1
|
Le E, Moadab F, Wang X, Najjar R, Van den Bogaerde SJ, Bays A, LaCava J, Mustelin T. Interferons and Cytokines Induce Transcriptional Activation of the Long-Interspersed Element-1 in Myeloid Cells from Autoimmune Patients. Eur J Immunol 2025; 55:e2451351. [PMID: 40071709 PMCID: PMC11951091 DOI: 10.1002/eji.202451351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
Approximately 17% of our genome consists of copies of the retrotransposon "long interspersed element-1" (LINE-1 or L1). Patients with systemic lupus erythematosus (SLE) frequently have autoantibodies against the L1-encoded ORF1 protein (ORF1p), which correlate with disease activity and interferon gene signature. ORF1p is present in neutrophils from patients with active disease in perinuclear ribonucleoprotein particles that also contain Ro60 and nucleic acid sensors. Here, we report that treatment of neutrophils or monocytes with the demethylating agent 5-aza-deoxycytidine, interferon-α, tumor necrosis factor-α, and other cytokines or toll-like receptor agonists, induce a rapid increase in L1 transcripts. This increase was greater in cells from patients with SLE or rheumatoid arthritis (RA) than in cells from healthy donors, except that cells from SLE did not respond to interferon-α, presumably because most SLE patients have elevated type I interferons in vivo. Interferon-α also induced ORF1p in RA neutrophils with a subcellular distribution like that of ORF1p in freshly isolated SLE neutrophils. A luciferase reporter gene driven by the 5' untranslated region of L1, which controls its transcription, was also stimulated by interferon-α. These new insights into L1 transcriptional regulation indicate that it may play a more active role in antiviral immune responses.
Collapse
Affiliation(s)
- Ethan Le
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. eLife 2025; 13:RP95952. [PMID: 39960487 PMCID: PMC11832170 DOI: 10.7554/elife.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.
Collapse
Affiliation(s)
- Ashley L Cook
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Surojit Sur
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Laura Dobbyn
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Evangeline Watson
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Blair Ptak
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Bum Seok Lee
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Suman Paul
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Emily Hsiue
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nicolas Wyhs
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Dougherty SE, Barros GC, Foster MW, Teo G, Choi H, Silva GM. Context specific ubiquitin modification of ribosomes regulates translation under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.592277. [PMID: 39975283 PMCID: PMC11838502 DOI: 10.1101/2024.05.02.592277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cellular exposure to stress is known to activate several translational control pathways through ribosome ubiquitination. However, how unique patterns of ribosome ubiquitination act at the site-specific level to drive distinct modes of translation regulation remains unclear. To further understand the complexity of these ubiquitin signals, we developed a new targeted proteomics approach to quantify site-specific ubiquitin modification across the ribosome. This method increased the sensitivity and throughput of current approaches and allowed us to systematically measure the ubiquitin status of 78 ribosome peptides and ubiquitin linkages in response to stress. Using this method, we were able to detect the ubiquitination of several ribosome sites even in steady-state conditions, and to show that their modification increases non-stoichiometrically in a dynamic range of >4 orders of magnitude in response to hydrogen peroxide. Besides demonstrating new patterns of global ribosome ubiquitination, our study also revealed an unexpected increase of ubiquitination of ribosomal protein uS10/Rps20 and uS3/Rps3 independent of the canonical E3 ubiquitin ligase Hel2. Furthermore, we show that unique and mixed patterns of ribosome ubiquitination occur in a stress specific manner, depending on the nature of stressor and the enzymes involved. Finally, we showed that while deletion of HEL2 further induces the integrated stress response in response to the nucleotide alkylating agent 4-NQO, deletion of the E2 conjugase RAD6 leads to sustained translation only in response to H2O2. Our findings contribute to deciphering the complexity of the stress response at the translational level, revealing the induction of dynamic and selective ubiquitin codes, which shed light on the integration of important quality control pathways during cellular response to stress.
Collapse
Affiliation(s)
| | | | - Matthew W. Foster
- Proteomics and Metabolomics Core Facility, Duke University, School of Medicine, Durham, North Carolina.NC 27701, USA
| | - Guoshou Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | |
Collapse
|
4
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
5
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
6
|
Pappas CT, Mayfield RM, Dickerson AE, Mi-Mi L, Gregorio CC. Human disease-causing mutations result in loss of leiomodin 2 through nonsense-mediated mRNA decay. PLoS Genet 2024; 20:e1011279. [PMID: 38748723 PMCID: PMC11132695 DOI: 10.1371/journal.pgen.1011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/28/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.
Collapse
Affiliation(s)
- Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Ava E. Dickerson
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| |
Collapse
|
7
|
Leroy C, Spelier S, Essonghe NC, Poix V, Kong R, Gizzi P, Bourban C, Amand S, Bailly C, Guilbert R, Hannebique D, Persoons P, Arhant G, Prévotat A, Reix P, Hubert D, Gérardin M, Chamaillard M, Prevarskaya N, Rebuffat S, Shapovalov G, Beekman J, Lejeune F. Use of 2,6-diaminopurine as a potent suppressor of UGA premature stop codons in cystic fibrosis. Mol Ther 2023; 31:970-985. [PMID: 36641622 PMCID: PMC10124085 DOI: 10.1016/j.ymthe.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023] Open
Abstract
Nonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties. DAP turns out to be very stable in plasma and is distributed throughout the body. The ability of DAP to correct various endogenous UGA nonsense mutations in the CFTR gene and to restore its function in mice, in organoids derived from murine or patient cells, and in cells from patients with cystic fibrosis reveals the potential of such readthrough-stimulating molecules in developing a therapeutic approach. The fact that correction by DAP of certain nonsense mutations reaches a clinically relevant level, as judged from previous studies, makes the use of this compound all the more attractive.
Collapse
Affiliation(s)
- Catherine Leroy
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Sacha Spelier
- Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands; Center for Living Technologies, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Nadège Charlene Essonghe
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Virginie Poix
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Rebekah Kong
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Patrick Gizzi
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS-Université de Strasbourg, 67404 Illkirch, France
| | - Claire Bourban
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS-Université de Strasbourg, 67404 Illkirch, France
| | - Séverine Amand
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Christine Bailly
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Romain Guilbert
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - David Hannebique
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - Philippe Persoons
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - Gwenaëlle Arhant
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Anne Prévotat
- University Lille, Clinique des Maladies Respiratoires, CRCM Hôpital Calmette, CHRU Lille, 59000 Lille, France
| | - Philippe Reix
- CRCM Pédiatrique Lyon, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, UMR 5558 (EMET), CNRS, LBBE, Université de Lyon, 69622 Villeurbanne, France
| | - Dominique Hubert
- Pulmonary Department and Adult CF Centre, Cochin Hospital, AP-HP, Paris, France
| | - Michèle Gérardin
- CF Pediatric Centre, Robert Debré Hospital, AP-HP, 75019 Paris, France
| | - Mathias Chamaillard
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France
| | - Natalia Prevarskaya
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - George Shapovalov
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Jeffrey Beekman
- Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands; Center for Living Technologies, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Fabrice Lejeune
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
8
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Smith DM, Niehoff ML, Ling K, Jafar-Nejad P, Rigo F, Farr SA, Wilkinson MF, Nguyen AD. Targeting nonsense-mediated RNA decay does not increase progranulin levels in the Grn R493X mouse model of frontotemporal dementia. PLoS One 2023; 18:e0282822. [PMID: 36893203 PMCID: PMC9997918 DOI: 10.1371/journal.pone.0282822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
A common cause of frontotemporal dementia (FTD) are nonsense mutations in the progranulin (GRN) gene. Because nonsense mutations activate the nonsense-mediated RNA decay (NMD) pathway, we sought to inhibit this RNA turnover pathway as a means to increase progranulin levels. Using a knock-in mouse model harboring a common patient mutation, we tested whether either pharmacological or genetic inhibition of NMD upregulates progranulin in these GrnR493X mice. We first examined antisense oligonucleotides (ASOs) targeting an exonic region in GrnR493X mRNA predicted to block its degradation by NMD. As we previously reported, these ASOs effectively increased GrnR493X mRNA levels in fibroblasts in vitro. However, following CNS delivery, we found that none of the 8 ASOs we tested increased Grn mRNA levels in the brains of GrnR493X mice. This result was obtained despite broad ASO distribution in the brain. An ASO targeting a different mRNA was effective when administered in parallel to wild-type mice. As an independent approach to inhibit NMD, we examined the effect of loss of an NMD factor not required for embryonic viability: UPF3b. We found that while Upf3b deletion effectively perturbed NMD, it did not increase Grn mRNA levels in Grn+/R493X mouse brains. Together, our results suggest that the NMD-inhibition approaches that we used are likely not viable for increasing progranulin levels in individuals with FTD caused by nonsense GRN mutations. Thus, alternative approaches should be pursued.
Collapse
Affiliation(s)
- Denise M. Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, United States of America
| | - Michael L. Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Veterans Affairs Medical Center, St. Louis, Missouri, United States of America
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, California, United States of America
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, United States of America
| | - Susan A. Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, United States of America
- Veterans Affairs Medical Center, St. Louis, Missouri, United States of America
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Andrew D. Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
11
|
Gomez S, Cox OL, Walker RR, Rentia U, Hadley M, Arthofer E, Diab N, Grundy EE, Kanholm T, McDonald JI, Kobyra J, Palmer E, Noonepalle S, Villagra A, Leitenberg D, Bollard CM, Saunthararajah Y, Chiappinelli KB. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer 2022; 10:jitc-2022-004974. [PMID: 36343976 PMCID: PMC9644370 DOI: 10.1136/jitc-2022-004974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed for ovarian cancer (OC), the fifth deadliest cancer in women. Preclinical work has shown that DNA methyltransferase inhibitors (DNMTis) can reverse the immunosuppressive tumor microenvironment in OC. Inhibiting DNA methyltransferases activate transcription of double-stranded (ds)RNA, including transposable elements. These dsRNAs activate sensors in the cytoplasm and trigger type I interferon (IFN) signaling, recruiting host immune cells to kill the tumor cells. Adenosine deaminase 1 (ADAR1) is induced by IFN signaling and edits mammalian dsRNA with an A-to-I nucleotide change, which is read as an A-to-G change in sequencing data. These edited dsRNAs cannot be sensed by dsRNA sensors, and thus ADAR1 inhibits the type I IFN response in a negative feedback loop. We hypothesized that decreasing ADAR1 editing would enhance the DNMTi-induced immune response. METHODS Human OC cell lines were treated in vitro with DNMTi and then RNA-sequenced to measure RNA editing. Adar1 was stably knocked down in ID8 Trp53-/- mouse OC cells. Control cells (shGFP) or shAdar1 cells were tested with mock or DNMTi treatment. Tumor-infiltrating immune cells were immunophenotyped using flow cytometry and cell culture supernatants were analyzed for secreted chemokines/cytokines. Mice were injected with syngeneic shAdar1 ID8 Trp53-/- cells and treated with tetrahydrouridine/DNMTi while given anti-interferon alpha and beta receptor 1, anti-CD8, or anti-NK1.1 antibodies every 3 days. RESULTS We show that ADAR1 edits transposable elements in human OC cell lines after DNMTi treatment in vitro. Combining ADAR1 knockdown with DNMTi significantly increases pro-inflammatory cytokine/chemokine production and sensitivity to IFN-β compared with either perturbation alone. Furthermore, DNMTi treatment and Adar1 loss reduces tumor burden and prolongs survival in an immunocompetent mouse model of OC. Combining Adar1 loss and DNMTi elicited the most robust antitumor response and transformed the immune microenvironment with increased recruitment and activation of CD8+ T cells. CONCLUSION In summary, we showed that the survival benefit from DNMTi plus ADAR1 inhibition is dependent on type I IFN signaling. Thus, epigenetically inducing transposable element transcription combined with inhibition of RNA editing is a novel therapeutic strategy to reverse immune evasion in OC, a disease that does not respond to current immunotherapies.
Collapse
Affiliation(s)
- Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Olivia L Cox
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reddick R Walker
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Uzma Rentia
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Melissa Hadley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Tomas Kanholm
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - James I McDonald
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Julie Kobyra
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erica Palmer
- Department of Biochemistry, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Satish Noonepalle
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - David Leitenberg
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Children's National Hospital, Washington, District of Columbia, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Zhao Y, Zeng X, Xu X, Wang W, Xu L, Wu Y, Li H. Low-dose 5-aza-2'-deoxycytidine protects against early renal injury by increasing klotho expression. Epigenomics 2022; 14:1411-1425. [PMID: 36695107 DOI: 10.2217/epi-2022-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: To explore the effect of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) on early renal injury. Materials & methods: Cell damage and inflammation are features of early renal injury. The apoptosis and inflammation in hypoxia/reoxygenation (H/R)-induced human proximal tubular epithelial cells (HK-2) and ischemia-reperfusion kidney were studied, and expression of the protein klotho was investigated. Results: Aza induced HK-2 apoptosis in a dose-dependent manner, but low-dose Aza attenuated the apoptosis and inflammation in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Low-dose Aza ameliorated renal function in mice with renal ischemia-reperfusion injury. Meanwhile, low-dose Aza upregulated klotho expression in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Klotho knockdown abrogated the effects of low-dose Aza on apoptosis and inflammation. Conclusion: Low-dose Aza protects against renal early injury by increasing klotho expression.
Collapse
Affiliation(s)
- Yanlong Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xiaorong Zeng
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xinli Xu
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Wenjing Wang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Lei Xu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yiying Wu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Hang Li
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
13
|
Meraviglia-Crivelli D, Villanueva H, Menon AP, Zheleva A, Moreno B, Villalba-Esparza M, Pastor F. A pan-tumor-siRNA aptamer chimera to block nonsense-mediated mRNA decay inflames and suppresses tumor progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:413-425. [PMID: 35991316 PMCID: PMC9379514 DOI: 10.1016/j.omtn.2022.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022]
Abstract
Immune-checkpoint blockade (ICB) therapy has changed the clinical outcome of many types of aggressive tumors, but there still remain many cancer patients that do not respond to these treatments. There is an unmet need to develop a feasible clinical therapeutic platform to increase the rate of response to ICB. Here we use a previously described clinically tested aptamer (AS1411) conjugated with SMG1 RNAi (AS1411-SMG1 aptamer-linked siRNA chimeras [AsiCs]) to inhibit the nonsense-mediated RNA decay pathway inducing tumor inflammation and improving response to ICB. The aptamer AS1411 shows binding to numerous mouse and human tumor cell lines tested. AS1411 induces tumor cytotoxicity in long incubation times, which allows for the use of the aptamer as a carrier to target the RNAi inhibition to the tumor. The AS1411-SMG1 AsiCs induce a strong antitumor response in local and systemic treatment in different types of tumors. Finally, AS1411-SMG1 AsiCs are well tolerated with no detected side effects.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
| | - María Villalba-Esparza
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| |
Collapse
|
14
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
15
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Meraviglia-Crivelli D, Zheleva A, Barainka M, Moreno B, Villanueva H, Pastor F. Therapeutic Strategies to Enhance Tumor Antigenicity: Making the Tumor Detectable by the Immune System. Biomedicines 2022; 10:1842. [PMID: 36009389 PMCID: PMC9405394 DOI: 10.3390/biomedicines10081842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy has revolutionized the oncology field, but many patients still do not respond to current immunotherapy approaches. One of the main challenges in broadening the range of responses to this type of treatment is the limited source of tumor neoantigens. T cells constitute a main line of defense against cancer, and the decisive step to trigger their activation is mediated by antigen recognition. Antigens allow the immune system to differentiate between self and foreign, which constitutes a critical step in recognition of cancer cells and the consequent development or control of the malignancy. One of the keystones to achieving a successful antitumor response is the presence of potent tumor antigens, known as neoantigens. However, tumors develop strategies to evade the immune system and resist current immunotherapies, and many tumors present a low tumor mutation burden limiting the presence of tumor antigenicity. Therefore, new approaches must be taken into consideration to overcome these shortcomings. The possibility of making tumors more antigenic represents a promising front to further improve the success of immunotherapy in cancer. Throughout this review, we explored different state-of-the-art tools to induce the presentation of new tumor antigens by intervening at protein, mRNA or genomic levels in malignant cells.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
17
|
The Contrasting Delayed Effects of Transient Exposure of Colorectal Cancer Cells to Decitabine or Azacitidine. Cancers (Basel) 2022; 14:cancers14061530. [PMID: 35326680 PMCID: PMC8945888 DOI: 10.3390/cancers14061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Decitabine and azacitidine are cytosine analogs representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application these drugs are viewed as interchangeable. Despite their unique epigenetic mechanism of action, the studies of the prolonged activity of decitabine and azacitidine are rare. Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cancer cells over time. The effects of decitabine need a relatively long time to develop. This property is crucial for the proper design of studies or therapy involving decitabine. It undermines opinion about the similar therapeutic mechanism and interchangeability of decitabine and azacitidine. Abstract (1) Background: Decitabine and azacitidine are cytosine analogues representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application, both drugs are often regarded as interchangeable. Despite their unique mechanism of action the studies designed for observation and comparison of the prolonged activity of these drugs are rare. (2) Methods: The short-time (20–72 h) and long-term (up to 20 days) anti-cancer activity of decitabine and azacitidine has been studied in colorectal cancer cells. We observe the impact on cell culture’s viability, clonogenicity, proliferation, and expression of CDKN1A, CCND1, MDM2, MYC, CDKN2A, GLB1 genes, and activity of SA-β-galactosidase. (3) Results: Decitabine has much stronger anti-clonogenic activity than azacitidine. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cells over time. On the 13th day after treatment, the viability of cells was decreased and proliferation inhibited. These functional changes were accompanied by up-regulation of expression CDKN1A, CCND1, and CDKN2A genes and increased activation of SA-β-galactosidase, indicating cellular senescence. (4) Conclusions: Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. The effects of decitabine need relatively long time to develop. This property is crucial for proper design of studies and therapy concerning decitabine and undermines opinion about the similar therapeutic mechanism and interchangeability of these drugs.
Collapse
|
18
|
Zhao J, Li Z, Puri R, Liu K, Nunez I, Chen L, Zheng S. Molecular profiling of individual FDA-approved clinical drugs identifies modulators of nonsense-mediated mRNA decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:304-318. [PMID: 35024243 PMCID: PMC8718828 DOI: 10.1016/j.omtn.2021.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) degrades transcripts with premature stop codons. Given the prevalence of nonsense single nucleotide polymorphisms (SNPs) in the general population, it is urgent to catalog the effects of clinically approved drugs on NMD activity: any interference could alter the expression of nonsense SNPs, inadvertently inducing adverse effects. This risk is higher for patients with disease-causing nonsense mutations or an illness linked to dysregulated nonsense transcripts. On the other hand, hundreds of disorders are affected by cellular NMD efficiency and may benefit from NMD-modulatory drugs. Here, we profiled individual FDA-approved drugs for their impact on cellular NMD efficiency using a sensitive method that directly probes multiple endogenous NMD targets for a robust readout of NMD modulation. We found most FDA-approved drugs cause unremarkable effects on NMD, while many elicit clear transcriptional responses. Besides several potential mild NMD modulators, the anticancer drug homoharringtonine (HHT or omacetaxine mepesuccinate) consistently upregulates various endogenous NMD substrates in a dose-dependent manner in multiple cell types. We further showed translation inhibition mediates HHT's NMD effect. In summary, many FDA drugs induce transcriptional changes, and a few impact global NMD, and direct measurement of endogenous NMD substrate expression is robust to monitor cellular NMD.
Collapse
Affiliation(s)
- Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Ruchira Puri
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Kelvin Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Israel Nunez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| |
Collapse
|
19
|
Omachi K, Kai H, Roberge M, Miner JH. Full-length and split-NanoLuc reporters identify pathogenic COL4A5 nonsense mutations susceptible to premature termination codon readthrough. iScience 2022; 25:103891. [PMID: 35243249 PMCID: PMC8866893 DOI: 10.1016/j.isci.2022.103891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/02/2022] Open
Abstract
Alport syndrome, a disease of kidney, ear, and eye, is caused by pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes encoding collagen α3α4α5(IV) of basement membranes. Collagen IV chains that are truncated due to nonsense variants/premature termination codons (PTCs) cannot assemble into heterotrimers or incorporate into basement membranes. To investigate the feasibility of PTC readthrough therapy for Alport syndrome, we utilized two NanoLuc reporters in transfected cells: full-length for monitoring translation, and a split version for assessing readthrough product function. Full-length assays of 49 COL4A5 nonsense variants identified eleven as susceptible to PTC readthrough using various readthrough drugs. In split-NanoLuc assays, the predicted missense α5(IV) readthrough products of five nonsense mutations could heterotrimerize with α3(IV) and α4(IV). Readthrough was also observed in kidney cells from an engineered Col4a5 PTC mouse model. These results suggest that readthrough therapy is a feasible approach for a fraction of patients with Alport syndrome. NanoLuc fusion constructs identified COL4A5 mutants susceptible to PTC readthrough Readthrough enhancer and “designer” compounds promoted PTC readthrough Split-NanoLuc fusion constructs identified functional missense readthrough products Cultured Col4a5 nonsense mutant mouse kidney cells were susceptible to readthrough
Collapse
|
20
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
21
|
Bongiorno R, Colombo MP, Lecis D. Deciphering the nonsense-mediated mRNA decay pathway to identify cancer cell vulnerabilities for effective cancer therapy. J Exp Clin Cancer Res 2021; 40:376. [PMID: 34852841 PMCID: PMC8638473 DOI: 10.1186/s13046-021-02192-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
22
|
Powers KT, Stevenson-Jones F, Yadav SKN, Amthor B, Bufton JC, Borucu U, Shen D, Becker JP, Lavysh D, Hentze MW, Kulozik AE, Neu-Yilik G, Schaffitzel C. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Res 2021; 49:7665-7679. [PMID: 34157102 PMCID: PMC8287960 DOI: 10.1093/nar/gkab532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3′CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1’s accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.
Collapse
Affiliation(s)
- Kyle T Powers
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | | | - Sathish K N Yadav
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Joshua C Bufton
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Dakang Shen
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Jonas P Becker
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
23
|
Becker JP, Helm D, Rettel M, Stein F, Hernandez-Sanchez A, Urban K, Gebert J, Kloor M, Neu-Yilik G, von Knebel Doeberitz M, Hentze MW, Kulozik AE. NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. iScience 2021; 24:102389. [PMID: 33981976 PMCID: PMC8082087 DOI: 10.1016/j.isci.2021.102389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Jonas P. Becker
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Dominic Helm
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Urban
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Gebert
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Kloor
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
24
|
The exon junction complex core factor eIF4A3 is a key regulator of HPV16 gene expression. Biosci Rep 2021; 41:228142. [PMID: 33760064 PMCID: PMC8026852 DOI: 10.1042/bsr20203488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
High-risk human papillomavirus (hrHPVs), particularly HPV16 and HPV18, are the etiologic factors of ano-genital cancers and some head and neck squamous cell carcinomas (HNSCCs). Viral E6 and E7 oncoproteins, controlled at both transcriptional and post-transcriptional levels, drive hrHPVs-induced carcinogenesis. In the present study, we investigated the implication of the DEAD-box helicase eukaryotic translation initiation factor 4A3 (eIF4A3,) an Exon Junction Complex factor, in the regulation of HPV16 gene expression. Our data revealed that the depletion of the factor eIF4A3 up-regulated E7 oncoprotein levels. We also showed that the inhibition of the nonsense-mediated RNA decay (NMD) pathway, resulted in the up-regulation of E7 at both RNA and protein levels. We therefore proposed that HPV16 transcripts might present different susceptibilities to NMD and that this pathway could play a key role in the levels of expression of these viral oncoproteins during the development of HPV-related cancers.
Collapse
|
25
|
Novel mutations in ATP13A2 associated with mixed neurological presentations and iron toxicity due to nonsense-mediated decay. Brain Res 2020; 1750:147167. [PMID: 33091395 DOI: 10.1016/j.brainres.2020.147167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Kufor-Rakeb Syndrome (KRS) is an autosomal recessive disease characterized by Parkinsonism, pyramidal signs, dementia, and supranuclear gaze palsy. KRS is caused by mutations in ATP13A2producing a transmembrane protein responsible for the regulation of intracellular inorganic cations. OBJECTIVE Two siblings born to a Turkish family of consanguineous marriage had mixed neurological presentations with the presence of hypointense images on T2-weighted MRI and were pre-diagnosed as having autosomal recessive spastic paraparesis or ataxia.We aimed to identify the disease-causing mutation by whole-exome sequencing and elucidate the underlying molecular mechanism of the causative mutation. METHODS Prussian blue staining was conducted for the detection of cellular iron accumulation. Disease-causing mutation inATP13A2was detected by whole-exome sequencing. Expression levels of ATP13A2 mRNA and protein were assessed by qRT-PCR and Western Blot. RESULTS Iron deposits in the patients' fibroblasts were detected by Prussian blue staining. Novel homozygous mutation c.1422_1423del:p.P474fs was detected intheATP13A2. As this mutation caused a premature termination codon (PTC), the expression of mutant ATP13A2 mRNA through qRT-PCR analysis was found to be degraded by nonsense-mediated decay and this prevented the expression of ATP13A2 protein in the patients' fibroblasts. CONCLUSIONS Novel frameshift mutation causing a PTC in ATP13A2 lead to degradation of ATP13A2 mRNA by NMD. Iron accumulation due to the absence of ATP13A2 protein in the patient's fibroblasts and hypointense areas on T2-weighted images may expand the spectrum of KRS to consider it as neurodegeneration with brain iron accumulation disorders.
Collapse
|
26
|
Lee H, Nelson SF. The frontiers of sequencing in undiagnosed neurodevelopmental diseases. Curr Opin Genet Dev 2020; 65:76-83. [PMID: 32599523 DOI: 10.1016/j.gde.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
Abstract
Characterized by impairments in brain and central nervous system development, neurodevelopmental diseases causes are highly heterogeneous. Although many of these diseases are individually rare, collectively more than 3% of the children are reported to be affected with a type of neurodevelopmental diseases worldwide, and many remain undiagnosed even with current genomic tools. Identifying the genetic causes of these diseases allows better clinical management and expands our understanding of human neurodevelopment. Over the past decade, expansion of genomic sequencing and some methodologic improvements have improved molecular diagnostic yield as well as the discovery of novel genetic causes for wide spectrum of neurodevelopmental diseases. Here we review the current diagnostic workflow and propose ways of improving the diagnostic yield.
Collapse
Affiliation(s)
- Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|
28
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
29
|
Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett 2020; 479:61-70. [PMID: 32014461 DOI: 10.1016/j.canlet.2020.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The master transcriptional regulator MYB is a key oncogenic driver in several human neoplasms, particularly in acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). MYB is therefore an attractive target for drug development in MYB-activated malignancies. Here, we employed a MYB-reporter cell line and identified the polyether ionophores monensin, salinomycin, and nigericin as novel inhibitors of MYB activity. As a proof of principle, we show that monensin affects the expression of a significant number of MYB-regulated genes in AML cells and causes down-regulation of MYB expression, loss of cell viability, and induction of differentiation and apoptosis. Furthermore, monensin significantly inhibits proliferation of primary murine AML cells but not of normal hematopoietic progenitors, reflecting a high MYB-dependence of leukemic cells and underscoring the efficacy of monensin in MYB-activated malignancies. Importantly, monensin also suppressed the viability and non-adherent growth of adenoid cystic carcinoma (ACC) cells expressing MYB-NFIB fusion oncoproteins. Our data show that a single compound with significant MYB-inhibitory activity is effective against malignant cells from two distinct MYB-driven human neoplasms. Hence, monensin and related compounds are promising molecular scaffolds for development of novel MYB inhibitors.
Collapse
|
30
|
Screening Readthrough Compounds to Suppress Nonsense Mutations: Possible Application to β-Thalassemia. J Clin Med 2020; 9:jcm9020289. [PMID: 31972957 PMCID: PMC7073686 DOI: 10.3390/jcm9020289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.
Collapse
|
31
|
Laselva O, Eckford PD, Bartlett C, Ouyang H, Gunawardena TN, Gonska T, Moraes TJ, Bear CE. Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action. J Cyst Fibros 2019; 19:717-727. [PMID: 31831337 DOI: 10.1016/j.jcf.2019.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The nonsense mutation, c.3846G>A (aka: W1282X-CFTR) leads to a truncated transcript that is susceptible to nonsense-mediated decay (NMD) and produces a shorter protein that is unstable and lacks normal channel activity in patient-derived tissues. However, if overexpressed in a heterologous expression system, the truncated mutant protein has been shown to mediate CFTR channel function following the addition of potentiators. In this study, we asked if a quadruple combination of small molecules that together inhibit nonsense mediated decay, stabilize both halves of the mutant protein and potentiate CFTR channel activity could rescue the functional expression of W1282X-CFTR in patient derived nasal cultures. METHODS We identified the CFTR domains stabilized by corrector compounds supplied from AbbVie using a fragment based, biochemical approach. Rescue of the channel function of W1282X.-CFTR protein by NMD inhibition and small molecule protein modulators was studied using a bronchial cell line engineered to express W1282X and in primary nasal epithelial cultures derived from four patients homozygous for this mutation. RESULTS We confirmed previous studies showing that inhibition of NMD using the inhibitor: SMG1i, led to an increased abundance of the shorter transcript in a bronchial cell line. Interestingly, on top of SMG1i, treatment with a combination of two new correctors developed by Galapagos/AbbVie (AC1 and AC2-2, separately targeting either the first or second half of CFTR and promoting assembly, significantly increased the potentiated channel activity by the mutant in the bronchial epithelial cell line and in patient-derived nasal epithelial cultures. The average rescue effect in primary cultures was approximately 50% of the regulated chloride conductance measured in non-CF cultures. CONCLUSIONS These studies provide the first in-vitro evidence in patient derived airway cultures that the functional defects incurred by W1282X, has the potential to be effectively repaired pharmacologically.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul Dw Eckford
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Tarini Na Gunawardena
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada.
| | - Christine E Bear
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
Han X, Wei Y, Wang H, Wang F, Ju Z, Li T. Nonsense-mediated mRNA decay: a 'nonsense' pathway makes sense in stem cell biology. Nucleic Acids Res 2019; 46:1038-1051. [PMID: 29272451 PMCID: PMC5814811 DOI: 10.1093/nar/gkx1272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes. Originally, NMD was identified as an RNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons. Recent studies indicate that NMD regulates the stability of natural gene transcripts that play significant roles in cell functions. Although components and action modes of the NMD machinery in degrading its RNA targets have been extensively studied with biochemical and structural approaches, the biological roles of NMD remain to be defined. Stem cells are rare cell populations, which play essential roles in tissue homeostasis and hold great promises in regenerative medicine. Stem cells self-renew to maintain the cellular identity and differentiate into somatic lineages with specialized functions to sustain tissue integrity. Transcriptional regulations and epigenetic modulations have been extensively implicated in stem cell biology. However, post-transcriptional regulatory mechanisms, such as NMD, in stem cell regulation are largely unknown. In this paper, we summarize the recent findings on biological roles of NMD factors in embryonic and tissue-specific stem cells. Furthermore, we discuss the possible mechanisms of NMD in regulating stem cell fates.
Collapse
Affiliation(s)
- Xin Han
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yanling Wei
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Hua Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Feilong Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| |
Collapse
|
33
|
Denichenko P, Mogilevsky M, Cléry A, Welte T, Biran J, Shimshon O, Barnabas GD, Danan-Gotthold M, Kumar S, Yavin E, Levanon EY, Allain FH, Geiger T, Levkowitz G, Karni R. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun 2019; 10:1590. [PMID: 30962446 PMCID: PMC6453957 DOI: 10.1038/s41467-019-09523-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing, a fundamental step in gene expression, is deregulated in many diseases. Splicing factors (SFs), which regulate this process, are up- or down regulated or mutated in several diseases including cancer. To date, there are no inhibitors that directly inhibit the activity of SFs. We designed decoy oligonucleotides, composed of several repeats of a RNA motif, which is recognized by a single SF. Here we show that decoy oligonucleotides targeting splicing factors RBFOX1/2, SRSF1 and PTBP1, can specifically bind to their respective SFs and inhibit their splicing and biological activities both in vitro and in vivo. These decoy oligonucleotides present an approach to specifically downregulate SF activity in conditions where SFs are either up-regulated or hyperactive. Alternative splicing, critical for gene expression, is deregulated in many diseases. Here the authors develop decoy oligonucleotides to specifically downregulate splicing factors activity.
Collapse
Affiliation(s)
- Polina Denichenko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093, Zurich, Switzerland
| | - Thomas Welte
- Dynamic Biosensors, GmbH, Lochhamer Strasse 15, 82152, Martinsried/Planegg, Germany
| | - Jakob Biran
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Odelia Shimshon
- Department of Medicinal Chemistry, Institute for Drug Research, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Miri Danan-Gotthold
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Eylon Yavin
- Department of Medicinal Chemistry, Institute for Drug Research, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Frédéric H Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093, Zurich, Switzerland
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| |
Collapse
|
34
|
Aksit MA, Bowling AD, Evans TA, Joynt AT, Osorio D, Patel S, West N, Merlo C, Sosnay PR, Cutting GR, Sharma N. Decreased mRNA and protein stability of W1282X limits response to modulator therapy. J Cyst Fibros 2019; 18:606-613. [PMID: 30803905 DOI: 10.1016/j.jcf.2019.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cell-based studies have shown that W1282X generates a truncated protein that can be functionally augmented by modulators. However, modulator treatment of primary cells from individuals who carry two copies of W1282X generates no functional CFTR. To understand the lack of response to modulators, we investigated the effect of W1282X on CFTR RNA transcript levels. METHODS qRT-PCR and RNA-seq were performed on primary nasal epithelial (NE) cells of a previously studied individual who is homozygous for W1282X, her carrier parents and control individuals without nonsense variants in CFTR. RESULTS CFTR RNA bearing W1282X in NE cells shows a steady-state level of 4.2 ± 0.9% of wild-type (WT) CFTR RNA in the mother and 12.4 ± 1.3% in the father. NMDI14, an inhibitor of nonsense-mediated mRNA decay (NMD), restored W1282X mRNA to almost 50% of WT levels in the parental NE cells. RNA-seq of the NE cells homozygous for W1282X showed that CFTR transcript level was reduced to 1.7% of WT (p-value: 4.6e-3). Negligible truncated CFTR protein was generated by Flp-In 293 cells stably expressing the W1282X EMG even though CFTR transcript was well above levels observed in the parents and proband. Finally, we demonstrated that NMD inhibition improved the stability and response to correctors of W1282X-CFTR protein expressed in the Flp-In-293 cells. CONCLUSION These results show that W1282X can cause substantial degradation of CFTR mRNA that has to be addressed before efforts aimed at augmenting CFTR protein function can be effective.
Collapse
Affiliation(s)
- M A Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - A D Bowling
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - T A Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - A T Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - D Osorio
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - S Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - N West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - C Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - P R Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - G R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - N Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
35
|
Unfolded protein response is an early, non-critical event during hepatic stellate cell activation. Cell Death Dis 2019; 10:98. [PMID: 30718473 PMCID: PMC6362073 DOI: 10.1038/s41419-019-1327-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Hepatic stellate cells activate upon liver injury and help at restoring damaged tissue by producing extracellular matrix proteins. A drastic increase in matrix proteins results in liver fibrosis and we hypothesize that this sudden increase leads to accumulation of proteins in the endoplasmic reticulum and its compensatory mechanism, the unfolded protein response. We indeed observe a very early, but transient induction of unfolded protein response genes during activation of primary mouse hepatic stellate cells in vitro and in vivo, prior to induction of classical stellate cell activation genes. This unfolded protein response does not seem sufficient to drive stellate cell activation on its own, as chemical induction of endoplasmic reticulum stress with tunicamycin in 3D cultured, quiescent stellate cells is not able to induce stellate cell activation. Inhibition of Jnk is important for the transduction of the unfolded protein response. Stellate cells isolated from Jnk knockout mice do not activate as much as their wild-type counterparts and do not have an induced expression of unfolded protein response genes. A timely termination of the unfolded protein response is essential to prevent endoplasmic reticulum stress-related apoptosis. A pathway known to be involved in this termination is the non-sense-mediated decay pathway. Non-sense-mediated decay inhibitors influence the unfolded protein response at early time points during stellate cell activation. Our data suggest that UPR in HSCs is differentially regulated between acute and chronic stages of the activation process. In conclusion, our data demonstrates that the unfolded protein response is a JNK1-dependent early event during hepatic stellate cell activation, which is counteracted by non-sense-mediated decay and is not sufficient to drive the stellate cell activation process. Therapeutic strategies based on UPR or NMD modulation might interfere with fibrosis, but will remain challenging because of the feedback mechanisms between the stress pathways.
Collapse
|
36
|
Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick JAJ, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS One 2018; 13:e0204978. [PMID: 30289931 PMCID: PMC6173407 DOI: 10.1371/journal.pone.0204978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
The nonsense mediated RNA decay (NMD) pathway safeguards the integrity of the transcriptome by targeting mRNAs with premature translation termination codons (PTCs) for degradation. It also regulates gene expression by degrading a large number of non-mutant RNAs (including mRNAs and noncoding RNAs) that bear NMD-inducing features. Consequently, NMD has been shown to influence development, cellular response to stress, and clinical outcome of many genetic diseases. Small molecules that can modulate NMD activity provide critical tools for understanding the mechanism and physiological functions of NMD, and they also offer potential means for treating certain genetic diseases and cancer. Therefore, there is an intense interest in identifying small-molecule NMD inhibitors or enhancers. It was previously reported that both inhibition of NMD and treatment with the AMPK-selective inhibitor Compound C (CC) induce autophagy in human cells, raising the possibility that CC may be capable of inhibiting NMD. Here we show that CC indeed has a NMD-inhibitory activity. Inhibition of NMD by CC is, however, independent of AMPK activity. As a competitive ATP analog, CC does not affect the kinase activity of SMG1, an essential NMD factor and the only known kinase in the NMD pathway. However, CC treatment down-regulates the protein levels of several NMD factors. The induction of autophagy by CC treatment is independent of ATF4, a NMD target that has been shown to promote autophagy in response to NMD inhibition. Our results reveal a new activity of CC as a NMD inhibitor, which has implications for its use in basic research and drug development.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shan Li
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robyn Roth
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James A. J. Fitzpatrick
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering Washington University, St. Louis, Missouri, United States of America
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Guo L, Smith JA, Abelson M, Vlasova-St. Louis I, Schiff LA, Bohjanen PR. Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling. PLoS One 2018; 13:e0204622. [PMID: 30261045 PMCID: PMC6160134 DOI: 10.1371/journal.pone.0204622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Reovirus infection induces dramatic changes in host mRNA expression. We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of cellular transcripts that were coordinately induced and stabilized following infection with the reovirus isolates c87 and c8, strains that led to an inhibition of cellular translation, but not following infection with Dearing, a reovirus isolate that did not negatively impact cellular translation. The induced and stabilized transcripts encode multiple regulators of TGF- β signaling, including components of the Smad signaling network and apoptosis/survival pathways. The coordinate induction, through mRNA stabilization, of multiple genes that encode components of TGF-β signaling pathways represents a novel mechanism by which the host cell responds to reovirus infection.
Collapse
Affiliation(s)
- Liang Guo
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer A. Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle Abelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Irina Vlasova-St. Louis
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie A. Schiff
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul R. Bohjanen
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
38
|
Banning A, Schiff M, Tikkanen R. Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder Aspartylglucosaminuria. Biochim Biophys Acta Mol Basis Dis 2017; 1864:668-675. [PMID: 29247835 DOI: 10.1016/j.bbadis.2017.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.
Collapse
Affiliation(s)
- Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Manuel Schiff
- AP-HP, Robert Debré Hospital, Reference Center for Inherited Metabolic Diseases, University Paris Diderot-Sorbonne Paris Cité, PROTECT, INSERM U1141, Paris, France
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
39
|
Targeting the cancer epigenome: synergistic therapy with bromodomain inhibitors. Drug Discov Today 2017; 23:76-89. [PMID: 28943305 DOI: 10.1016/j.drudis.2017.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022]
Abstract
Epigenetic and genomic alterations regulate the transcriptional landscape of cells during cancer onset and progression. Recent clinical studies targeting the epigenetic 'readers' (bromodomains) for cancer therapy have established the effectiveness of bromodomain (BRD) and extraterminal (BET) inhibitors in treating several types of cancer. In this review, we discuss key mechanisms of BET inhibition and synergistic combinations of BET inhibitors with histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), DNA methyltransferase inhibitors (DNMTi), kinase, B-cell lymphoma 2 (Bcl-2) and proteosome inhibitors, and immunomodulatory drugs for cancer therapy. We also highlight the potential of such combinations to overcome drug resistance, and the evolving approaches to developing novel BET inhibitors.
Collapse
|
40
|
Balasubramanian S, Fu Y, Pawashe M, McGillivray P, Jin M, Liu J, Karczewski KJ, MacArthur DG, Gerstein M. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nat Commun 2017; 8:382. [PMID: 28851873 PMCID: PMC5575292 DOI: 10.1038/s41467-017-00443-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/29/2017] [Indexed: 11/09/2022] Open
Abstract
Variants predicted to result in the loss of function of human genes have attracted interest because of their clinical impact and surprising prevalence in healthy individuals. Here, we present ALoFT (annotation of loss-of-function transcripts), a method to annotate and predict the disease-causing potential of loss-of-function variants. Using data from Mendelian disease-gene discovery projects, we show that ALoFT can distinguish between loss-of-function variants that are deleterious as heterozygotes and those causing disease only in the homozygous state. Investigation of variants discovered in healthy populations suggests that each individual carries at least two heterozygous premature stop alleles that could potentially lead to disease if present as homozygotes. When applied to de novo putative loss-of-function variants in autism-affected families, ALoFT distinguishes between deleterious variants in patients and benign variants in unaffected siblings. Finally, analysis of somatic variants in >6500 cancer exomes shows that putative loss-of-function variants predicted to be deleterious by ALoFT are enriched in known driver genes.Variants causing loss of function (LoF) of human genes have clinical implications. Here, the authors present a method to predict disease-causing potential of LoF variants, ALoFT (annotation of Loss-of-Function Transcripts) and show its application to interpreting LoF variants in different contexts.
Collapse
Affiliation(s)
- Suganthi Balasubramanian
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA.
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA.
| | - Yao Fu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Bina Technologies, Part of Roche Sequencing, Belmont, CA, 94002, USA
| | - Mayur Pawashe
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA
| | - Patrick McGillivray
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA
| | - Mike Jin
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA
| | - Jeremy Liu
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, 06520, USA.
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
41
|
DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 2017; 49:1052-1060. [PMID: 28604729 DOI: 10.1038/ng.3889] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi), primarily based on candidate-gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric ORFs translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi treatment coincided with DNA hypomethylation and gain of classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites, as we found TINATs to be encoded in solitary long terminal repeats of the ERV9/LTR12 family, which are epigenetically repressed in virtually all normal cells.
Collapse
|
42
|
Nickless A, Bailis JM, You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci 2017; 7:26. [PMID: 28533900 PMCID: PMC5437625 DOI: 10.1186/s13578-017-0153-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.
Collapse
Affiliation(s)
- Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Julie M Bailis
- Department of Oncology Research, Amgen, South San Francisco, CA 94080 USA
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| |
Collapse
|
43
|
Shih AH, Meydan C, Shank K, Garrett-Bakelman FE, Ward PS, Intlekofer AM, Nazir A, Stein EM, Knapp K, Glass J, Travins J, Straley K, Gliser C, Mason CE, Yen K, Thompson CB, Melnick A, Levine RL. Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in IDH2- and TET2-Mutant Acute Myeloid Leukemia. Cancer Discov 2017; 7:494-505. [PMID: 28193779 PMCID: PMC5413413 DOI: 10.1158/2159-8290.cd-16-1049] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
Abstract
Genomic studies in acute myeloid leukemias (AML) have identified mutations that drive altered DNA methylation, including TET2 and IDH2 Here, we show that models of AML resulting from TET2 or IDH2 mutations combined with FLT3ITD mutations are sensitive to 5-azacytidine or to the IDH2 inhibitor AG-221, respectively. 5-azacytidine and AG-221 treatment induced an attenuation of aberrant DNA methylation and transcriptional output and resulted in a reduction in leukemic blasts consistent with antileukemic activity. These therapeutic benefits were associated with restoration of leukemic cell differentiation, and the normalization of hematopoiesis was derived from mutant cells. By contrast, combining AG-221 or 5-azacytidine with FLT3 inhibition resulted in a reduction in mutant allele burden, progressive recovery of normal hematopoiesis from non-mutant stem-progenitor cells, and reversal of dysregulated DNA methylation and transcriptional output. Together, our studies suggest combined targeting of signaling and epigenetic pathways can increase therapeutic response in AML.Significance: AMLs with mutations in TET2 or IDH2 are sensitive to epigenetic therapy through inhibition of DNA methyltransferase activity by 5-azacytidine or inhibition of mutant IDH2 through AG-221. These inhibitors induce a differentiation response and can be used to inform mechanism-based combination therapy. Cancer Discov; 7(5); 494-505. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Yen et al., p. 478This article is highlighted in the In This Issue feature, p. 443.
Collapse
Affiliation(s)
- Alan H Shih
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cem Meydan
- Department of Medicine/Hematology-Oncology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francine E Garrett-Bakelman
- Department of Medicine/Hematology-Oncology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Patrick S Ward
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew M Intlekofer
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abbas Nazir
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristina Knapp
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine/Hematology-Oncology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | | | - Kim Straley
- Agios Pharmaceuticals, Cambridge, Massachusetts
| | | | - Christopher E Mason
- Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | | | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ari Melnick
- Department of Medicine/Hematology-Oncology and Department of Pharmacology, Weill Cornell Medical College, New York, New York.
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Ito M, Tanaka T, Cary DR, Iwatani-Yoshihara M, Kamada Y, Kawamoto T, Aparicio S, Nakanishi A, Imaeda Y. Discovery of Novel 1,4-Diacylpiperazines as Selective and Cell-Active eIF4A3 Inhibitors. J Med Chem 2017; 60:3335-3351. [PMID: 28358513 DOI: 10.1021/acs.jmedchem.6b01904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eukaryotic initiation factor 4A3 (eIF4A3), a member of the DEAD-box RNA helicase family, is one of the core components of the exon junction complex (EJC). The EJC is known to be involved in a variety of RNA metabolic processes typified by nonsense-mediated RNA decay (NMD). In order to identify molecular probes to investigate the functions and therapeutic relevance of eIF4A3, a search for selective eIF4A3 inhibitors was conducted. Through the chemical optimization of 1,4-diacylpiperazine derivatives identified via high-throughput screening (HTS), we discovered the first reported selective eIF4A3 inhibitor 53a exhibiting cellular NMD inhibitory activity. A surface plasmon resonance (SPR) biosensing assay ascertained the direct binding of 53a and its analog 52a to eIF4A3 and revealed that the binding occurs at a non-ATP binding site. Compounds 52a and 53a represent novel molecular probes for further study of eIF4A3, the EJC, and NMD.
Collapse
Affiliation(s)
- Masahiro Ito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshio Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Douglas R Cary
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Misa Iwatani-Yoshihara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Kamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer Agency , 675 W. 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Atsushi Nakanishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuhiro Imaeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
45
|
Gotham VJB, Hobbs MC, Burgin R, Turton D, Smythe C, Coldham I. Synthesis and activity of a novel inhibitor of nonsense-mediated mRNA decay. Org Biomol Chem 2016; 14:1559-63. [PMID: 26740124 PMCID: PMC4730866 DOI: 10.1039/c5ob02482j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A new route to a tetracyclic lactam was developed and the product, called VG1, was found to inhibit nonsense-mediated mRNA decay at μM concentrations.
During efforts to prepare the known compound NMDI1, a new tetracyclic compound, called VG1, was prepared in six steps. This compound was found to have good activity as an inhibitor of nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Victoria J B Gotham
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK. and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melanie C Hobbs
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Ryan Burgin
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - David Turton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Iain Coldham
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
46
|
Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, Castaldo R, Altamura N. Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS One 2016; 11:e0154260. [PMID: 27119736 PMCID: PMC4847774 DOI: 10.1371/journal.pone.0154260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Nonsense mutations generate in-frame stop codons in mRNA leading to a premature arrest of translation. Functional consequences of premature termination codons (PTCs) include the synthesis of truncated proteins with loss of protein function causing severe inherited or acquired diseases. A therapeutic approach has been recently developed that is based on the use of chemical agents with the ability to suppress PTCs (read-through) restoring the synthesis of a functional full-length protein. Research interest for compounds able to induce read-through requires an efficient high throughput large scale screening system. We present a rapid, sensitive and quantitative method based on a dual-fluorescence reporter expressed in the yeast Saccharomyces cerevisiae to monitor and quantitate read-through at PTCs. We have shown that our novel system works equally well in detecting read-through at all three PTCs UGA, UAG and UAA.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Bari, Italy
- * E-mail: (EA); (NA)
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Mariangela Spinelli
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
| | - Rosa Castaldo
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
| | - Nicola Altamura
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
- * E-mail: (EA); (NA)
| |
Collapse
|
47
|
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1).
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Hug N, Longman D, Cáceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 2016; 44:1483-95. [PMID: 26773057 PMCID: PMC4770240 DOI: 10.1093/nar/gkw010] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response.
Collapse
Affiliation(s)
- Nele Hug
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Dasa Longman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Javier F Cáceres
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
49
|
Nomakuchi TT, Rigo F, Aznarez I, Krainer AR. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat Biotechnol 2015; 34:164-6. [PMID: 26655495 PMCID: PMC4744113 DOI: 10.1038/nbt.3427] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular quality-control mechanism that is thought to exacerbate the phenotype of certain pathogenic nonsense mutations by preventing the expression of semi-functional proteins. NMD also limits the efficacy of read-through compound (RTC)-based therapies. Here, we report a gene-specific method of NMD inhibition using antisense oligonucleotides (ASOs), and combine this approach with an RTC to effectively restore the expression of full-length protein from a nonsense-mutant allele.
Collapse
Affiliation(s)
- Tomoki T Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Frank Rigo
- Isis Pharmaceuticals, Carslbad, California, USA
| | - Isabel Aznarez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
50
|
Abstract
In this issue of EMBO Molecular Medicine, Bhuvanagiri et al report on a chemical means to convert molecular junk into gold. They identify a chemical inhibitor of a quality control pathway that is best known for its ability to clear cells of rubbish, but that in certain cases can be detrimental because it eliminates “useful” garbage. The chemical inhibitor identified by Bhuvanagiri et al perturbs Nonsense‐Mediated RNA Decay (NMD), a RNA surveillance pathway that targets mRNAs harboring premature termination codons (PTCs) for degradation (Kervestin & Jacobson, 2012).
Collapse
Affiliation(s)
- Ada Shao
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| |
Collapse
|