1
|
Southern BD, Gadre SK. Telomeropathies in Interstitial Lung Disease and Lung Transplant Recipients. J Clin Med 2025; 14:1496. [PMID: 40095034 PMCID: PMC11900913 DOI: 10.3390/jcm14051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeropathies, or telomere biology disorders (TBDs), are syndromes that can cause a number of medical conditions, including interstitial lung disease (ILD), bone marrow failure, liver fibrosis, and other diseases. They occur due to genetic mutations to the telomerase complex enzymes that result in premature shortening of telomeres, the caps on the ends of cellular DNA that protect chromosome length during cell division, leading to early cell senescence and death. Idiopathic pulmonary fibrosis (IPF) is the most common manifestation of the telomere biology disorders, although it has been described in other interstitial lung diseases as well, such as rheumatoid arthritis-associated ILD and chronic hypersensitivity pneumonitis. Telomere-related mutations can be inherited or can occur sporadically. Identifying these patients and offering genetic counseling is important because telomerapathies have been associated with poorer outcomes including death, lung transplantation, hospitalization, and FVC decline. Additionally, treatment with immunosuppressants has been shown to be associated with worse outcomes. Currently, there is no specific treatment for TBD except to transplant the organ that is failing, although there are a number of promising treatment strategies currently under investigation. Shortened telomere length is routinely discovered in patients undergoing lung transplantation for IPF. Testing to detect early TBD in patients with suggestive signs or symptoms can allow for more comprehensive treatment and multidisciplinary care pre- and post-transplant. Patients with TBD undergoing lung transplantation have been reported to have both pulmonary and extrapulmonary complications at a higher frequency than other lung transplant recipients, such as graft-specific complications, increased infections, and complications related to immunosuppressive therapy.
Collapse
Affiliation(s)
- Brian D. Southern
- Integrated Hospital-Care Institute, Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | | |
Collapse
|
2
|
Bertrand A, Ba I, Kermasson L, Pirabakaran V, Chable N, Lainey E, Ménard C, Kallel F, Picard C, Hadiji S, Coolen-Allou N, Blanchard E, de Villartay JP, Moshous D, Roelens M, Callebaut I, Kannengiesser C, Revy P. Characterization of novel mutations in the TEL-patch domain of the telomeric factor TPP1 associated with telomere biology disorders. Hum Mol Genet 2024; 33:612-623. [PMID: 38176734 DOI: 10.1093/hmg/ddad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.
Collapse
Affiliation(s)
- Alexis Bertrand
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Ibrahima Ba
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Vithura Pirabakaran
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Noémie Chable
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-AssistancePublique-Hôpitaux de Paris (APHP), INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris 75019, France
| | - Christelle Ménard
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Faten Kallel
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Capucine Picard
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris 75015, France
| | - Sondes Hadiji
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Nathalie Coolen-Allou
- Service de Pneumologie, Hôpital Félix Guyon, CHU Réunion, Saint-Denis de la Réunion 97400, France
| | - Elodie Blanchard
- Service de Pneumologie, Hôpital Haut-Lévêque, CHU Bordeaux, Bordeaux 33604, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Despina Moshous
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
| | - Marie Roelens
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Caroline Kannengiesser
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
3
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
4
|
Liao P, Yan B, Wang C, Lei P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis 2023; 15:2595-2631. [PMID: 38270117 PMCID: PMC11567242 DOI: 10.14336/ad.2023.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.
Collapse
Affiliation(s)
- Pan Liao
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ping Lei
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
Yin J, Seo Y, Rhim J, Jin X, Kim TH, Kim SS, Hong JH, Gwak HS, Yoo H, Park JB, Kim JH. Cross-talk between PARN and EGFR-STAT3 Signaling Facilitates Self-Renewal and Proliferation of Glioblastoma Stem Cells. Cancer Res 2023; 83:3693-3709. [PMID: 37747775 DOI: 10.1158/0008-5472.can-22-3965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glioblastoma is the most common type of malignant primary brain tumor and displays highly aggressive and heterogeneous phenotypes. The transcription factor STAT3 has been reported to play a key role in glioblastoma malignancy. Thus, discovering targets and functional downstream networks regulated by STAT3 that govern glioblastoma pathogenesis may lead to improved treatment strategies. In this study, we identified that poly(A)-specific ribonuclease (PARN), a key modulator of RNA metabolism, activates EGFR-STAT3 signaling to support glioblastoma stem cells (GSC). Functional integrative analysis of STAT3 found PARN as the top-scoring transcriptional target involved in RNA processing in patients with glioblastoma, and PARN expression was strongly correlated with poor patient survival and elevated malignancy. PARN positively regulated self-renewal and proliferation of GSCs through its 3'-5' exoribonuclease activity. EGFR was identified as a clinically relevant target of PARN in GSCs. PARN positively modulated EGFR by negatively regulating the EGFR-targeting miRNA miR-7, and increased EGFR expression created a positive feedback loop to increase STAT3 activation. PARN depletion in GSCs reduced infiltration and prolonged survival in orthotopic brain tumor xenografts; similar results were observed using siRNA nanocapsule-mediated PARN targeting. Pharmacological targeting of STAT3 also confirmed PARN regulation by STAT3 signaling. In sum, these results suggest that a STAT3-PARN regulatory network plays a pivotal role in tumor progression and thus may represent a target for glioblastoma therapeutics. SIGNIFICANCE A positive feedback loop comprising PARN and EGFR-STAT3 signaling supports self-renewal and proliferation of glioblastoma stem cells to drive tumor progression and can be targeted in glioblastoma therapeutics.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yoona Seo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jiho Rhim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Xiong Jin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Tae Hoon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
6
|
Valeeva LR, Abdulkina LR, Agabekian IA, Shakirov EV. Telomere biology and ribosome biogenesis: structural and functional interconnections. Biochem Cell Biol 2023; 101:394-409. [PMID: 36989538 DOI: 10.1139/bcb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Collapse
Affiliation(s)
- Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
7
|
Rakotopare J, Lejour V, Duval C, Eldawra E, Escoffier H, Toledo F. A systematic approach identifies p53-DREAM pathway target genes associated with blood or brain abnormalities. Dis Model Mech 2023; 16:dmm050376. [PMID: 37661832 PMCID: PMC10581385 DOI: 10.1242/dmm.050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Carla Duval
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | | | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| |
Collapse
|
8
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
9
|
Mann JM, Wei C, Chen C. How genetic defects in piRNA trimming contribute to male infertility. Andrology 2023; 11:911-917. [PMID: 36263612 PMCID: PMC10115909 DOI: 10.1111/andr.13324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
In germ cells, small non-coding PIWI-interacting RNAs (piRNAs) work to silence harmful transposons to maintain genomic stability and regulate gene expression to ensure fertility. However, these piRNAs must undergo a series of steps during biogenesis to be properly loaded onto PIWI proteins and reach the correct nucleotide length. This review is focused on what we are learning about a crucial step in this process, piRNA trimming, in which pre-piRNAs are shortened to final lengths of 21-35 nucleotides. Recently, the 3'-5' exonuclease trimmer has been identified in various models as PNLDC1/PARN-1. Mutations of the piRNA trimmers in vivo lead to increased transposon expression, elevated levels of untrimmed pre-piRNAs, decreased piRNA stability, and male infertility. Here, we will discuss the role of piRNA trimmers in piRNA biogenesis and function, describe consequences of piRNA trimmer mutations using mammalian models and human patients, and examine future avenues of piRNA trimming-related study for clinical advancements for male infertility.
Collapse
Affiliation(s)
- Jeffrey M. Mann
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
10
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Nanjappa DP, De Saffel H, Kalladka K, Arjuna S, Babu N, Prasad K, Sips P, Chakraborty A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci Rep 2023; 13:10026. [PMID: 37340076 DOI: 10.1038/s41598-023-37226-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Poly (A)-specific ribonuclease (PARN) is the most important 3'-5'exonuclease involved in the process of deadenylation, the removal of poly (A) tails of mRNAs. Although PARN is primarily known for its role in mRNA stability, recent studies suggest several other functions of PARN including a role in telomere biology, non-coding RNA maturation, trimming of miRNAs, ribosome biogenesis and TP53 function. Moreover, PARN expression is de-regulated in many cancers, including solid tumours and hematopoietic malignancies. To better understand the in vivo role of PARN, we used a zebrafish model to study the physiological consequences of Parn loss-of-function. Exon 19 of the gene, which partially codes for the RNA binding domain of the protein, was targeted for CRISPR-Cas9-directed genome editing. Contrary to the expectations, no developmental defects were observed in the zebrafish with a parn nonsense mutation. Intriguingly, the parn null mutants were viable and fertile, but turned out to only develop into males. Histological analysis of the gonads in the mutants and their wild type siblings revealed a defective maturation of gonadal cells in the parn null mutants. The results of this study highlight yet another emerging function of Parn, i.e., its role in oogenesis.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Krithika Kalladka
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Srividya Arjuna
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Kishan Prasad
- Department of Pathology, KS Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
12
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Chappert P, Huetz F, Espinasse MA, Chatonnet F, Pannetier L, Da Silva L, Goetz C, Mégret J, Sokal A, Crickx E, Nemazanyy I, Jung V, Guerrera C, Storck S, Mahévas M, Cosma A, Revy P, Fest T, Reynaud CA, Weill JC. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 2022; 55:1872-1890.e9. [PMID: 36130603 PMCID: PMC7613742 DOI: 10.1016/j.immuni.2022.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022]
Abstract
Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.
Collapse
Affiliation(s)
- Pascal Chappert
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Inovarion, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France.
| | - François Huetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Pasteur, Université Paris Cité, Unité Anticorps en thérapie et pathologie, UMR 1222 INSERM, Paris, France
| | - Marie-Alix Espinasse
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Louise Pannetier
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Lucie Da Silva
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Clara Goetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Jérome Mégret
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Aurélien Sokal
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Etienne Crickx
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Ivan Nemazanyy
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Vincent Jung
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Chiara Guerrera
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Sébastien Storck
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Antonio Cosma
- Translational Medicine Operations Hub, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue Nationale contre le Cancer, Imagine Institute, Université Paris Cité, Paris, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| | - Jean-Claude Weill
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Kermasson L, Churikov D, Awad A, Smoom R, Lainey E, Touzot F, Audebert-Bellanger S, Haro S, Roger L, Costa E, Mouf M, Bottero A, Oleastro M, Abdo C, de Villartay JP, Géli V, Tzfati Y, Callebaut I, Danielian S, Soares G, Kannengiesser C, Revy P. Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood 2022; 139:2427-2440. [PMID: 35007328 PMCID: PMC11022855 DOI: 10.1182/blood.2021010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.
Collapse
Affiliation(s)
- Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Dmitri Churikov
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-Assistance Publique-Hôpitaux de Paris (APHP); INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Fabien Touzot
- Department of Immunology-Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire (CHU), Sainte Justine Research Center, Université de Montréal, Montréal, Quebec, Canada
| | | | - Sophie Haro
- Department of Paediatrics and Medical Genetics, CHU de Brest, Brest, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, “Muséum National d'Histoire Naturelle” (MNHN), INSERM U1154, CNRS UMR 7196, Paris, France
| | - Emilia Costa
- Serviço de Pediatria, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Maload Mouf
- 68HAL Meddle Laboratory, Zenon Skelter Institute, Green Hills, Eggum, Norway
| | | | - Matias Oleastro
- Rheumathology and Immunology Service, Hospital Nacional de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Chrystelle Abdo
- Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris and Institut Necker Enfants Malades, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Vincent Géli
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Isabelle Callebaut
- UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Silvia Danielian
- Department of Immunology, JP Garrahan National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Gabriela Soares
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Caroline Kannengiesser
- Service de Génétique, Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Université Paris Diderot, Paris, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
15
|
Sbihi Z, Tanita K, Bachelet C, Bole C, Jabot-Hanin F, Tores F, Le Loch M, Khodr R, Hoshino A, Lenoir C, Oleastro M, Villa M, Spossito L, Prieto E, Danielian S, Brunet E, Picard C, Taga T, Abdrabou SSMA, Isoda T, Yamada M, Palma A, Kanegane H, Latour S. Identification of Germline Non-coding Deletions in XIAP Gene Causing XIAP Deficiency Reveals a Key Promoter Sequence. J Clin Immunol 2022; 42:559-571. [PMID: 35000057 DOI: 10.1007/s10875-021-01188-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression. METHODS Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells. RESULTS NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression. CONCLUSIONS These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.
Collapse
Affiliation(s)
- Zineb Sbihi
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| | - Christine Bole
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM UMR 1163, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM UMR 1163, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France.,Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Frederic Tores
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM UMR 1163, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France.,Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Marc Le Loch
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Paris, France
| | - Radi Khodr
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Matias Oleastro
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Villa
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Lucia Spossito
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Emma Prieto
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Danielian
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Erika Brunet
- Laboratory of Dynamic of Genome and Immune System, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Alejandro Palma
- Immunology and Rheumatology Division, Hospital de Pediatria S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France. .,Université de Paris, Paris, France.
| |
Collapse
|
16
|
Philippot Q, Kannengiesser C, Debray MP, Gauvain C, Ba I, Vieri M, Gondouin A, Naccache JM, Reynaud-Gaubert M, Uzunhan Y, Bondue B, Israël-Biet D, Dieudé P, Fourrage C, Lainey E, Manali E, Papiris S, Wemeau L, Hirschi S, Mal H, Nunes H, Schlemmer F, Blanchard E, Beier F, Cottin V, Crestani B, Borie R. Interstitial lung diseases associated with mutations of poly(A)-specific ribonuclease: A multicentre retrospective study. Respirology 2022; 27:226-235. [PMID: 34981600 DOI: 10.1111/resp.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Poly(A)-specific ribonuclease (PARN) mutations have been associated with familial pulmonary fibrosis. This study aims to describe the phenotype of patients with interstitial lung disease (ILD) and heterozygous PARN mutations. METHODS We performed a retrospective, observational, non-interventional study of patients with an ILD diagnosis and a pathogenic heterozygous PARN mutation followed up in a centre of the OrphaLung network. RESULTS We included 31 patients (29 from 16 kindreds and two sporadic patients). The median age at ILD diagnosis was 59 years (range 54 to 63). In total, 23 (74%) patients had a smoking history and/or fibrogenic exposure. The pulmonary phenotypes were heterogenous, but the most frequent diagnosis was idiopathic pulmonary fibrosis (n = 12, 39%). Haematological abnormalities were identified in three patients and liver disease in two. In total, 21 patients received a specific treatment for ILD: steroids (n = 13), antifibrotic agents (n = 11), immunosuppressants (n = 5) and N-acetyl cysteine (n = 2). The median forced vital capacity decline for the whole sample was 256 ml/year (range -363 to -148). After a median follow-up of 32 months (range 18 to 66), 10 patients had died and six had undergone lung transplantation. The median transplantation-free survival was 54 months (95% CI 29 to ∞). Extra-pulmonary features were less frequent with PARN mutation than telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) mutation. CONCLUSION IPF is common among individuals with PARN mutation, but other ILD subtypes may be observed.
Collapse
Affiliation(s)
| | - Caroline Kannengiesser
- INSERM, Unité 1152, Université de Paris, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Marie Pierre Debray
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Radiologie, Hôpital Bichat, APHP, Paris, France
| | | | - Ibrahima Ba
- Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Gondouin
- Service de Pneumologie, CHU de Besançon, Besancon, France
| | | | | | | | | | | | - Philippe Dieudé
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Rhumatologie, Hôpital Bichat, APHP, Paris, France
| | - Cécile Fourrage
- Service de Génétique Hôpital Necker Enfants Malades, APHP, Paris, France.,Plateforme de Bio-informatique, Institut Imagine, Université de Paris, Paris, France
| | - Elodie Lainey
- Laboratoire d'Hématologie Hôpital Robert Debré, APHP, Paris, France
| | - Effrosyne Manali
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | - Spyros Papiris
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | | | | | - Hervé Mal
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Pneumologie B, Hôpital Bichat, APHP, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Frédéric Schlemmer
- Unité de Pneumologie, Université Paris-Est Créteil, APHP, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vincent Cottin
- Coordonnateur OrphaLung, Centre coordonnateur national de référence des maladies pulmonaires rares, Service de Pneumologie, Hôpital Louis Pradel, Université de Lyon, INRAE, member of Radico-ILD, Lyon, France.,RespiFil, ERN-LUNG, Lyon, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Raphaël Borie
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | | |
Collapse
|
17
|
Zhu R, Yan T, Feng Y, Liu Y, Cao H, Peng G, Yang Y, Xu Z, Liu J, Hou W, Wang X, Li Z, Deng L, Wang S, Li J, Han Q, Li H, Shan G, Cao Y, An X, Yan J, Zhang Z, Li H, Qu X, Zhu J, Zhou S, Wang J, Zhang F, Gao J, Jin R, Xu D, Ma YQ, Huang T, Peng S, Zheng Z, Stambler I, Gilson E, Lim LW, Moskalev A, Cano A, Chakrabarti S, Ulfhake B, Su H, Xu H, Xu S, Wei F, Brown-Borg HM, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31:1244-1262. [PMID: 34702946 PMCID: PMC8546390 DOI: 10.1038/s41422-021-00573-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Rongjia Zhu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingmei Feng
- You'an Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, Zhejiang, China
| | - Gongxin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanlei Yang
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Xu
- School of Life Sciences, Shanghai University, Shanghai, China
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Hou
- You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Wang
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Luchan Deng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongling Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Guangliang Shan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yinghao Cao
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xingyan An
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianshe Yan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Huafei Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xuebin Qu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, Zhejiang, China
| | - Shumin Zhou
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fengchun Zhang
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ronghua Jin
- You'an Hospital, Capital Medical University, Beijing, China.
| | - Dayong Xu
- Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan-Qing Ma
- Versiti Blood Research Institute, Milwaukee, WI, USA.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shuang Peng
- Qingdao Walson Standard Biopharmaceutical Co, Ltd, Qingdao, Shangdong, China
| | - Zhi Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ilia Stambler
- International Society on Aging and Disease, Bryan, TX, USA
- Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel
| | - Eric Gilson
- International Society on Aging and Disease, Bryan, TX, USA
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
- Department of Medical Genetics, Centre Hospitalier Universitaire (CHU), Nice, France
| | - Lee Wei Lim
- International Society on Aging and Disease, Bryan, TX, USA
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Alexey Moskalev
- International Society on Aging and Disease, Bryan, TX, USA
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia
- Russian Gerontological Research Clinical Center, Moscow, Russia
| | - Antonio Cano
- International Society on Aging and Disease, Bryan, TX, USA
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Sasanka Chakrabarti
- International Society on Aging and Disease, Bryan, TX, USA
- Maharishi Markandeshwar Deemed University, Mullana-Ambala, India
| | - Brun Ulfhake
- International Society on Aging and Disease, Bryan, TX, USA
- Karolinska University Hospital, Stockholm, Sweden
| | - Huanxing Su
- International Society on Aging and Disease, Bryan, TX, USA
- Institute of Chinese Medical Science, University of Macau, Taipa, Macau, China
| | - Haoying Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Sihuan Xu
- Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Feng Wei
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM GROUP Co, Ltd, Beijing, China
| | - Holly M Brown-Borg
- International Society on Aging and Disease, Bryan, TX, USA
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Kyung-Jin Min
- International Society on Aging and Disease, Bryan, TX, USA
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Georgina Ellison-Hughes
- International Society on Aging and Disease, Bryan, TX, USA
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Calogero Caruso
- International Society on Aging and Disease, Bryan, TX, USA
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Kunlin Jin
- International Society on Aging and Disease, Bryan, TX, USA
- University of North Texas Health Science Center, Bryan, TX, USA
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
- International Society on Aging and Disease, Bryan, TX, USA.
| |
Collapse
|
18
|
Yasutomo K. Genetics and animal models of familial pulmonary fibrosis. Int Immunol 2021; 33:653-657. [PMID: 34049386 PMCID: PMC8633634 DOI: 10.1093/intimm/dxab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
Pulmonary fibrosis is caused by the interplay between genetic and environmental factors. Recent studies have revealed various genes associated with idiopathic pulmonary fibrosis, as well as the causative genes for familial pulmonary fibrosis. Although increased death or dysfunction of type 2 alveolar epithelial (AT2) cells has been detected in lung specimens from pulmonary fibrosis patients, it remains unclear whether and how AT2 cell death or dysfunction is responsible for the progression of pulmonary fibrosis. A recent study showed that increased AT2 cell necroptosis is the initial event in pulmonary fibrosis by analyzing patients with familial pulmonary fibrosis and an animal model that harbors the same mutation as patients. The contribution of AT2 cell necroptosis to the pathogenesis of pulmonary fibrosis has not been identified in animal model studies, which validates the effectiveness of genetic analysis of familial diseases to uncover unknown pathogeneses. Thus, further extensive genetic studies of pulmonary fibrosis along with functional studies based on genetic analysis will be crucial not only in elucidating the precise disease process but also, ultimately, in identifying novel treatment strategies for both familial and non-familial pulmonary fibrosis.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
19
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
20
|
Lin CYG, Näger AC, Lunardi T, Vančevska A, Lossaint G, Lingner J. The human telomeric proteome during telomere replication. Nucleic Acids Res 2021; 49:12119-12135. [PMID: 34747482 PMCID: PMC8643687 DOI: 10.1093/nar/gkab1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Christina Näger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gérald Lossaint
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
22
|
Tsai YY, Su CH, Tarn WY. p53 Activation in Genetic Disorders: Different Routes to the Same Destination. Int J Mol Sci 2021; 22:9307. [PMID: 34502215 PMCID: PMC8430931 DOI: 10.3390/ijms22179307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor p53 is critical for preventing neoplastic transformation and tumor progression. Inappropriate activation of p53, however, has been observed in a number of human inherited disorders that most often affect development of the brain, craniofacial region, limb skeleton, and hematopoietic system. Genes related to these developmental disorders are essentially involved in transcriptional regulation/chromatin remodeling, rRNA metabolism, DNA damage-repair pathways, telomere maintenance, and centrosome biogenesis. Perturbation of these activities or cellular processes may result in p53 accumulation in cell cultures, animal models, and perhaps humans as well. Mouse models of several p53 activation-associated disorders essentially recapitulate human traits, and inactivation of p53 in these models can alleviate disorder-related phenotypes. In the present review, we focus on how dysfunction of the aforementioned biological processes causes developmental defects via excessive p53 activation. Notably, several disease-related genes exert a pleiotropic effect on those cellular processes, which may modulate the magnitude of p53 activation and establish or disrupt regulatory loops. Finally, we discuss potential therapeutic strategies for genetic disorders associated with p53 misactivation.
Collapse
|
23
|
Abstract
Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.
Collapse
|
24
|
Benyelles M, O'Donohue MF, Kermasson L, Lainey E, Borie R, Lagresle-Peyrou C, Nunes H, Cazelles C, Fourrage C, Ollivier E, Marcais A, Gamez AS, Morice-Picard F, Caillaud D, Pottier N, Ménard C, Ba I, Fernandes A, Crestani B, de Villartay JP, Gleizes PE, Callebaut I, Kannengiesser C, Revy P. NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Høyeraal-Hreidarsson syndrome. Hum Mol Genet 2021; 29:907-922. [PMID: 31985013 DOI: 10.1093/hmg/ddaa011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert DEBRE Hospital-APHP and INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Raphael Borie
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France.,INSERM, Unité 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Centre de Référence des Maladies Pulmonaires rares, Hôpital Avicenne, AP-HP, INSERM 1272, Université Paris 13, Bobigny, France
| | - Clarisse Cazelles
- Service d'hématologie adulte, Hôpital Necker- Enfants malades, Paris, France
| | - Cécile Fourrage
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Emmanuelle Ollivier
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Ambroise Marcais
- Service d'hématologie Adultes, Hôpital Necker-Enfants Malades, Assistance publique hôpitaux de Paris, Paris, France, Laboratoire d'onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université Paris Descartes, Paris, France
| | | | - Fanny Morice-Picard
- Service de Dermatologie Pédiatrique, Centre de Reference des Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux F-33076, France
| | - Denis Caillaud
- Service de Pneumologie-Allergologie, Hôpital Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Pottier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, Lille, France
| | - Christelle Ménard
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ibrahima Ba
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alicia Fernandes
- Biological Resources Center, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Assistance Publique des Hôpitaux de Paris and Institut Imagine, Paris, France
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Jean-Pierre de Villartay
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
25
|
Froidure A, Mahieu M, Hoton D, Laterre PF, Yombi JC, Koenig S, Ghaye B, Defour JP, Decottignies A. Short telomeres increase the risk of severe COVID-19. Aging (Albany NY) 2020; 12:19911-19922. [PMID: 33104521 PMCID: PMC7655194 DOI: 10.18632/aging.104097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Telomeres are non-coding DNA sequences that protect chromosome ends and shorten with age. Short telomere length (TL) is associated with chronic diseases and immunosenescence. The main risk factor for mortality of coronavirus disease 2019 (COVID-19) is older age, but outcome is very heterogeneous among individuals of the same age group. Therefore, we hypothesized that TL influences COVID-19-related outcomes. In a prospective study, we measured TL by Flow-FISH in 70 hospitalized COVID-19 patients and compared TL distribution with our reference cohort of 491 healthy volunteers. We also correlated TL with baseline clinical and biological parameters. We stained autopsy lung tissue from six non-survivor COVID-19 patients to detect senescence-associated β-galactosidase activity, a marker of cellular aging. We found a significantly higher proportion of patients with short telomeres (<10th percentile) in the COVID-19 patients as compared to the reference cohort (P<0.001). Short telomeres were associated with a higher risk of critical disease, defined as admission to intensive care unit (ICU) or death without ICU. TL was negatively correlated with C-reactive protein and neutrophil-to-lymphocyte ratio. Finally, lung tissue from patients with very short telomeres exhibit signs of senescence in structural and immune cells. Our results suggest that TL influences the severity of the disease.
Collapse
Affiliation(s)
- Antoine Froidure
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Manon Mahieu
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Delphine Hoton
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Pathology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre-François Laterre
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Intensive Care, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jean Cyr Yombi
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Koenig
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Ghaye
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Defour
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Department of Laboratory Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
26
|
Zeng T, Lv G, Chen X, Yang L, Zhou L, Dou Y, Tang X, Yang J, An Y, Zhao X. CD8 + T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. J Clin Lab Anal 2020; 34:e23375. [PMID: 32452087 PMCID: PMC7521304 DOI: 10.1002/jcla.23375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail. METHODS We summarize the clinical data of two juvenile patients with DC. Gene mutations were identified by whole-exome and direct sequencing. Swiss-PdbViewer was used to predict the pathogenicity of identified mutations. The relative telomere length was determined by QPCR, and a comprehensive analysis of lymphocyte subsets and CD57 expression was performed by flow cytometry. RESULTS Both patients showed typical features of DC without severe infection. In addition, patient 1 (P1) was diagnosed with Hoyeraal-Hreidarsson syndrome due to cerebellar hypoplasia. Gene sequencing showed P1 had a compound heterozygous mutation (c.204G > T and c.178-245del) in PARN and P2 had a novel hemizygous mutation in DKC1 (c.1051A > G). Lymphocyte subset analysis showed B and NK cytopenia, an inverted CD4:CD8 ratio, and decreased naïve CD4 and CD8 cells. A significant increase in CD21low B cells and skewed numbers of helper T cells (Th), regulatory T cells (Treg), follicular regulatory T cells (Tfr), and follicular helper T cells (Tfh) were also detected. Short telomere lengths, increased CD57 expression, and an expansion of CD8 effector memory T cells re-expressing CD45RA (TEMRA) were also found in both patients. CONCLUSION Unique immunologic abnormalities, CD8 T-cell senescence, and shortened telomere together as a hallmark occur in young DC patients before progression to severe disease.
Collapse
Affiliation(s)
- Ting Zeng
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ge Lv
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Chen
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Dou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Hematology and OncologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Tang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jun Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyShenzhen Children's HospitalShenzhenChina
| | - Yunfei An
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
27
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Awad A, Glousker G, Lamm N, Tawil S, Hourvitz N, Smoom R, Revy P, Tzfati Y. Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase. Nucleic Acids Res 2020; 48:7239-7251. [PMID: 32542379 PMCID: PMC7367169 DOI: 10.1093/nar/gkaa503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and distinguish them from broken DNA ends to suppress DNA damage response, cell cycle arrest and genomic instability. Telomeres are elongated by telomerase to compensate for incomplete replication and nuclease degradation and to extend the proliferation potential of germ and stem cells and most cancers. However, telomeres in somatic cells gradually shorten with age, ultimately leading to cellular senescence. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and diverse symptoms including bone marrow failure, immunodeficiency, and neurodevelopmental defects. HHS is caused by germline mutations in telomerase subunits, factors essential for its biogenesis and recruitment to telomeres, and in the helicase RTEL1. While diverse phenotypes were associated with RTEL1 deficiency, the telomeric role of RTEL1 affected in HHS is yet unknown. Inducible ectopic expression of wild-type RTEL1 in patient fibroblasts rescued the cells, enabled telomerase-dependent telomere elongation and suppressed the abnormal cellular phenotypes, while silencing its expression resulted in gradual telomere shortening. Our observations reveal an essential role of the RTEL1 C-terminus in facilitating telomerase action at the telomeric 3' overhang. Thus, the common etiology for HHS is the compromised telomerase action, resulting in telomere shortening and reduced lifespan of telomerase positive cells.
Collapse
Affiliation(s)
- Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Lamm
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Shadi Tawil
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
30
|
Dodson LM, Baldan A, Nissbeck M, Gunja SMR, Bonnen PE, Aubert G, Birchansky S, Virtanen A, Bertuch AA. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum Mutat 2019; 40:2414-2429. [PMID: 31448843 DOI: 10.1002/humu.23898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.
Collapse
Affiliation(s)
- Lois M Dodson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alessandro Baldan
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Mikael Nissbeck
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sethu M R Gunja
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Geraldine Aubert
- Repeat Diagnostics Inc., North Vancouver, British Columbia, Canada
| | - Sherri Birchansky
- Department of Radiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Anders Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|