1
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Ou W, Li X, Tang K, Ding L, Sun T, Li Q, Li T. GLA deficiency causes cardiac hypertrophy via enhanced autophagy. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-023-2731-0. [PMID: 39969746 DOI: 10.1007/s11427-023-2731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 02/20/2025]
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of α-galactosidase A (GLA). Cardiomyopathy is the leading cause of death in Fabry patients; however, a lack of understanding of the pathological mechanism impedes the development of effective therapies. Here, we used a Gla knockout (KO) mouse model and investigated its impact on cardiomyopathy. We found that globotriaosylceramide (Gb3) increased the uptake and accumulation of fatty acids in KO hearts by increasing the expression levels of CD36 and ACC2. The augmented fatty acid metabolism further increased autophagy activity, leading to age-related late-onset cardiac hypertrophy. Additionally, increased autophagy facilitates disturbances in fatty acid metabolism. The inhibition of autophagy by supplementation with 3-methyladenine (3-MA) or the overexpression of GLA by the cardiomyocyte-specific adeno-associated virus for 2 months could rebalance abnormal fatty acid metabolism and ameliorate cardiac hypertrophy and dysfunction in KO hearts, suggesting a central role of autophagy in GLA deficiency-related cardiomyopathy.
Collapse
Affiliation(s)
- Wei Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kuo Tang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kim H, Kim SJ. Upregulation of peroxisome proliferator-activated receptor γ with resorcinol alleviates reactive oxygen species generation and lipid accumulation in neuropathic lysosomal storage diseases. Int J Biochem Cell Biol 2024; 174:106631. [PMID: 39038642 DOI: 10.1016/j.biocel.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea.
| |
Collapse
|
4
|
Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, Krogsæter EK, Wollnik C, Abu-Remaileh M, Grimm C, Hermey G, Kuhn R, Gruber-Schoffnegger D, Markmann S. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep 2024; 14:17469. [PMID: 39080379 PMCID: PMC11289453 DOI: 10.1038/s41598-024-67479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.
Collapse
Affiliation(s)
| | - R Tang
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Charles River Laboratory, Chesterford Research Park, Saffron Walden, UK
| | - K Nyame
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - N N Laqtom
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Biological and Environmental Science & Engineering Division, King Abdullah University Of Science And Technology, Thuwal, Saudi Arabia
| | - M Schweizer
- Core Facility Morphology and Electronmicroscopy, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - E K Krogsæter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Gladstone Institutes, San Francisco, CA, USA
| | | | - M Abu-Remaileh
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research IIP, Munich/Frankfurt, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Kuhn
- Evotec SE, Hamburg, Germany
| | | | | |
Collapse
|
5
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
6
|
Hay Mele B, Rossetti F, Cubellis MV, Monticelli M, Andreotti G. Drug Repurposing and Lysosomal Storage Disorders: A Trick to Treat. Genes (Basel) 2024; 15:290. [PMID: 38540351 PMCID: PMC10970111 DOI: 10.3390/genes15030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Federica Rossetti
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Maria Vittoria Cubellis
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
7
|
Jiang X, Yi L, Li C, Wang H, Xiong W, Li Y, Zhou Z, Shen J. Mitochondrial Disruption Nanosystem Simultaneously Depressed Programmed Death Ligand-1 and Transforming Growth Factor-β to Overcome Photodynamic Immunotherapy Resistance. ACS NANO 2024; 18:3331-3348. [PMID: 38227812 DOI: 10.1021/acsnano.3c10117] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-β (TGF-β) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-β simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-β, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-β codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
8
|
Boretto C, Actis C, Faris P, Cordero F, Beccuti M, Ferrero G, Muzio G, Moccia F, Autelli R. Tamoxifen Activates Transcription Factor EB and Triggers Protective Autophagy in Breast Cancer Cells by Inducing Lysosomal Calcium Release: A Gateway to the Onset of Endocrine Resistance. Int J Mol Sci 2023; 25:458. [PMID: 38203629 PMCID: PMC10779225 DOI: 10.3390/ijms25010458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Among the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mechanisms by which this occurs have not been elucidated as yet. This investigation aims at dissecting how TFEB is activated and contributes to Tam resistance in luminal A breast cancer cells. TFEB was overexpressed and prominently nuclear in Tam-resistant MCF7 cells (MCF7-TamR) compared with their parental counterpart, and this was not dependent on alterations of its nucleo-cytoplasmic shuttling. Tam promoted the release of lysosomal Ca2+ through the major transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) and two-pore channels (TPCs), which caused the nuclear translocation and activation of TFEB. Consistently, inhibiting lysosomal calcium release restored the susceptibility of MCF7-TamR cells to Tam. Our findings demonstrate that Tam drives the nuclear relocation and transcriptional activation of TFEB by triggering the release of Ca2+ from the acidic compartment, and they suggest that lysosomal Ca2+ channels may represent new druggable targets to counteract the onset of autophagy-mediated endocrine resistance in luminal A breast cancer cells.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Cordero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Marco Beccuti
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| |
Collapse
|
9
|
Gammaldi N, Pezzini F, Michelucci E, Di Giorgi N, Simonati A, Rocchiccioli S, Santorelli FM, Doccini S. Integrative human and murine multi-omics: Highlighting shared biomarkers in the neuronal ceroid lipofuscinoses. Neurobiol Dis 2023; 189:106349. [PMID: 37952681 DOI: 10.1016/j.nbd.2023.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders whose molecular mechanisms remain largely unknown. Omics approaches are among the methods that generate new information on modifying factors and molecular signatures. Moreover, omics data integration can address the need to progressively expand knowledge around the disease and pinpoint specific proteins to promote as candidate biomarkers. In this work, we integrated a total of 62 proteomic and transcriptomic datasets originating from humans and mice, employing a new approach able to define dysregulated processes across species, stages and NCL forms. Moreover, we selected a pool of differentially expressed proteins and genes as species- and form-related biomarkers of disease status/progression and evaluated local and spatial differences in most affected brain regions. Our results offer promising targets for potential new therapeutic strategies and reinforce the hypothesis of a connection between NCLs and other forms of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - E Michelucci
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - N Di Giorgi
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - A Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy.
| |
Collapse
|
10
|
Boyang H, Yangyanqiu W, Wenting R, Chenxin Y, Jian C, Zhanbo Q, Yanjun Y, Qiang Y, Shuwen H. Application and progress of highcontent imaging in molecular biology. Biotechnol J 2023; 18:e2300170. [PMID: 37639283 DOI: 10.1002/biot.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Humans have adopted many different methods to explore matter imaging, among which high content imaging (HCI) could conduct automated imaging analysis of cells while maintaining its structural and functional integrity. Meanwhile, as one of the most important research tools for diagnosing human diseases, HCI is widely used in the frontier of medical research, and its future application has attracted researchers' great interests. Here, the meaning of HCI was briefly explained, the history of optical imaging and the birth of HCI were described, and the experimental methods of HCI were described. Furthermore, the directions of the application of HCI were highlighted in five aspects: protein localization changes, gene identification, chemical and genetic analysis, microbiology, and drug discovery. Most importantly, some challenges and future directions of HCI were discussed, and the application and optimization of HCI were expected to be further explored.
Collapse
Affiliation(s)
- Hu Boyang
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wang Yangyanqiu
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Rui Wenting
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Yan Chenxin
- Shulan International Medical School, Zhejiang Shuren University, Hangzhou, China
| | - Chu Jian
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, Huzhou, China
| | - Qu Zhanbo
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, Huzhou, China
| | - Yao Yanjun
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Yan Qiang
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Han Shuwen
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
| |
Collapse
|
11
|
Meng T, Zhang D, Zhang Y, Tian P, Chen J, Liu A, Li Y, Song C, Zheng Y, Su G. Tamoxifen induced cardiac damage via the IL-6/p-STAT3/PGC-1α pathway. Int Immunopharmacol 2023; 125:110978. [PMID: 37925944 DOI: 10.1016/j.intimp.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.
Collapse
Affiliation(s)
- Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, China
| | - Anbang Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Song
- Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. iScience 2023; 26:108316. [PMID: 38026173 PMCID: PMC10663748 DOI: 10.1016/j.isci.2023.108316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Medical Scientist Training Program, University of Arizona College of Medicine; Tucson AZ, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | | | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Center of Bioinformatics and Biostatistics, University of Arizona College of Medicine; Tucson AZ, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Department of Neurology, University of Arizona College of Medicine; Tucson AZ, USA
| |
Collapse
|
13
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
14
|
Leppert HG, Anderson JT, Timm KJ, Davoli C, Pratt MA, Booth CD, White KA, Rechtzigel MJ, Meyerink BL, Johnson TB, Brudvig JJ, Weimer JM. Sortilin inhibition treats multiple neurodegenerative lysosomal storage disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559064. [PMID: 37790379 PMCID: PMC10543011 DOI: 10.1101/2023.09.22.559064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models. Live-cell imaging and comparative transcriptomics demonstrates that the transcription factor EB (TFEB), an upstream regulator of lysosomal biogenesis, is activated upon treatment with AF38469. Utilizing CLN2 and CLN3 Batten disease mouse models, we performed a short-term efficacy study and show that treatment with AF38469 prevents the accumulation of lysosomal storage material and the development of neuroinflammation, key disease associated pathologies. Tremor phenotypes, an early behavioral phenotype in the CLN2 disease model, were also completely rescued. These findings reveal sortilin inhibition as a novel and highly efficacious therapeutic modality for the treatment of multiple forms of Batten disease.
Collapse
Affiliation(s)
- Hannah G. Leppert
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | - Kaylie J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Cristina Davoli
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | | | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
16
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Spiewak J, Doykov I, Papandreou A, Hällqvist J, Mills P, Clayton PT, Gissen P, Mills K, Heywood WE. New Perspectives in Dried Blood Spot Biomarkers for Lysosomal Storage Diseases. Int J Mol Sci 2023; 24:10177. [PMID: 37373322 DOI: 10.3390/ijms241210177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dried blood spots (DBSs) biomarkers are convenient for monitoring for specific lysosomal storage diseases (LSDs), but they could have relevance for other LSDs. To determine the specificity and utility of glycosphingolipidoses biomarkers against other LSDs, we applied a multiplexed lipid liquid chromatography tandem mass spectrometry assay to a DBS cohort of healthy controls (n = 10) and Gaucher (n = 4), Fabry (n = 10), Pompe (n = 2), mucopolysaccharidosis types I-VI (n = 52), and Niemann-Pick disease type C (NPC) (n = 5) patients. We observed no complete disease specificity for any of the markers tested. However, comparison among the different LSDs highlighted new applications and perspectives of the existing biomarkers. We observed elevations in glucosylceramide isoforms in the NPC and Gaucher patients relative to the controls. In NPC, there was a greater proportion of C24 isoforms, giving a specificity of 96-97% for NPC, higher than 92% for the NPC biomarker N-palmitoyl-O-phosphocholineserine ratio to lyso-sphingomyelin. We also observed significantly elevated levels of lyso-dihexosylceramide in Gaucher and Fabry disease as well as elevated lyso-globotriaosylceramide (Lyso-Gb3) in Gaucher disease and the neuronopathic forms of Mucopolysaccharidoses. In conclusion, DBS glucosylceramide isoform profiling has increased the specificity for the detection of NPC, thereby improving diagnostic accuracy. Low levels of lyso-lipids can be observed in other LSDs, which may have implications in their disease pathogenesis.
Collapse
Affiliation(s)
- Justyna Spiewak
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Ivan Doykov
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Apostolos Papandreou
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Jenny Hällqvist
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Philippa Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Paul Gissen
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| | - Wendy E Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1 1EH, UK
| |
Collapse
|
18
|
Sakti DH, Cornish EE, Fraser CL, Nash BM, Sandercoe TM, Jones MM, Rowe NA, Jamieson RV, Johnson AM, Grigg JR. Early recognition of CLN3 disease facilitated by visual electrophysiology and multimodal imaging. Doc Ophthalmol 2023; 146:241-256. [PMID: 36964447 PMCID: PMC10256658 DOI: 10.1007/s10633-023-09930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Clare L Fraser
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Trent M Sandercoe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Michael M Jones
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Neil A Rowe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Department of Neurology, Sydney Children's Hospital, University of New South Wales, Sydney, Australia
| | - John R Grigg
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia.
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia.
| |
Collapse
|
19
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
20
|
Abstract
Ca2+ is a universal second messenger that plays a wide variety of fundamental roles in cellular physiology. Thus, to warrant selective responses and to allow rapid mobilization upon specific stimuli, Ca2+ is accumulated in organelles to keep it at very low levels in the cytoplasm during resting conditions. Major Ca2+ storage organelles include the endoplasmic reticulum (ER), the mitochondria, and as recently demonstrated, the lysosome (Xu and Ren, Annu Rev Physiol 77:57-80, 2015). The importance of Ca2+ signaling deregulation in human physiology is underscored by its involvement in several human diseases, including lysosomal storage disorders, neurodegenerative disease and cancer (Shen et al., Nat Commun 3:731, 2012; Bae et al., J Neurosci 34:11485-11503, 2014). Recent evidence strongly suggests that lysosomal Ca2+ plays a major role in the regulation of lysosomal adaptation to nutrient availability through a lysosomal signaling pathway involving the lysosomal Ca2+ channel TRPML1 and the transcription factor TFEB, a master regulator for lysosomal function and autophagy (Sardiello et al., Science 325:473-477, 2009; Settembre et al., Science 332:1429-1433, 2011; Medina et al., Nat Cell Biol 17:288-299, 2015; Di Paola et al., Cell Calcium 69:112-121, 2018). Due to the tight relationship of this lysosomal Ca2+ channel and TFEB, in this chapter, we will focus on the role of the TRPML1/TFEB pathway in the regulation of lysosomal function and autophagy.
Collapse
Affiliation(s)
- Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
21
|
Villalba Silva GC, Steindorff T, Silvestri Schuh R, Cardoso Flores N, Matte U. Drug Repositioning Applied to Cardiovascular Disease in Mucopolysaccharidosis. Life (Basel) 2022; 12:2085. [PMID: 36556450 PMCID: PMC9784427 DOI: 10.3390/life12122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are genetic metabolic diseases characterized by defects in the activity of lysosomal hydrolases. In MPS, secondary cell disturbance affects pathways related to cardiovascular disorders. Hence, the study aimed to identify MPS-related drugs targeting cardiovascular disease and select a list of drugs for repositioning. We obtained a list of differentially expressed genes and pathways. To identify drug perturbation-driven gene expression and drug pathways interactions, we used the CMAP and LINCS databases. For molecular docking, we used the DockThor web server. Our results suggest that pirfenidone and colchicine are promising drugs to treat cardiovascular disease in MPS patients. We also provide a brief description of good practices for the repositioning analysis. Furthermore, the list of drugs and related MPS-enriched genes could be helpful to new treatments and considered for pathophysiological studies.
Collapse
Affiliation(s)
| | - Thiago Steindorff
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Roselena Silvestri Schuh
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, Porto Alegre 2752, RS, Brazil
| | - Natalia Cardoso Flores
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Ursula Matte
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Genetics and Molecular Biology Graduate Program, UFRGS, Av. Bento Gonçalves, Porto Alegre 9500, RS, Brazil
| |
Collapse
|
22
|
Rowe AA, Chen X, Nettesheim ER, Issioui Y, Dong T, Hu Y, Messahel S, Kayani SN, Gray SJ, Wert KJ. Long-term progression of retinal degeneration in a preclinical model of CLN7 Batten disease as a baseline for testing clinical therapeutics. EBioMedicine 2022; 85:104314. [PMID: 36374771 PMCID: PMC9626557 DOI: 10.1016/j.ebiom.2022.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Batten disease is characterized by cognitive and motor impairment, retinal degeneration, and seizures leading to premature death. Recent studies have shown efficacy for a gene therapy approach for CLN7 Batten disease. This gene therapy approach is promising to treat cognitive and motor impairment, but is not likely to delay vision loss. Additionally, the natural progression of retinal degeneration in CLN7 Batten disease patients is not well-known. METHODS We performed visual examinations on five patients with CLN7 Batten disease and found that patients were far progressed in degeneration within their first five years of life. To better understand the disease progression, we characterized the retina of a preclinical mouse model of CLN7 Batten disease, through the age at which mice present with paralysis and premature death. FINDINGS We found that this preclinical model shows signs of photoreceptor to bipolar synaptic defects early, and displays rod-cone dystrophy with late loss of bipolar cells. This vision loss could be followed not only via histology, but using clinical live imaging similar to that used in human patients. INTERPRETATION Natural history studies of rare paediatric neurodegenerative conditions are complicated by the rapid degeneration and limited availability of patients. Characterization of degeneration in the preclinical model allows for future experiments to better understand the mechanisms underlying the retinal disease progression in order to find therapeutics to treat patients, as well as to evaluate these therapeutic options for future human clinical trials. FUNDING Van Sickle Family Foundation Inc., NIHP30EY030413, Morton Fichtenbaum Charitable Trust and 5T32GM131945-03.
Collapse
Affiliation(s)
- Ashley A Rowe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emily R Nettesheim
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yacine Issioui
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Thomas Dong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuhui Hu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Souad Messahel
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saima N Kayani
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Children's Health, Children's Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA; McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine J Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
Prat Castro S, Kudrina V, Jaślan D, Böck J, Scotto Rosato A, Grimm C. Neurodegenerative Lysosomal Storage Disorders: TPC2 Comes to the Rescue! Cells 2022; 11:2807. [PMID: 36139381 PMCID: PMC9496660 DOI: 10.3390/cells11182807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute a family of disorders that disturb lysosomal degradative function leading to abnormal storage of macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common and leads to the progressive appearance of neurodegeneration and early death. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of neurodegenerative LSDs. One of the main basic mechanisms through which the endolysosomal ion channels regulate the function of the endolysosomal system is Ca2+ release, which is thought to be essential for intracellular compartment fusion, fission, trafficking and lysosomal exocytosis. The intracellular TRPML (transient receptor potential mucolipin) and TPC (two-pore channel) ion channel families constitute the main essential Ca2+-permeable channels expressed on endolysosomal membranes, and they are considered potential drug targets for the prevention and treatment of LSDs. Although TRPML1 activation has shown rescue effects on LSD phenotypes, its activity is pH dependent, and it is blocked by sphingomyelin accumulation, which is characteristic of some LSDs. In contrast, TPC2 activation is pH-independent and not blocked by sphingomyelin, potentially representing an advantage over TRPML1. Here, we discuss the rescue of cellular phenotypes associated with LSDs such as cholesterol and lactosylceramide (LacCer) accumulation or ultrastructural changes seen by electron microscopy, mediated by the small molecule agonist of TPC2, TPC2-A1-P, which promotes lysosomal exocytosis and autophagy. In summary, new data suggest that TPC2 is a promising target for the treatment of different types of LSDs such as MLIV, NPC1, and Batten disease, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
24
|
Scotto Rosato A, Krogsaeter EK, Jaślan D, Abrahamian C, Montefusco S, Soldati C, Spix B, Pizzo MT, Grieco G, Böck J, Wyatt A, Wünkhaus D, Passon M, Stieglitz M, Keller M, Hermey G, Markmann S, Gruber-Schoffnegger D, Cotman S, Johannes L, Crusius D, Boehm U, Wahl-Schott C, Biel M, Bracher F, De Leonibus E, Polishchuk E, Medina DL, Paquet D, Grimm C. TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann-Pick type C1, and Batten disease. EMBO Mol Med 2022; 14:e15377. [PMID: 35929194 PMCID: PMC9449600 DOI: 10.15252/emmm.202115377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+‐permeable endolysosomal two‐pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann–Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in‐vivo.
Collapse
Affiliation(s)
- Anna Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Einar K Krogsaeter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dawid Jaślan
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla Abrahamian
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Chiara Soldati
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Barbara Spix
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Julia Böck
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Marcel Passon
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marc Stieglitz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marco Keller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Guido Hermey
- Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Molecular and Cellular Cognition, UKE, Hamburg, Germany
| | | | | | - Susan Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, U1143 INSERM, UMR3666 CNRS, PSL Research University, Paris, France
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute of Biochemistry and Cell Biology (IBBC), CNR, Rome, Italy
| | | | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
25
|
Torres P, Anerillas C, Ramírez-Núñez O, Fernàndez A, Encinas M, Povedano M, Andrés-Benito P, Ferrer I, Ayala V, Pamplona R, Portero-Otín M. The motor neuron disease mouse model hSOD1-G93A shows a non-canonical profile of senescence biomarkers. Dis Model Mech 2022; 15:276182. [PMID: 35916061 PMCID: PMC9459393 DOI: 10.1242/dmm.049059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
To evaluate senescence mechanisms, including senescence-associated secretory phenotype (SASP), in the motor-neuron disease model hSOD1-G93A, we quantified the expression of p16 and p21 and the senescence-associated β galactosidase (SA-β-gal) in nervous tissue. As SASP markers, we measured the mRNA levels of Il1a, Il6, Ifna, and Ifnb. Furthermore, we explored if an alteration of alternative splicing is associated with senescence by measuring the Adipor2 cryptic exon inclusion levels, a specific splicing variant repressed by TAR-DNA binding of 43 kDa (Tdp-43). Transgenic mice show an atypical senescence profile with high p16 and p21 mRNA and protein in glia, without the canonical increase in SA-β-gal activity. Consistent with SASP, there is an increase in Il1a and Il6 expression, associated with increased TNFR and M-CSF protein levels, with females being partially protected. TDP-43 splicing activity is compromised in this model. Senolytic drug Navitoclax does not alter the present 'model's disease progression. This lack of effect is reproduced in vitro, in contrast with Dasatinib and quercetin, which diminish p16 and p21. Our findings show a non-canonical profile of senescence biomarkers in the model hSOD1-G93A.
Collapse
Affiliation(s)
- Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Carlos Anerillas
- Oncogenic Signalling and Development, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Omar Ramírez-Núñez
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Anna Fernàndez
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Mario Encinas
- Oncogenic Signalling and Development, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Mònica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Manuel Portero-Otín
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| |
Collapse
|
26
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
27
|
McShane A, Mole SE. Sex bias and omission exists in Batten disease research: Systematic review of the use of animal disease models. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166489. [PMID: 35840041 DOI: 10.1016/j.bbadis.2022.166489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Batten disease, also known as the neuronal ceroid lipofuscinoses (NCL), is a group of inherited neurodegenerative disorders mainly affecting children. NCL are characterised by seizures, loss of vision, and progressive motor and cognitive decline, and are the most common form of childhood dementia. At least one type of Batten disease and three types of mouse disease models show sex differences in their severity and progression. Scientific research has a recognised prevalent omission of female animals when using model organisms for basic and preclinical research. Sex bias and omission in research using animal models of Batten disease may affect understanding and treatment development. We conducted a systematic review of research publications since the first identification of NCL genes in 1995, identifying those using animal models. We found that <10 % of these papers considered sex as a biological variable. There was consistent omission of female model organisms in studies. This varied over the period but is improving; one third of papers considered sex as a biological variable in the last decade, and there is a noticeable increase in the last 5 years. The wide-ranging reasons for this published sex bias are discussed, including misunderstanding regarding oestrogen, impact on sample size, and the underrepresentation of female scientists. Their implications for Batten disease and future research are considered. Recommendations going forward support requirements by funders for consideration of sex in all stages of experimental design and implementation, and a role for publishers, families and others with a particular interest in Batten disease.
Collapse
Affiliation(s)
- Annie McShane
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Brudvig JJ, Swier VJ, Johnson TB, Cain JC, Pratt M, Rechtzigel M, Leppert H, Dang Do AN, Porter FD, Weimer JM. Glycerophosphoinositol is Elevated in Blood Samples From CLN3Δex7-8 pigs, Cln3Δex7-8 Mice, and CLN3-Affected Individuals. Biomark Insights 2022; 17:11772719221107765. [PMID: 36212622 PMCID: PMC9535353 DOI: 10.1177/11772719221107765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction: CLN3 Batten disease is a rare pediatric neurodegenerative lysosomal disorder
caused by biallelic disease-associated variants in CLN3.
Despite decades of intense research, specific biofluid biomarkers of disease
status have not been reported, hindering clinical development of therapies.
Thus, we sought to determine whether individuals with CLN3 Batten disease
have elevated levels of specific metabolites in blood. Methods: We performed an exhaustive metabolomic screen using serum samples from a
novel minipig model of CLN3 Batten disease and validated findings in
CLN3 pig serum and CSF and Cln3 mouse
serum. We further validate biomarker candidates with a retrospective
analysis of plasma and CSF samples collected from participants in a natural
history study. Plasma samples were evaluated from 22 phenotyped individuals
with CLN3 disease, 15 heterozygous carriers, and 6 non-affected non-carriers
(NANC). Results: CLN3 pig serum samples from 4 ages exhibited large elevations in 4
glycerophosphodiester species: glycerophosphoinositol (GPI),
glycerophosphoethanolamine (GPE), glycerophosphocholine (GPC), and
glycerophosphoserine (GPS). GPI and GPE exhibited the largest elevations,
with similar elevations found in CLN3 pig CSF and
Cln3 mouse serum. In plasma samples from individuals
with CLN3 disease, glycerophosphoethanolamine and glycerophosphoinositol
were significantly elevated with glycerophosphoinositol exhibiting the
clearest separation (mean 0.1338 vs 0.04401 nmol/mL for non-affected
non-carriers). Glycerophosphoinositol demonstrated excellent sensitivity and
specificity as a biomarker, with a receiver operating characteristic area
under the curve of 0.9848 (P = .0003). Conclusions: GPE and GPI could have utility as biomarkers of CLN3 disease status. GPI, in
particular, shows consistent elevations across a diverse cohort of
individuals with CLN3. This raises the potential to use these biomarkers as
a blood-based diagnostic test or as an efficacy measure for
disease-modifying therapies.
Collapse
Affiliation(s)
- Jon J Brudvig
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Vicki J Swier
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Jacob C Cain
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Melissa Pratt
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Mitch Rechtzigel
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Hannah Leppert
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - An N Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jill M Weimer
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| |
Collapse
|
29
|
Chen X, Dong T, Hu Y, Shaffo FC, Belur NR, Mazzulli JR, Gray SJ. AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease. J Clin Invest 2022; 132:e146286. [PMID: 35025759 PMCID: PMC8884910 DOI: 10.1172/jci146286] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein, MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8- /- mice at P7-P10 or P120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at P7-P10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median life span, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Frances C. Shaffo
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Nandkishore R. Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
31
|
Antonella C, Sandro M, Vincenzo C, Martina S, Alessandra E, Gennaro N, Eduardo N, Elena P, Teresa PM, Maria DR, Elvira DL, Cristina SN, Luis MD. Fluoxetine ameliorates Mucopolysaccharidosis type IIIA. Mol Ther 2022; 30:1432-1450. [PMID: 35121108 PMCID: PMC9077373 DOI: 10.1016/j.ymthe.2022.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS-IIIA) is an autosomal recessive disorder caused by mutations in SGSH involved in the degradation of heparan sulfate. MPS-IIIA presents severe neurological symptoms such as progressive developmental delay and cognitive decline, for which there is currently no treatment. Brain targeting represents the main challenge for therapeutics to treat MPS-IIIA, and the development of small-molecule-based treatments able to reach the CNS could be a relevant advance for therapy. Using cell-based high content imaging to survey clinically approved drugs in MPS-IIIA cells, we identified fluoxetine, a selective serotonin reuptake inhibitor. Fluoxetine increases lysosomal and autophagic functions via TFEB activation through a RagC-dependent mechanism. Mechanistically, fluoxetine increases lysosomal exocytosis in mouse embryonic fibroblasts from MPS-IIIA mice, suggesting that this process may be responsible for heparan sulfate clearance. In vivo, fluoxetine ameliorates somatic and brain pathology in a mouse model of MPS-IIIA by decreasing the accumulation of glycosaminoglycans and aggregated autophagic substrates, reducing inflammation, and slowing down cognitive deterioration. We repurposed fluoxetine for potential therapeutics to treat human MPS-IIIA disease.
Collapse
|