1
|
Keenen MM, Yang L, Liang H, Farmer VJ, Worota RE, Singh R, Gladfelter AS, Coyne CB. Comparative analysis of the syncytiotrophoblast in placenta tissue and trophoblast organoids using snRNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.01.601571. [PMID: 39005304 PMCID: PMC11244908 DOI: 10.1101/2024.07.01.601571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The outer surface of chorionic villi in the human placenta consists of a single multinucleated cell called the syncytiotrophoblast (STB). The unique cellular ultrastructure of the STB presents challenges in deciphering its gene expression signature at the single-cell level, as the STB contains billions of nuclei in a single cell. There are many gaps in understanding the molecular mechanisms and developmental trajectories involved in STB formation and differentiation. To identify the underlying control of the STB, we performed comparative single nucleus (SN) and single cell (SC) RNA sequencing on placental tissue and tissue-derived trophoblast organoids (TOs). We found that SN RNA sequencing was essential to capture the STB population from both tissue and TOs. Differential gene expression and pseudotime analysis of TO-derived STB identified three distinct nuclear subtypes reminiscent of those recently identified in vivo . These included a juvenile nuclear population that exhibited both CTB and STB marker expression, a population enriched in genes involved in oxygen sensing, and finally a subtype enriched in transport and GTPase signaling molecules. Notably, suspension culture conditions of TOs that restore the native orientation of the STB (STB out ) showed elevated expression of canonical STB markers and pregnancy hormones, along with a greater proportion of the STB nucleus subtype specializing in transport and GTPase signaling, compared to those cultivated with an inverted STB polarity (STB in ). Gene regulatory analysis identified novel markers of STB differentiation conserved in tissue and TOs, including the chromatin remodeler RYBP, that exhibited STB-specific RNA and protein expression. CRISPR/Cas9 knockout of RYBP in STB in TOs did not impact cell-cell fusion; however, bulk RNA sequencing revealed downregulation of the pregnancy hormone CSH1 and upregulation of multiple genes associated with the oxygen-sensing STB nuclear subtype. Finally, we compared STB gene expression signatures amongst first trimester tissue, full-term tissue, and TOs, identifying many commonalities but also notable variability across each sample type. This indicates that STB gene expression is responsive to its environmental context. Our findings emphasize the utility of TOs to accurately model STB differentiation and the distinct nuclear subtypes observed in vivo , offering a versatile platform for unraveling the molecular mechanisms governing STB functions in placental biology and disease.
Collapse
|
2
|
Zardab M, Grose RP, Kocher HM. AHNAK2: a potential diagnostic biomarker for pancreatic cancer related to cellular motility. Sci Rep 2025; 15:2934. [PMID: 39849106 PMCID: PMC11757713 DOI: 10.1038/s41598-025-87337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma lacks suitable biomarkers for early diagnosis of disease. In gene panels developed for early diagnosis of pancreatic cancer, high AHNAK2 mRNA expression was one possible biomarker. In silico analysis of published human sample datasets (n = 177) and ex vivo analysis of human plasma samples (n = 30 PDAC with matched 30 healthy control) suggested AHNAK2 could be a diagnostic biomarker. At a plasma level of 421.47 ng/ml, AHNAK2 could potentially diagnose PDAC with a specificity and sensitivity of 83.33% and 86.67%. In vitro analysis suggests that in cell lines with diffuse cytoplasmic distribution of AHNAK2, there was colocalization of AHNAK2 with Cortactin in filipodia. This colocalization increased when cells were cultured on substrates such as Fibronectin and Collagen, as well as in hypoxia, and resulted in an augmented invasion of cancer cells. However, in cell lines with a vesicular AHNAK2 staining, such changes were not observed. Our study posits AHNAK2 as a valuable diagnostic biomarker in PDAC, now demanding prospective validation. Determination of mechanisms regulating AHNAK2 subcellular localisation may help explain its biological role.
Collapse
MESH Headings
- Humans
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/blood
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Cell Movement
- Cell Line, Tumor
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/metabolism
- Male
- Female
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/blood
- Cytoskeletal Proteins/metabolism
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/blood
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cortactin/metabolism
- Gene Expression Regulation, Neoplastic
- Aged
Collapse
Affiliation(s)
- Mohamed Zardab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
3
|
Liu Y, Sun X, Wei C, Guo S, Song C, Zhang J, Bai J. Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance. Comb Chem High Throughput Screen 2025; 28:561-581. [PMID: 38676501 DOI: 10.2174/0113862073296206240416060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/29/2024]
Abstract
Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including Pglycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Sun
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chen Wei
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shoudong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunxiao Song
- Anorectal Department, Weifang people's Hospital, Weifang, 261000, China
| | - Jiangyu Zhang
- school of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
4
|
Mukhopadhyay D, Chakraborty B, Sarkar S, Alam N, Panda CK. Clinical implications of activation of the LIMD1-VHL-HIF1α pathway during head-&-neck squamous cell carcinoma development. Indian J Med Res 2024; 159:479-493. [PMID: 39382421 PMCID: PMC11463245 DOI: 10.25259/ijmr_1262_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Given the importance of the role of hypoxia induced pathway in different cancers including head-and-neck squamous cell carcinoma (HNSCC), this study delved into elucidating the molecular mechanism of hypoxia-inducible factor-1α (HIF1α) activation in HNSCC. Additionally, it analyzes the alterations of its regulatory genes [von Hippel-Lindau (VHL) and LIM domain containing 1 (LIMD1)] and target gene vascular endothelial growth factor (VEGF) in head-and-neck lesions at different clinical stages in relation with human papillomavirus (HPV) infection. Methods Global mRNA expression profiles of HIF1α, VHL, LIMD1 and VEGF were evaluated from public datasets of HNSCC, followed by validation of their expression (mRNA/protein) in an independent set of HPV+ve/-ve HNSCC samples of different clinical stages. Results A diverse expression pattern of the HIF1α pathway genes was observed, irrespective of HPV infection, in the datasets. In validation in an independent set of HNSCC samples, high mRNA expressions of HIF1α/VEGF were observed particularly in HPV positive samples. However, VHL/LIMD1 mRNA expression was low in tumours regardless of HPV infection status. In immunohistochemical analysis, high/medium (H/M) expression of HIF1α/VEGF was observed in basal/parabasal layers of normal epithelium, with significantly higher expression in tumours, especially in HPV-positive samples. Conversely, high cytoplasmic VHL expression in these layers gradually decreased with the progression of HNSCC, regardless of HPV infection. A similar trend was noted in LIMD1 expression (nuclear/cytoplasmic) during the disease development. The methylation pattern of VHL and LIMD1 promoters in the basal/parabasal layers of normal epithelium correlated with their expression, exhibiting a gradual increase with the progression of HNSCC. The H/M expression of HIF1α/VEGF proteins and reduced VHL expression was associated with poor clinical outcomes. Interpretation & conclusions The results of this study showed differential regulation of the LIMD1-VHL-HIF1α pathway in HPV positive and negative HNSCC samples, illustrating the molecular distinctiveness of these two groups.
Collapse
Affiliation(s)
- Debalina Mukhopadhyay
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Shreya Sarkar
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
- New Brunswick Heart Centre, Saint John, NB, Canada
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Peñate L, Carrillo-Beltrán D, Spichiger C, Cuevas-Zhbankova A, Torres-Arévalo Á, Silva P, Richter HG, Ayuso-Sacido Á, San Martín R, Quezada-Monrás C. The Impact of A3AR Antagonism on the Differential Expression of Chemoresistance-Related Genes in Glioblastoma Stem-like Cells. Pharmaceuticals (Basel) 2024; 17:579. [PMID: 38794149 PMCID: PMC11124321 DOI: 10.3390/ph17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.
Collapse
Affiliation(s)
- Liuba Peñate
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Diego Carrillo-Beltrán
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carlos Spichiger
- Laboratorio de Biología Molecular Aplicada, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alexei Cuevas-Zhbankova
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres-Arévalo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Sede Talca, Universidad Santo Tomás, Talca 347-3620, Chile
| | - Pamela Silva
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Hans G Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
6
|
Sun L, Wan J, Sun B, Tian Q, Li M, Xu LX, Feng CX, Tong X, Feng X, Yang X, Ding X. LncRNA-mir3471-limd1 regulatory network plays critical roles in HIBD. Exp Brain Res 2024; 242:443-449. [PMID: 38147087 PMCID: PMC10806112 DOI: 10.1007/s00221-023-06755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/11/2023] [Indexed: 12/27/2023]
Abstract
The purpose of this study was to identify the target genes of tcon_00044595, elucidate its activation site, and provide novel insights into the pathogenesis and treatment of neonatal hypoxic-ischemic brain damage (HIBD). Through homologous blast analysis, we identified predicted target sequences in the neighboring regions of the long non-coding RNA (lncRNA) tcon_00044595, suggesting that limd1 is its target gene. Starbase was utilized to identify potential candidate microRNAs associated with the lncRNA. The interaction between the candidate microRNAs and limd1 was investigated and validated using various experimental methods including in vitro cell culture, cell transfection, dual fluorescence reporter detection system, and real-time PCR. Homology alignment analysis revealed that the lncRNA tcon_00044595 exhibited a 246 bp homologous sequence at the 3' end of the adjacent limd1 gene, with a conservation rate of 68%. Analysis conducted on Starbase online identified three potential microRNA candidates: miR-3471, miR-883a-5p, and miR-214-3p. Intracellular expression of the limd1 gene was significantly down-regulated upon transfection with miR-3471, while the other two microRNAs did not produce noticeable effects. Luciferase reporter assays identified two interaction sites (UTR-1, UTR-2) between miR-3471 and the limd1 3'UTR, with UTR-1 exhibiting a strong influence. Further CCK8 assay indicated a protective role of miR-3471 during low oxygen stroke in HIBD. The potential regulatory relationship between lncRNA (tcon_00044595), miR-3471, and the target gene limd1 suggests their involvement in the occurrence and development of HIBD, providing new insights for investigating the underlying mechanisms and exploring targeted therapeutic approaches for HIBD.
Collapse
Affiliation(s)
- Li Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jun Wan
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, No.92 Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Qiuyan Tian
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xiao Tong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xiaofeng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Department of Neonatology, Children's Hospital of Soochow University, No.92 Zhongnanjie Road, Suzhou, 215025, Jiangsu, China.
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury;, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Department of Neonatology, Children's Hospital of Soochow University, No.92 Zhongnanjie Road, Suzhou, 215025, Jiangsu, China.
| |
Collapse
|
7
|
Lu F, Kato J, Toramaru T, Zhang M, Morisaki H. Pharmacological Ischemic Conditioning with Roxadustat Does Not Affect Pain-Like Behaviors but Mitigates Sudomotor Impairment in a Murine Model of Deep Hind Paw Incision. J Pain Res 2023; 16:573-587. [PMID: 36852095 PMCID: PMC9960722 DOI: 10.2147/jpr.s397054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose The involvement of hypoxic response mechanisms in local functional impairments in surgical wounds is unclear. In the present study, we characterized tissue hypoxia in surgical wounds and investigated the role of pharmacological ischemic conditioning (PIC) using roxadustat, an oral prolyl hydroxylase domain enzyme inhibitor, in postoperative local functional impairments in a murine model of deep hind paw incision. Methods Male BALB/cAJcl mice aged 9-13 weeks were used in all experiments. Plantar skins of mice that underwent surgical incision were subjected to immunohistochemistry to localise tissue hypoxia. Pain-like behaviours and sudomotor function were compared between mice treated with 6-week perioperative PIC and control mice. The effects of PIC were examined in vitro by immunocytochemistry using sympathetically differentiated PC12 cells and in vivo by immunohistochemistry using plantar skins collected on postoperative day 21. Results Prominent tissue hypoxia was detected within axons in the nerve bundles underneath surgical wounds. Six-week perioperative PIC using roxadustat failed to ease spontaneous pain-like behaviors; however, it mitigated local sudomotor impairment postoperatively. Upregulation of sympathetic innervation to the eccrine glands was observed in the PIC-treated skins collected on postoperative day 21, in accordance with the in vitro study wherein roxadustat promoted neurite growth of sympathetically differentiated PC12 cells. Conclusion This study suggests that tissue hypoxia is involved in the pathogenesis of local sudomotor dysfunction associated with surgical trauma. Targeting the hypoxic response mechanisms with PIC may be of therapeutic potential in postsurgical local sympathetic impairments that can be present in complex regional pain syndrome.
Collapse
Affiliation(s)
- Fanglin Lu
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Toramaru
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Mengting Zhang
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Li S, Liu L, Qu Y, Yuan L, Zhang X, Ma Z, Bai H, Wang J. Comprehensive Analyses and Immunophenotyping of LIM Domain Family Genes in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054524. [PMID: 36901953 PMCID: PMC10003053 DOI: 10.3390/ijms24054524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The LIM domain family genes play a crucial role in various tumors, including non-small-cell lung cancer (NSCLC). Immunotherapy is one of the most significant treatments for NSCLC, and its effectiveness largely depends on the tumor microenvironment (TME). Currently, the potential roles of LIM domain family genes in the TME of NSCLC remain elusive. We comprehensively evaluated the expression and mutation patterns of 47 LIM domain family genes in 1089 NSCLC samples. Using unsupervised clustering analysis, we classified patients with NSCLC into two distinct gene clusters, i.e., the LIM-high group and the LIM-low group. We further investigated the prognosis, TME cell infiltration characteristics, and immunotherapy in the two groups. The LIM-high and LIM-low groups had different biological processes and prognoses. Moreover, there were significant differences in TME characteristics between the LIM-high and LIM-low groups. Specifically, enhanced survival, immune cell activation, and high tumor purity were demonstrated in patients of the LIM-low group, implying an immune-inflamed phenotype. Moreover, the LIM-low group had higher immune cell proportion scores than the LIM-high group and was more responsive to immunotherapy than the LIM-low group. Additionally, we screened out LIM and senescent cell antigen-like domain 1 (LIMS1) as a hub gene of the LIM domain family via five different algorithms of plug-in cytoHubba and the weighted gene co-expression network analysis. Subsequently, proliferation, migration, and invasion assays demonstrated that LIMS1 acts as a pro-tumor gene that promotes the invasion and progression of NSCLC cell lines. This is the first study to reveal a novel LIM domain family gene-related molecular pattern associated with the TME phenotype, which would increase our understanding of the heterogeneity and plasticity of the TME in NSCLC. LIMS1 may serve as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.B.); (J.W.)
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.B.); (J.W.)
| |
Collapse
|
9
|
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med 2022; 9:945854. [PMID: 36531719 PMCID: PMC9748075 DOI: 10.3389/fcvm.2022.945854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rubin Tan
| | - Qiang You
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongdong Yu
- Department of Tumor Radiotherapy, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chushu Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Tang L, Liu XX, Yang XD, Tan S, Zou ZW. A compound formulation of EGF-modified paclitaxel micelles and EGF-modified emodin micelles enhance the therapeutic effect of ovarian cancer. J Liposome Res 2022; 33:89-101. [PMID: 35706398 DOI: 10.1080/08982104.2022.2086568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is a serious threat to female health, although the incidence of it is relatively low, its mortality rate remains high due to its intense invasion and metastasis. Therefore, it is urgent to explore new treatment strategies for ovarian cancer. In this study, paclitaxel and emodin were encapsulated in different micelles, and loaded on the surface of the micelles with epidermal growth factor (EGF) as the targeting molecule, made compound formulations in proportion. In this study, EGF-modified paclitaxel micelles and EGF-modified emodin micelles were characterized, their inhibitory effects on SKOV3 cell proliferation and invasion were studied in vivo and in vitro, and its targeting ability was confirmed. The results showed that the shape, particle size, zeta potential, release rate, encapsulation rate, polydispersity index, and other physical and chemical properties of EGF-modified paclitaxel micelles plus EGF-modified emodin micelles meet the requirements, and the modification of EGF on the micelle surface could obviously improve the uptake of SKOV3 cells and inhibit the proliferation of SKOV3 cells. The compound formulation can inhibit the invasion and metastasis of ovarian cancer by inhibiting the expression of hypoxia inducible factor-α, MMP-2, MMP-9, and VE-cadherin. The in vivo studies have also showed significant pharmacodynamics results. These results indicated that EGF-modified paclitaxel micelles plus EGF-modified emodin micelles provide a new strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiu-Xiu Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiao-Dan Yang
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhong-Wen Zou
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
11
|
Davidson K, Grevitt P, Contreras-Gerenas MF, Bridge KS, Hermida M, Shah KM, Mardakheh FK, Stubbs M, Burke R, Casado P, Cutillas PR, Martin SA, Sharp TV. Targeted therapy for LIMD1-deficient non-small cell lung cancer subtypes. Cell Death Dis 2021; 12:1075. [PMID: 34764236 PMCID: PMC8586256 DOI: 10.1038/s41419-021-04355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
An early event in lung oncogenesis is loss of the tumour suppressor gene LIMD1 (LIM domains containing 1); this encodes a scaffold protein, which suppresses tumorigenesis via a number of different mechanisms. Approximately 45% of non-small cell lung cancers (NSCLC) are deficient in LIMD1, yet this subtype of NSCLC has been overlooked in preclinical and clinical investigations. Defining therapeutic targets in these LIMD1 loss-of-function patients is difficult due to a lack of 'druggable' targets, thus alternative approaches are required. To this end, we performed the first drug repurposing screen to identify compounds that confer synthetic lethality with LIMD1 loss in NSCLC cells. PF-477736 was shown to selectively target LIMD1-deficient cells in vitro through inhibition of multiple kinases, inducing cell death via apoptosis. Furthermore, PF-477736 was effective in treating LIMD1-/- tumours in subcutaneous xenograft models, with no significant effect in LIMD1+/+ cells. We have identified a novel drug tool with significant preclinical characterisation that serves as an excellent candidate to explore and define LIMD1-deficient cancers as a new therapeutic subgroup of critical unmet need.
Collapse
Affiliation(s)
- Kathryn Davidson
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Paul Grevitt
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Maria F Contreras-Gerenas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Miguel Hermida
- Department of Bioengineering, Imperial College, London, UK
| | - Kunal M Shah
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Mark Stubbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Pedro Casado
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Pedro R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Sarah A Martin
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| | - Tyson V Sharp
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| |
Collapse
|
12
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
13
|
Wang L, Sparks-Wallace A, Casteel JL, Howell MEA, Ning S. Algorithm-Based Meta-Analysis Reveals the Mechanistic Interaction of the Tumor Suppressor LIMD1 With Non-Small-Cell Lung Carcinoma. Front Oncol 2021; 11:632638. [PMID: 33869018 PMCID: PMC8044451 DOI: 10.3389/fonc.2021.632638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) is the major type of lung cancer, which is among the leading causes of cancer-related deaths worldwide. LIMD1 was previously identified as a tumor suppressor in lung cancer, but their detailed interaction in this setting remains unclear. In this study, we have carried out multiple genome-wide bioinformatic analyses for a comprehensive understanding of LIMD1 in NSCLC, using various online algorithm platforms that have been built for mega databases derived from both clinical and cell line samples. Our results indicate that LIMD1 expression level is significantly downregulated at both mRNA and protein levels in both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), with a considerable contribution from its promoter methylation rather than its gene mutations. The Limd1 gene undergoes mutation only at a low rate in NSCLC (0.712%). We have further identified LIMD1-associated molecular signatures in NSCLC, including its natural antisense long non-coding RNA LIMD1-AS1 and a pool of membrane trafficking regulators. We have also identified a subgroup of tumor-infiltrating lymphocytes, especially neutrophils, whose tumor infiltration levels significantly correlate with LIMD1 level in both LUAD and LUSC. However, a significant correlation of LIMD1 with a subset of immune regulatory molecules, such as IL6R and TAP1, was only found in LUAD. Regarding the clinical outcomes, LIMD1 expression level only significantly correlates with the survival of LUAD (p<0.01) but not with that of LUSC (p>0.1) patients. These findings indicate that LIMD1 plays a survival role in LUAD patients at least by acting as an immune regulatory protein. To further understand the mechanisms underlying the tumor-suppressing function of LIMD1 in NSCLC, we show that LIMD1 downregulation remarkably correlates with the deregulation of multiple pathways that play decisive roles in the oncogenesis of NSCLC, especially those mediated by EGFR, KRAS, PIK3CA, Keap1, and p63, in both LUAD and LUSC, and those mediated by p53 and CDKN2A only in LUAD. This study has disclosed that LIMD1 can serve as a survival prognostic marker for LUAD patients and provides mechanistic insights into the interaction of LIMD1 with NSCLC, which provide valuable information for clinical applications.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jared L Casteel
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mary E A Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
14
|
Grillo M, Palmer C, Holmes N, Sang F, Larner AC, Bhosale R, Shaw PE. Stat3 oxidation-dependent regulation of gene expression impacts on developmental processes and involves cooperation with Hif-1α. PLoS One 2020; 15:e0244255. [PMID: 33332446 PMCID: PMC7746180 DOI: 10.1371/journal.pone.0244255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species are bona fide intracellular second messengers that influence cell metabolism and aging by mechanisms that are incompletely resolved. Mitochondria generate superoxide that is dis-mutated to hydrogen peroxide, which in turn oxidises cysteine-based enzymes such as phosphatases, peroxiredoxins and redox-sensitive transcription factors to modulate their activity. Signal Transducer and Activator of Transcription 3 (Stat3) has been shown to participate in an oxidative relay with peroxiredoxin II but the impact of Stat3 oxidation on target gene expression and its biological consequences remain to be established. Thus, we created murine embryonic fibroblasts (MEFs) that express either WT-Stat3 or a redox-insensitive mutant of Stat3 (Stat3-C3S). The Stat3-C3S cells differed from WT-Stat3 cells in morphology, proliferation and resistance to oxidative stress; in response to cytokine stimulation, they displayed elevated Stat3 tyrosine phosphorylation and Socs3 expression, implying that Stat3-C3S is insensitive to oxidative inhibition. Comparative analysis of global gene expression in WT-Stat3 and Stat3-C3S cells revealed differential expression (DE) of genes both under basal conditions and during oxidative stress. Using differential gene regulation pattern analysis, we identified 199 genes clustered into 10 distinct patterns that were selectively responsive to Stat3 oxidation. GO term analysis identified down-regulated genes to be enriched for tissue/organ development and morphogenesis and up-regulated genes to be enriched for cell-cell adhesion, immune responses and transport related processes. Although most DE gene promoters contain consensus Stat3 inducible elements (SIEs), our chromatin immunoprecipitation (ChIP) and ChIP-seq analyses did not detect Stat3 binding at these sites in control or oxidant-stimulated cells, suggesting that oxidised Stat3 regulates these genes indirectly. Our further computational analysis revealed enrichment of hypoxia response elements (HREs) within DE gene promoters, implying a role for Hif-1. Experimental validation revealed that efficient stabilisation of Hif-1α in response to oxidative stress or hypoxia required an oxidation-competent Stat3 and that depletion of Hif-1α suppressed the inducible expression of Kcnb1, a representative DE gene. Our data suggest that Stat3 and Hif-1α cooperate to regulate genes involved in immune functions and developmental processes in response to oxidative stress.
Collapse
Affiliation(s)
- Michela Grillo
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Carolyn Palmer
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Nadine Holmes
- Deep-Seq Unit, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Fei Sang
- Deep-Seq Unit, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Peter E. Shaw
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
15
|
Guo ZZ, Ma ZJ, He YZ, Jiang W, Xia Y, Pan CF, Wei K, Shi YJ, Chen L, Chen YJ. miR-550a-5p Functions as a Tumor Promoter by Targeting LIMD1 in Lung Adenocarcinoma. Front Oncol 2020; 10:570733. [PMID: 33194664 PMCID: PMC7655921 DOI: 10.3389/fonc.2020.570733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma accounts for half of all lung cancer cases in most countries. Mounting evidence has demonstrated that microRNAs play important roles in cancer progression, and some of them can be identified as potential biomarkers. This study aimed to explore the role of miR-550a-5p, a lung adenocarcinoma-associated mature microRNA screened out from the TCGA database via R-studio and Perl, with abundant expression in samples and with 5-year survival prognosis difference, as well as having not been studied in lung cancer yet. Potential target genes were predicted by the online database. Gene ontology enrichment, pathway enrichment, protein–protein interaction network, and hub genes–microRNA network were constructed by FunRich, STRING database, and Cytoscape. Then, LIMD1, a known tumor suppressor gene reported by multiple articles, was found to have a negative correlation with miR-550a-5p. The expression of miR-550a-5p was up-regulated in tumor samples and tumor-associated cell lines. Its high expression was also correlated with tumor size. Cell line A549 treated with miR-550a-5p overexpression promoted tumor proliferation, while H1299 treated with miR-550a-5p knockdown showed the opposite result. Mechanically, miR-550a-5p negatively regulated LIMD1 by directly binding to its 3′-UTR validated by dual luciferase assay. In summary, a new potential prognostic and therapeutic biomarker, miR-550a-5p, has been identified by bioinformatics analysis and experimental validation in vitro and in vivo, which promotes lung adenocarcinoma by silencing a known suppressor oncogene LIMD1.
Collapse
Affiliation(s)
- Zi-Zhang Guo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zi-Jian Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao-Zhou He
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xia
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun-Feng Pan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Jun Shi
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Jiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zeng X, Wang H, He D, Jia W, Ma R. LIMD1 Increases the Sensitivity of Lung Adenocarcinoma Cells to Cisplatin via the GADD45α/p38 MAPK Signaling Pathway. Front Oncol 2020; 10:969. [PMID: 32754438 PMCID: PMC7365921 DOI: 10.3389/fonc.2020.00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: To investigate the effect of LIM domain-containing protein 1 (LIMD1) on the sensitivity of lung adenocarcinoma cells to cisplatin and explore the mechanism. Methods: A549 and H1299 cells were transfected with lentivirus to establish LIMD1-overexpressing cell lines and their respective controls. The protein expression of DNA damage-inducible 45 alpha (GADD45α) and p38 mitogen-activated protein kinase (MAPK) was detected by Western blot. The survival of A549-vec, A549-LIMD1, H1299-vec, and H1299-LIMD1 cells after cisplatin treatment was observed by CCK-8, and the viability was calculated accordingly. Then, SB203580 was used to inhibit the activity of the p38 MAPK signaling pathway, after which the survival of A549-vec, A549-LIMD1, H1299-vec, and H1299-LIMD1 cells in response to cisplatin was observed again by CCK-8, and the viability was calculated accordingly. Results: When LIMD1 was overexpressed in A549 and H1299 cells, the levels of GADD45α and p-p38 MAPK were increased, but total p38 MAPK expression showed no significant change. After adding 30 μM cisplatin, the optical density (OD) values of A549-LIMD1 and H1299-LIMD1 cells were significantly lower than those of their respective controls at 24, 48, and 72 h. The viability of A549-LIMD1 and H1299-LIMD1 cells was significantly lower than that of their respective controls at all the times tested (p < 0.05). The Western blot results showed that the expression of apoptotic proteins cleaved caspase 3 and cleaved PARP in cisplatin-treated A549-LIDM1 and H1299-LIMD1 cells was significantly higher than that in their respective control cells. Flow cytometry showed that the apoptosis rates of A549-LIMD1 and H1299-LIMD1 cells were significantly higher than those of their respective controls (p < 0.05). SB203580 significantly inhibited the activation of the p38 MAPK signaling pathway in lung adenocarcinoma cells; however, neither the OD values nor the viability of A549-LIMD1 cells and H1299-LIMD1 cells showed no significant difference from those of their controls at 24, 48, and 72 h after cisplatin and SB203580 treatment (p > 0.05 for both). Western blot analysis showed that after SB203580 was added, the expression of cleaved caspase 3 and cleaved PARP in A549-LIMD1 and H1299-LIMD1 cells presented no significant difference compared with that in their respective controls. Conclusion: LIMD1 increases the sensitivity of lung adenocarcinoma cells to cisplatin by activating the GADD45α/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong Wang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dongsheng He
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Weikun Jia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
17
|
Depping R, von Fallois M, Landesman Y, Kosyna FK. The Nuclear Export Inhibitor Selinexor Inhibits Hypoxia Signaling Pathways And 3D Spheroid Growth Of Cancer Cells. Onco Targets Ther 2019; 12:8387-8399. [PMID: 31632086 PMCID: PMC6793465 DOI: 10.2147/ott.s213208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The nucleocytoplasmic transport of macromolecules is critical for both cell physiology and pathophysiology. Exportin 1 (XPO1), the major nuclear export receptor, is involved in the cellular adaptation to reduced oxygen availability by controlling the nuclear activity of the hypoxia-inducible factors (HIFs). Recently, a specific inhibitor of XPO1, selinexor (KPT-330), has been identified that inhibits nuclear export of cargo proteins by binding to the XPO1 cargo-binding pocket. Patients and methods We used different cancer cell lines from human tissues and evaluated the physiological activity of selinexor on the hypoxia response pathway in two-dimensional (2D) monolayer cell cultures in quantitative real-time (qRT)-PCR experiments and luciferase reporter gene assays. A three-dimensional (3D) tumor spheroid culture model of MCF-7 breast cancer cells was established to analyze the effect of selinexor on 3D tumor spheroid structure, formation and viability. Results Selinexor treatment reduces HIF-transcriptional activity and expression of the HIF-1 target gene solute carrier family 2 member 1 (SLC2A1). Moreover, 3D tumor spheroid structure, formation and viability are inhibited in response to selinexor-induced nuclear export inhibition. Conclusion Here, we demonstrate the effect of specific XPO1-inhibition on the hypoxic response on the molecular level in 2D and 3D culture models of MCF-7 cells.
Collapse
Affiliation(s)
- Reinhard Depping
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| | - Moritz von Fallois
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany.,Clinic for Radiotherapy, University Hospital Schleswig-Holstein, Lübeck D-23562, Germany
| | | | - Friederike Katharina Kosyna
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| |
Collapse
|
18
|
Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019; 8:cells8030207. [PMID: 30823476 PMCID: PMC6468851 DOI: 10.3390/cells8030207] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia, a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors (HIFs) are the "master" transcription factors responsible for gene expression in hypoxia. Recent researches demonstrate that HIFs play an important role in kidney injury and repair by regulating HIF target genes, including microRNAs. However, there are controversies regarding the pathological roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression, and functions of HIFs, and their target genes and related functions. We also discuss the involvement of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.
Collapse
|
19
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
20
|
Zhou J, Zhang L, Zhou W, Chen Y, Cheng Y, Dong J. LIMD1 phosphorylation in mitosis is required for mitotic progression and its tumor-suppressing activity. FEBS J 2019; 286:963-974. [PMID: 30600590 DOI: 10.1111/febs.14743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 01/01/2019] [Indexed: 12/13/2022]
Abstract
LIM domains containing 1 (LIMD1) is a member of the Zyxin family proteins and functions as a tumor suppressor in lung cancer. LIMD1 has been shown to regulate Hippo-YAP signaling activity. Here, we report a novel regulatory mechanism for LIMD1. We found that cyclin-dependent kinase 1 (CDK1) and c-Jun NH2-terminal kinases 1/2 (JNK1/2) phosphorylate LIMD1 in vitro and in cells during anti-tubulin drug-induced mitotic arrest. Phosphorylation also occurs during normal mitosis. S272, S277, S421, and S424 were identified as the main phosphorylation sites in LIMD1. Deletion of LIMD1 resulted in a shortened mitotic cell cycle and phosphorylation of LIMD1 is required for proper mitotic progression. We further showed that the phosphorylation-deficient mutant LIMD1-4A is less active in suppressing cell proliferation, anchorage-independent growth, cell migration, and invasion in lung cancer cells. Together, our findings suggest that LIMD1 is a key regulator of mitotic progression, and that dysregulation of LIMD1 contributes to tumorigenesis.
Collapse
Affiliation(s)
- Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lin Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|