Maria Derkacheva
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
The Earlham InstituteNorwich Research ParkNorwichUK
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Carla Brillada
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Shushu Jiang
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lena Stransfeld
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Frank L H Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Marco Trujillo
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Leibniz Institute for Plant BiochemistryHalle (Saale)Germany
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
13
|
Xiong F, Ren JJ, Wang YY, Zhou Z, Qi HD, Otegui MS, Wang XL. An Arabidopsis Retention and Splicing complex regulates root and embryo development through pre-mRNA splicing. PLANT PHYSIOLOGY 2022; 190:621-639. [PMID: 35640107 PMCID: PMC9434225 DOI: 10.1093/plphys/kiac256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 05/30/2023]
Abstract
Pre-mRNA splicing is an important step in the posttranscriptional processing of transcripts and a key regulator of development. The heterotrimeric retention and splicing (RES) complex plays vital roles in the growth and development of yeast, zebrafish, and humans by mediating pre-mRNA splicing of multiple genes. However, whether the RES complex is conserved in plants and what specific functions it has remain unknown. In this study, we identified Arabidopsis (Arabidopsis thaliana) BUD13 (AtBUD13), GROWTH, DEVELOPMENT AND SPLICING 1 (GDS1), and DAWDLE (DDL) as the counterparts of the yeast RES complex subunits Bud site selection protein 13 (Bud13), U2 snRNP component Snu17 (Snu17), and Pre-mRNA leakage protein 1, respectively. Moreover, we showed that RES is an ancient complex evolutionarily conserved in eukaryotes. GDS1 directly interacts with both AtBUD13 and DDL in nuclear speckles. The BUD13 domain of AtBUD13 and the RNA recognition motif domain of GDS1 are necessary and sufficient for AtBUD13-GDS1 interaction. Mutants of AtBUD13, GDS1, and DDL failed to properly splice multiple genes involved in cell proliferation and showed defects in early embryogenesis and root development. In addition, we found that GDS1 and DDL interact, respectively, with the U2 small nuclear ribonucleoproteins auxiliary factor AtU2AF65B and the NineTeen Complex-related splicing factor SKIP, which are essential for early steps of spliceosome assembly and recognition of splice sites. Altogether, our work reveals that the Arabidopsis RES complex is important for root and early embryo development by modulating pre-mRNA splicing.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhou Zhou
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
14
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Activation and turnover of the plant immune signaling kinase BIK1: a fine balance. Essays Biochem 2022; 66:207-218. [PMID: 35575190 DOI: 10.1042/ebc20210071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022]
Abstract
Mechanisms to sense and respond to pathogens have evolved in all species. The plant immune pathway is initiated by the activation of transmembrane receptor kinases that trigger phosphorylation relays resulting in cellular reprogramming. BOTRYTIS-INDUCED KINASE 1 (BIK1) is a direct substrate of multiple immune receptors in Arabidopsis thaliana and is a central regulator of plant immunity. Here, we review how BIK1 activity and protein stability are regulated by a dynamic interplay between phosphorylation and ubiquitination.
Collapse
|
16
|
Kong L, Rodrigues B, Kim JH, He P, Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102051. [PMID: 34022608 DOI: 10.1016/j.pbi.2021.102051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Sensing microbe-associated molecular patterns (MAMPs) by cell surface-resident pattern recognition receptors (PRRs) constitutes a core process in launching a successful immune response. Over the last decade, remarkable progress has been made in delineating the mechanisms of PRR-mediated plant immunity. As the frontline of defense, the homeostasis, activities, and subcellular dynamics of PRR and associated regulators are subjected to tight regulations. The layered protein post-translational modifications, particularly the intertwined phosphorylation and ubiquitylation of PRR complexes, play a central role in regulating PRR signaling outputs and plant immune responses. This review provides an update about the PRR complex regulation by various post-translational modifications and discusses how protein phosphorylation and ubiquitylation act in concert to ensure a rapid, proper, and robust immune response.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Barbara Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
DeFalco TA, Zipfel C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell 2021; 81:3449-3467. [PMID: 34403694 DOI: 10.1016/j.molcel.2021.07.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
All eukaryotic organisms have evolved sophisticated immune systems to appropriately respond to biotic stresses. In plants and animals, a key part of this immune system is pattern recognition receptors (PRRs). Plant PRRs are cell-surface-localized receptor kinases (RKs) or receptor proteins (RPs) that sense microbe- or self-derived molecular patterns to regulate pattern-triggered immunity (PTI), a robust form of antimicrobial immunity. Remarkable progress has been made in understanding how PRRs perceive their ligands, form active protein complexes, initiate cell signaling, and ultimately coordinate the cellular reprogramming that leads to PTI. Here, we discuss the critical roles of PRR complex formation and phosphorylation in activating PTI signaling, as well as the emerging paradigm in which receptor-like cytoplasmic kinases (RLCKs) act as executors of signaling downstream of PRR activation.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Pan L, Fonseca De Lima CF, Vu LD, De Smet I. A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage. FRONTIERS IN PLANT SCIENCE 2021; 12:650171. [PMID: 34484252 PMCID: PMC8415026 DOI: 10.3389/fpls.2021.650171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The kinase-mediated phosphorylation impacts every basic cellular process. While mitogen-activated protein kinase technology kinase kinases (MAP4Ks) are evolutionarily conserved, there is no comprehensive overview of the MAP4K family in the green lineage (Viridiplantae). In this study, we identified putative MAP4K members from representative species of the two core groups in the green lineage: Chlorophyta, which is a diverse group of green algae, and Streptophyta, which is mostly freshwater green algae and land plants. From that, we inferred the evolutionary relationships of MAP4K proteins through a phylogenetic reconstruction. Furthermore, we provided a classification of the MAP4Ks in the green lineage into three distinct.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
19
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
20
|
Vu LD, Xu X, Zhu T, Pan L, van Zanten M, de Jong D, Wang Y, Vanremoortele T, Locke AM, van de Cotte B, De Winne N, Stes E, Russinova E, De Jaeger G, Van Damme D, Uauy C, Gevaert K, De Smet I. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat Commun 2021; 12:2842. [PMID: 33990595 PMCID: PMC8121802 DOI: 10.1038/s41467-021-23112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature. We identify MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASE4 (MAP4K4)/TARGET OF TEMPERATURE3 (TOT3) as a regulator of thermomorphogenesis that impinges on brassinosteroid signalling in Arabidopsis thaliana. In addition, we show that TOT3 plays a role in thermal response in wheat, a monocot crop. Altogether, the conserved thermal regulation by TOT3 expands our knowledge of thermomorphogenesis beyond the well-studied pathways and can contribute to ensuring food security under a changing climate. Plants respond to warmth via growth processes termed thermomorphogenesis. Here, via a phosphoproteomics approach, the authors show that the mitogen activated protein kinase TOT3 regulates thermomorphogenesis in both wheat and Arabidopsis and modifies brassinosteroid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Dorrit de Jong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tim Vanremoortele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna M Locke
- Soybean & Nitrogen Fixation Research Unit, United States Department of Agriculture- Agricultural Research Service, Raleigh, NC, 27695, USA.,Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.,VIB Headquarters, 9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium. .,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium. .,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
| |
Collapse
|
21
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Grubb LE, Derbyshire P, Dunning KE, Zipfel C, Menke FLH, Monaghan J. Large-scale identification of ubiquitination sites on membrane-associated proteins in Arabidopsis thaliana seedlings. PLANT PHYSIOLOGY 2021; 185:1483-1488. [PMID: 33585938 PMCID: PMC8133621 DOI: 10.1093/plphys/kiab023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 05/09/2023]
Abstract
An analysis of the identification of ubiquitination sites on proteins found at the cell periphery, including over 100 protein kinases.
Collapse
Affiliation(s)
- Lauren E Grubb
- Department of Biology, Queen’s University, Kingston, Canada
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Present address: John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jacqueline Monaghan
- Department of Biology, Queen’s University, Kingston, Canada
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Author for communication: (J.M.)
| |
Collapse
|
23
|
Pan L, De Smet I. Expanding the Mitogen-Activated Protein Kinase (MAPK) Universe: An Update on MAP4Ks. FRONTIERS IN PLANT SCIENCE 2020; 11:1220. [PMID: 32849755 PMCID: PMC7427426 DOI: 10.3389/fpls.2020.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 05/23/2023]
Abstract
Phosphorylation-mediated signaling cascades control plant growth and development or the response to stress conditions. One of the best studied signaling cascades is the one regulated by MITOGEN-ACTIVATED PROTEIN KINASEs (MAPKs). However, MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) are hardly explored. Here, we will give a comprehensive overview of what is known about plant MAP4Ks and highlight some outstanding questions associated with this largely uncharacterized class of kinases in plants.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
24
|
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. Surface Sensor Systems in Plant Immunity. PLANT PHYSIOLOGY 2020; 182:1582-1596. [PMID: 31822506 PMCID: PMC7140916 DOI: 10.1104/pp.19.01299] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Protein complexes at the cell surface facilitate the detection of danger signals from diverse pathogens and initiate a series of complex intracellular signaling events that result in various immune responses.
Collapse
Affiliation(s)
- Isabell Albert
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
25
|
Han B, Jiang Y, Cui G, Mi J, Roelfsema MRG, Mouille G, Sechet J, Al-Babili S, Aranda M, Hirt H. CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae. PLANT PHYSIOLOGY 2020; 182:1052-1065. [PMID: 31806735 PMCID: PMC6997689 DOI: 10.1104/pp.19.01279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.
Collapse
Affiliation(s)
- Baoda Han
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Yunhe Jiang
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Mi
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - M Rob G Roelfsema
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
26
|
Jiang Y, Han B, Zhang H, Mariappan KG, Bigeard J, Colcombet J, Hirt H. MAP4K4 associates with BIK1 to regulate plant innate immunity. EMBO Rep 2019; 20:e47965. [PMID: 31475431 DOI: 10.15252/embr.201947965] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
To perceive pathogens, plants employ pattern recognition receptor (PRR) complexes, which then transmit these signals via the receptor-like cytoplasmic kinase BIK1 to induce defense responses. How BIK1 activity and stability are controlled is still not completely understood. Here, we show that the Hippo/STE20 homolog MAP4K4 regulates BIK1-mediated immune responses. MAP4K4 associates and phosphorylates BIK1 at Ser233, Ser236, and Thr242 to ensure BIK1 stability and activity. Furthermore, MAP4K4 phosphorylates PP2C38 at Ser77 to enable flg22-induced BIK1 activation. Our results uncover that a Hippo/STE20 homolog, MAP4K4, maintains the homeostasis of the central immune component BIK1.
Collapse
Affiliation(s)
- Yunhe Jiang
- Desert Agriculture Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Baoda Han
- Desert Agriculture Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Desert Agriculture Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Jean Colcombet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Heribert Hirt
- Desert Agriculture Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|