1
|
Nyström A. Dystrophic epidermolysis bullosa - From biochemistry to interventions. Matrix Biol 2025; 136:111-126. [PMID: 39922469 DOI: 10.1016/j.matbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium -the epidermis to its mesenchyme - the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology - spanning its synthesis, assembly into suprastructures, and regulatory roles - enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstrasse 7, 79140 Freiburg, Germany.
| |
Collapse
|
2
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
3
|
Diehl R, Hübner S, Lehr S, Rizzi M, Eyerich K, Nyström A. Skin Deep and Beyond: Unravelling B Cell Extracellular Matrix Interactions in Cutaneous Immunity and Disease. Exp Dermatol 2025; 34:e70068. [PMID: 40051023 PMCID: PMC11885703 DOI: 10.1111/exd.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
The extracellular matrix (ECM) is a crucial component in multicellular organisms, serving as both a structural scaffold and active signalling units. While the role of the ECM, namely, to maintain homeostasis and steer adaptive immunity, is well described in secondary lymphoid organs, it is underappreciated in the skin-despite remarkable molecular similarity. Here, we examine how the specialised organisation of the ECM influences B cell development and function in both skin and secondary lymphoid organs with a special focus on ECM-integrin signalling. We discuss the presence and function of B cells in healthy and diseased skin, including their role in wound healing, autoimmune responses and inflammatory conditions. Additionally, we explore the formation of tertiary lymphoid structures in chronic skin diseases as a window into studying B cell-ECM interactions. By integrating fundamental immunology with skin biology, we aim to identify key knowledge gaps and explore potential clinical implications of B cell-ECM interactions in dermatology and beyond.
Collapse
Affiliation(s)
- Rebecca Diehl
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Stefanie Hübner
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Saskia Lehr
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCIUniversity Clinics and Medical FacultyFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Kilian Eyerich
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Alexander Nyström
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
4
|
He Z, Starkuviene V, Keese M. The Differentiation and Regeneration Potential of ABCB5 + Mesenchymal Stem Cells: A Review and Clinical Perspectives. J Clin Med 2025; 14:660. [PMID: 39941329 PMCID: PMC11818130 DOI: 10.3390/jcm14030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a family of multipotent stem cells that show self-renewal under proliferation, multilineage differentiation, immunomodulation, and trophic function. Thus, these cells, such as adipose tissue-derived mesenchymal stem cells (ADSCs), bone marrow-derived MSCs (BM-MSCs), and umbilical cord-derived mesenchymal stem cells (UC-MSCs), carry great promise for novel clinical treatment options. However, the challenges associated with the isolation of MSCs and the instability of their in vitro expansion remain significant barriers to their clinical application. The plasma membrane-spanning P-glycoprotein ATP-binding cassette subfamily B member 5 positive MSCs (ABCB5+ MSCs) derived from human skin specimens offer a distinctive advantage over other MSCs. They can be easily extracted from the dermis and expanded. In culture, ABCB5+ MSCs demonstrate robust innate homeostasis and a classic trilineage differentiation. Additionally, their ability to modulate the recipients' immune system highlights their potential for allogeneic applications in regenerative medicine. In this review, we primarily discuss the differentiation potential of ABCB5+ MSCs and their perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Zheng He
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Institute of Biosciences, Vilnius University Life Sciences Center, 10257 Vilnius, Lithuania
| | - Michael Keese
- Department of Vascular Surgery, Theresienkrankenhaus, Bassermannstraße 1, 68165 Mannheim, Germany
| |
Collapse
|
5
|
Hirt N, Manchon E, Chen Q, Delaroque C, Corneau A, Hemon P, Saker-Delye S, Bataille P, Bouaziz JD, Bourrat E, Hovnanian A, Le Buanec H, Aoudjit F, El Costa H, Jabrane-Ferrat N, Al-Daccak R. Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa. Nat Commun 2025; 16:664. [PMID: 39809737 PMCID: PMC11733305 DOI: 10.1038/s41467-025-55934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood. To fill this gap, we apply systems immunology approaches using single-cell high-dimensional techniques to capture the signature of peripheral immune cells and the diversity of metabolic profiles in RDEB adults, sampled outside of any opportunistic infection and active cancer. Our study, demonstrates the particular inflammation and immunity characteristics of RDEB adults, with activated / effector T and dysfunctional natural killer cell signatures, concomitant with an overall pro-inflammatory lipid signature. Artificial intelligence prediction models and principal component analysis stress that RDEB is not solely confined to cutaneous issues but has complex systemic endotypes marked by immune dysregulation and hyperinflammation. By characterising the phenotype-endotype association in RDEB adults, our study lays the groundwork for translational interventions that could by lessening inflammation, alleviate the everlasting suffering of RDEB patients, while awaiting curative genetic therapies.
Collapse
Affiliation(s)
- Nell Hirt
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Enzo Manchon
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Qian Chen
- Boston Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clara Delaroque
- INSERM U1016, The National Centre for Scientific Research (CNRS) UMR 8104, Paris Cité University, 75014, Paris, France
| | - Aurelien Corneau
- Pitié-Salpêtrière Cytometry, UMS037, Sorbonne University, 75013, Paris, France
| | - Patrice Hemon
- LBAI, INSERM UMR1227, Brest University, 29200, Brest, France
| | | | - Pauline Bataille
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Jean-David Bouaziz
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Emmanuelle Bourrat
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris Cité University, INSERM UMR 1163, 75015, Paris, France
| | - Helene Le Buanec
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Centre, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Hicham El Costa
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Reem Al-Daccak
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.
| |
Collapse
|
6
|
Zeyer KA, Bornert O, Nelea V, Bao X, Leytens A, Sharoyan S, Sengle G, Antonyan A, Bruckner-Tuderman L, Dengjel J, Reinhardt DP, Nyström A. Dipeptidyl Peptidase-4-Mediated Fibronectin Processing Evokes a Profibrotic Extracellular Matrix. J Invest Dermatol 2024; 144:2477-2487.e13. [PMID: 38570029 DOI: 10.1016/j.jid.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.
Collapse
Affiliation(s)
- Karina A Zeyer
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentin Nelea
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Xinyi Bao
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Kiritsi D, Schauer F, Gewert S, Reineker K, Reimer-Taschenbrecker A, Schwieger-Briel A, Ott H, Schmoor C, Grishina O, Murrell D, Stiller B, Zahn T, Nyström A, Bruckner-Tuderman L. Safety and tolerability of losartan to treat recessive dystrophic epidermolysis bullosa in children (REFLECT): an open-label, single-arm, phase 1/2 trial. EClinicalMedicine 2024; 77:102900. [PMID: 39539991 PMCID: PMC11558043 DOI: 10.1016/j.eclinm.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Recessive dystrophic epidermolysis bullosa (RDEB) is a skin fragility disorder characterised by life-long mechanically induced skin blistering, fibrosis-driven pseudosyndactyly, and multi-organ involvement. Preclinical studies have suggested mitigated progression by angiotensin II type I receptor blockade through losartan. We aimed to determine the safety and tolerability of systemic losartan treatment among children with RDEB, and to obtain initial data on its clinical benefit. Methods We conducted an open-label, single-arm, phase 1/2 trial at the Medical Center-University of Freiburg, Germany. Children with molecularly-confirmed RDEB, aged 2-16 years (starting from the 25th month of life) were eligible. Key exclusion criteria comprised anaemia with haemoglobin <8 g/dl; hypotension (defined as age-related systolic blood pressure under the 5th percentile); cardiologic contraindications, requirement for any medications that are likely to cause interactions with losartan; renal artery stenosis or renal insufficiency with creatinine clearance <30 ml/min; severe liver failure; severe, untreated electrolyte disturbances; history of cancer or chronic viral infections; hypersensitivity to losartan or any of the excipients and known or persistent abuse of medication, drugs, or alcohol. Treatment duration with losartan comprised 10 months, encompassing 16 weeks up-dosing of losartan, 24 weeks full dose losartan (final target dose of 1.4 mg/kg), and 4 weeks losartan tapering, followed by 12 weeks follow-up without losartan. The primary endpoint was occurrence of a serious safety concern, defined as one of the following side effects of losartan: clinically relevant severe hypotension, immediate hypersensitivity reactions to the drug or clinical relevant severe hypo- and hyperkalaemia. EB-specific scores (the EBDASI activity and damage score, Birmingham Epidermolysis Bullosa Severity Score (BEBS)) and other clinical outcome parameters were evaluated at five clinical visits as secondary outcomes: pain (Wong-Baker FACES Scale for pain), quality of life (Quality Of Life in EB [QOLEB] questionnaire and Children's Dermatology Life Quality Index [CDLQI]), itch (Itch Assessment Scale for the Paediatric Burn Patients), dysphagia (Mayo Dysphagia Questionnaire-day 30 [MDQ-30]), pseudosyndactyly progression (our own morphometric scoring instrument), and hand function (Score of Colville and Terrill). All analyses (safety and efficacy) were performed in the safety population, defined as participants who received at least one dose of trial medication with losartan. This trial is registered with EudraCT, 2015-003670-32. Findings Between Jul 28, 2017, and Feb 12, 2021, 29 children were enrolled. Of those 27 received the full treatment. Losartan was well tolerated, no treatment-related severe complications leading to a serious safety concern occurred. The patients revealed improvement in the RDEB clinical scores, namely a mean reduction at week 40 of -7.36 points (95%-CI: -16.13 to 1.41) in the EBDASI activity score and -10.50 points (95%-CI: -20.81 to -0.19) in the EBDASI damage score, while the Children's Dermatology Life Quality Index rose by 2.64 points (95%-CI: -4.55 to -0.90). Similar to the EBDASI score, the BEBS showed a mean reduction of -3 points, 95%-CI: -0.21 to -5,79, P = 0.036). In the Wong-Baker FACES Scale for Pain an improvement of at least one level was identified for 9 of 28 patients between baseline and at month 9 (95%-CI: 15.9%-52.4%; P = 0.57). Regarding the Quality of Life in EB Score, five of 28 patients showed an improvement in the total scale of at least one level at month 9 (95%-CI: 6.1%-36.9%; P = 0.71). With the Itch assessment scale for the paediatric burn patients an improvement of at least one level could be observed in 12 of 28 patients (95%-CI: 24.5%-62.8%; P = 0.24). The MDQ-30 showed no relevant difference at 9 months after treatment start, as compared to baseline. We observed improvement of finger span with our own morphometric scoring instrument of pseudosyndactyly progression, revealing an increase of the maximal distance between thumb and index finger at month 9 by 6.92 mm, 95%-CI [3.48, 10.37] P = 0.0009. With the Hand function assessment score of Colville and Terrill, an improvement of at least one level was documented for 3 of 28 patients, i.e., 10.7% (95%-CI: 2.3%-28.2%; P = 0.63). Interpretation Our results suggest that losartan was well tolerated by children with RDEB, and provide preliminary evidence that it may reduce disease burden. Further research with larger sample sizes and longer durations is needed to establish the treatment's long-term efficacy and safety. Funding Debra International, the Department of Dermatology, Medical Center-University of Freiburg (Berta-Ottenstein Advanced Clinician Scientist Program of the Medical Faculty), and the German Research Foundation.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- First Department of Dermatology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Franziska Schauer
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stella Gewert
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Reineker
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg - Bad Krozingen, Medical Centre - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Antonia Reimer-Taschenbrecker
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Agnes Schwieger-Briel
- Pediatric Skin Center, Division of Dermatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hagen Ott
- Department of Pediatric Dermatology and Allergology, Children's Hospital Auf der Bult, Hannover, Germany
| | - Claudia Schmoor
- Clinical Trials Unit, Faculty of Medicine, and Medical Center, University of Freiburg, Freiburg, Germany
| | - Olga Grishina
- Clinical Trials Unit, Faculty of Medicine, and Medical Center, University of Freiburg, Freiburg, Germany
| | - Dedee Murrell
- Department of Dermatology, St. George Hospital, Faculty of Medicine, University of NSW, UNSW Faculty of Medicine, Sydney, New South Wales, Australia
| | - Brigitte Stiller
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg - Bad Krozingen, Medical Centre - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Primerano A, De Domenico E, Cianfarani F, De Luca N, Floriddia G, Teson M, Cristofoletti C, Cardarelli S, Scaglione GL, Baldini E, Cangelosi D, Uva P, Reinoso Sánchez JF, Roubaty C, Dengjel J, Nyström A, Mastroeni S, Ulisse S, Castiglia D, Odorisio T. Histone deacetylase inhibition mitigates fibrosis-driven disease progression in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:568-579. [PMID: 38820176 DOI: 10.1093/bjd/ljae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in siblings with RDEB suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACi) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by enzyme-linked immunosorbent assay (ELISA). The effects of givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by a collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, and ELISA for released transforming growth factor (TGF)-β1. RNA sequencing was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACi lowered fibrotic traits, including contractility, TGF-β1 release and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting the eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalized protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections seen in people with RDEB. CONCLUSIONS Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments in RDEB.
Collapse
Affiliation(s)
| | | | | | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Massimo Teson
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Silvia Cardarelli
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Enke Baldini
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Carole Roubaty
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexander Nyström
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| | | | - Salvatore Ulisse
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| |
Collapse
|
9
|
South AP. Stopping a runaway train: targeting fibrosis in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:482-483. [PMID: 39026423 DOI: 10.1093/bjd/ljae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 05/03/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
11
|
Nyström A, Dengjel J. A Top-Notch Target. J Invest Dermatol 2024; 144:1421-1423. [PMID: 38363271 DOI: 10.1016/j.jid.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/17/2024]
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Condorelli AG, Nobili R, Muglia A, Scarpelli G, Marzuolo E, De Stefanis C, Rota R, Diociaiuti A, Alaggio R, Castiglia D, Odorisio T, El Hachem M, Zambruno G. Gamma-Secretase Inhibitors Downregulate the Profibrotic NOTCH Signaling Pathway in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1522-1533.e10. [PMID: 38237731 DOI: 10.1016/j.jid.2023.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 03/03/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-β1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-β1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Rebecca Nobili
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Muglia
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Scarpelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - May El Hachem
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Conradt G, Hausser I, Nyström A. Epidermal or Dermal Collagen VII Is Sufficient for Skin Integrity: Insights to Anchoring Fibril Homeostasis. J Invest Dermatol 2024; 144:1301-1310.e7. [PMID: 38007090 DOI: 10.1016/j.jid.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Collagen VII forms anchoring fibrils that are essential for the stability of the skin and other epithelial organs. In addition to such structural functions, it is emerging that collagen VII fills instructive functions. Collagen VII is synthesized by both epithelial cells and fibroblasts. Genetic loss of collagen VII causes dystrophic epidermolysis bullosa, which manifests with chronic skin fragility and fibrosis. Significant progress has been made in developing therapies for dystrophic epidermolysis bullosa; however, such work has also raised questions on the importance of the cellular source of collagen VII for maintenance of tissue integrity and homeostasis. Toward this end, we engineered mice that kept the physiological expression of collagen VII only in epithelial cells or in fibroblasts. Our study revealed that production of collagen VII either by keratinocytes or fibroblasts alone is sufficient for creation of mechanically robust skin. Importantly, we also show tissue-diverse dependence on epithelial and mesenchymal production of collagen VII and provide support for limited amounts of collagen VII being sufficient for tissue protection. Furthermore, a disconnect between collagen VII abundance and anchoring fibril numbers supports the concept that restoration of fully physiological collagen VII levels may not be needed to achieve complete mechanical protection of dystrophic epidermolysis bullosa skin.
Collapse
Affiliation(s)
- Gregor Conradt
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Jihu Y, Leng R, Liu M, Ren H, Xie D, Yao C, Yan H. Angiotensin (1-7) Inhibits Transforming Growth Factor-Β1-Induced Epithelial-Mesenchymal Transition of Human Keratinocyte Hacat Cells in vitro. Clin Cosmet Investig Dermatol 2024; 17:1049-1058. [PMID: 38737946 PMCID: PMC11088851 DOI: 10.2147/ccid.s441596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/24/2024] [Indexed: 05/14/2024]
Abstract
Introduction Angiotensin (1-7) (Ang-(1-7)) is an emerging component of the renin-angiotensin system (RAS) with effective anti-fibrosis properties and has been shown to interfere with epithelial-mesenchymal transition (EMT) by numerous studies. In recent years, EMT has been proposed as a new therapeutic target for skin fibrotic diseases such as keloids. However, the effect of Ang-(1-7) on EMT in skin is still unclear. Hence, the purpose of this study was to explore the effect of Ang-(1-7) on Transforming growth factor-β1(TGF-β1)-induced EMT of human immortalized keratinocytes HaCaT in vitro. Methods The study involved the use of the human immortalized keratinocyte cell line (HaCaT). The cells were cultured in high-glucose DMEM medium with 10% fetal bovine serum and 1% penicillin-streptomycin. Four groups were created for experimentation: control group (Group C), TGF-β1-treated group (Group T), Ang-(1-7)-treated group (Group A), and a group treated with both TGF-β1 and Ang-(1-7) (Group A + T). Various assays were conducted, including a cell proliferation assay using CCK-8 solution, a scratch wound healing assay to evaluate cell migration, and Western blotting to detect protein expressions related to cell characteristics. Additionally, quantitative real-time polymerase chain reaction (PCR) was performed to analyze epithelial-mesenchymal transition (EMT) related gene expression levels. The study aimed to investigate the effects of TGF-β1 and Ang-(1-7) on HaCaT cells. Results We found that Ang-(1-7) not only reduced the migration of HaCaT cells induced by TGF-β1 in vitro but also reduced the expression of α-SMA and vimentin, and restored the protein expression of E-cadherin and claudin-1. Mechanistically, Ang-(1-7) inhibits the phosphorylation levels of Smad2 and Smad3 in the TGF-β1 canonical pathway, and suppresses the expression of EMT-related transcription factors (EMT-TFs) such as SNAI2, TWIST1, and ZEB1. Discussion Taken together, our findings suggest that Ang-(1-7) inhibits TGF-β1-induced EMT in HaCaT cells in vitro by disrupting the TGF-β1-Smad canonical signaling pathway. These results may be helpful in the treatment of EMT in skin fibrotic diseases such as keloids.
Collapse
Affiliation(s)
- Yueda Jihu
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Ruobing Leng
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
| | - Mengchang Liu
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Hongjing Ren
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Defu Xie
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Chong Yao
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Hong Yan
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| |
Collapse
|
15
|
Lee SG, Kim SE, Jeong IH, Lee SE. Mechanism underlying pruritus in recessive dystrophic epidermolysis bullosa: Role of interleukin-31 from mast cells and macrophages. J Eur Acad Dermatol Venereol 2024; 38:895-903. [PMID: 38084871 DOI: 10.1111/jdv.19738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 04/26/2024]
Abstract
BACKGROUND Pruritus is a highly burdensome symptom in patients with epidermolysis bullosa, especially recessive dystrophic epidermolysis bullosa (RDEB); however, only a few studies have assessed the molecular pathogenesis of RDEB-associated pruritus. Interleukin (IL)-31 is a key cytokine implicated in pruritus associated with dermatologic diseases such as atopic dermatitis and prurigo nodularis. OBJECTIVE To investigate the role and cellular source of IL-31 in RDEB-associated pruritus. METHODS Serum and skin samples were obtained from 11 RDEB patients and 11 healthy controls. Pruritus visual analogue scale scores were determined. Serum levels of IL-31 and thymic stromal lymphopoietin (TSLP) were examined by enzyme-linked immunosorbent assay (ELISA). The expression of IL-31 and other pruritus mediators in the skin were examined through immunofluorescence staining, and their correlation with pruritus severity was analysed. RESULTS Serum IL-31 and TSLP were elevated in RDEB patients. IL-31 expression was increased in RDEB skin and positively correlated with pruritus severity. Most of the IL-31-expressing cells were mast cells, and some were CD206(+) M2-like macrophages. The number of substance P(+) cells was also increased in the patients' skin, and most of them were mast cells. The number of substance P(+) mast cells was correlated with the number of IL-31(+) dermal infiltrates. The number of IL-4Rα- and IL-13-expressing cells and expression of TSLP and periostin increased in RDEB skin, but without a correlation to pruritus score. CONCLUSION The increased production of skin IL-31 from mast cells and M2-like macrophages may be the mechanism underlying pruritus in RDEB.
Collapse
Affiliation(s)
- Sang Gyun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Song-Ee Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - In-Hye Jeong
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
17
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
18
|
Ewald CY, Nyström A. Mechanotransduction through hemidesmosomes during aging and longevity. J Cell Sci 2023; 136:jcs260987. [PMID: 37522320 DOI: 10.1242/jcs.260987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Hemidesmosomes are structural protein complexes localized at the interface of tissues with high mechanical demand and shear forces. Beyond tissue anchoring, hemidesmosomes have emerged as force-modulating structures important for translating mechanical cues into biochemical and transcriptional adaptation (i.e. mechanotransduction) across tissues. Here, we discuss the recent insights into the roles of hemidesmosomes in age-related tissue regeneration and aging in C. elegans, mice and humans. We highlight the emerging concept of preserved dynamic mechanoregulation of hemidesmosomes in tissue maintenance and healthy aging.
Collapse
Affiliation(s)
- Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Schwerzenbach CH-8603, Switzerland
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg DE-79104, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstraße 19, Freiburg im Breisgau DE-79104, Germany
| |
Collapse
|
19
|
de Azevedo BLR, Roni GM, Torrelio RMF, da Gama-de-Souza LN. Fibrosis as a Risk Factor for Cutaneous Squamous Cell Carcinoma in Recessive Dystrophic Epidermolysis Bullosa: A Systematic Review. J Pediatr Genet 2023; 12:97-104. [PMID: 37090823 PMCID: PMC10118679 DOI: 10.1055/s-0043-1763257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 02/26/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe subtype of epidermolysis bullosa caused by changes in collagen VII with a high risk of early development of cutaneous squamous cell carcinoma (cSCC). This review aimed to discuss the relationship between the recurrent healing process, the appearance of fibrosis, and malignant epithelial transformation in RDEB. We searched PubMed, the Regional Portal of the Virtual Health Library, and Embase for articles on the relationship between blistering, recurrent scarring, and fibrosis in the context of cSCC and RDEB. That alterations of collagen VII result in blister formation, scar deficiency associated with inflammation, and increased expression of transforming growth factor β. These events promote the differentiation of myofibroblasts and the expression of profibrotic proteins, leading to structural changes and the establishment of a microenvironment favorable to carcinogenesis. Patients with RDEB and areas of recurrent scarring and fibrosis may be more prone to the development of cSCC.
Collapse
Affiliation(s)
| | - Gabriel Marim Roni
- Federal University of Espírito Santo, Health Science Center, Morphology Department, Medical School, Vitória, ES, Brazil
| | | | - Letícia Nogueira da Gama-de-Souza
- Federal University of Espírito Santo, Health Science Center, Morphology Department, Graduate Program in Dental Science, Vitória, ES, Brazil
| |
Collapse
|
20
|
Niebergall-Roth E, Dieter K, Daniele C, Fluhr S, Khokhrina M, Silva I, Ganss C, Frank MH, Kluth MA. Kinetics of Wound Development and Healing Suggests a Skin-Stabilizing Effect of Allogeneic ABCB5 + Mesenchymal Stromal Cell Treatment in Recessive Dystrophic Epidermolysis Bullosa. Cells 2023; 12:1468. [PMID: 37296590 PMCID: PMC10252830 DOI: 10.3390/cells12111468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Recessive dystrophic epidermolysis (RDEB) is a rare, inherited, and currently incurable skin blistering disorder characterized by cyclically recurring wounds coexisting with chronic non-healing wounds. In a recent clinical trial, three intravenous infusions of skin-derived ABCB5+ mesenchymal stromal cells (MSCs) to 14 patients with RDEB improved the healing of wounds that were present at baseline. Since in RDEB even minor mechanical forces perpetually provoke the development of new or recurrent wounds, a post-hoc analysis of patient photographs was performed to specifically assess the effects of ABCB5+ MSCs on new or recurrent wounds by evaluating 174 wounds that occurred after baseline. During 12 weeks of systemic treatment with ABCB5+ MSCs, the number of newly occurring wounds declined. When compared to the previously reported healing responses of the wounds present at baseline, the newly occurring wounds healed faster, and a greater portion of healed wounds remained stably closed. These data suggest a previously undescribed skin-stabilizing effect of treatment with ABCB5+ MSCs and support repeated dosing of ABCB5+ MSCs in RDEB to continuously slow the wound development and accelerate the healing of new or recurrent wounds before they become infected or progress to a chronic, difficult-to-heal stage.
Collapse
Affiliation(s)
| | | | | | - Silvia Fluhr
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | | | - Ines Silva
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | | |
Collapse
|
21
|
De Gregorio C, Catalán E, Garrido G, Morandé P, Bennett JC, Muñoz C, Cofré G, Huang YL, Cuadra B, Murgas P, Calvo M, Altermatt F, Yubero MJ, Palisson F, South AP, Ezquer M, Fuentes I. Maintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions. Biol Res 2023; 56:23. [PMID: 37161592 PMCID: PMC10170710 DOI: 10.1186/s40659-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Evelyng Catalán
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Gabriel Garrido
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Pilar Morandé
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | | | - Catalina Muñoz
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Glenda Cofré
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Bárbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Paola Murgas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margarita Calvo
- Facultad de Ciencias Biológicas y División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Núcleo milenio para el estudio del dolor MINUSPAIN, Santiago, Chile
| | - Fernando Altermatt
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Joao Yubero
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Pediatrics and Pediatric Infectious Diseases of Clínica Alemana, Facultad de Medicina Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Francis Palisson
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Servicio de Dermatología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrew P South
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
| | - Ignacia Fuentes
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Martínez-Martínez E, Tölle R, Donauer J, Gretzmeier C, Bruckner-Tuderman L, Dengjel J. Increased abundance of Cbl E3 ligases alters PDGFR signaling in recessive dystrophic epidermolysis bullosa. Matrix Biol 2021; 103-104:58-73. [PMID: 34706254 DOI: 10.1016/j.matbio.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
In recessive dystrophic epidermolysis bullosa (RDEB), loss of collagen VII, the main component of anchoring fibrils critical for epidermal-dermal cohesion, affects several intracellular signaling pathways and leads to impaired wound healing and fibrosis. In skin fibroblasts, wound healing is also affected by platelet-derived growth factor receptor (PDGFR) signaling. To study a potential effect of loss of collagen VII on PDGFR signaling we performed unbiased disease phosphoproteomics. Whereas RDEB fibroblasts exhibited an overall weaker response to PDGF, Cbl E3 ubiquitin ligases, negative regulators of growth factor signaling, were stronger phosphorylated. This increase in phosphorylation was linked to higher Cbl mRNA and protein levels due to increased TGFβ signaling in RDEB. In turn, increased Cbl levels led to increased PDGFR ubiquitination, internalization, and degradation negatively affecting MAPK and AKT downstream signaling pathways. Thus, our results indicate that elevated TGFβ signaling leads to an attenuated response to growth factors, which contributes to impaired dermal wound healing in RDEB.
Collapse
Affiliation(s)
| | - Regine Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Julia Donauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland.
| |
Collapse
|
23
|
Ebens CL. Deconstructing progressive inflammatory fibrosis in recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2021; 13:e14864. [PMID: 34515407 PMCID: PMC8495457 DOI: 10.15252/emmm.202114864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited blistering skin disease, resulting from biallelic mutations in COL7A1, the gene encoding type VII collagen (C7). At mucocutaneous barriers, tissue integrity relies upon linked extracellular matrix (ECM) proteins forming a physiologic suture, connecting basal epidermal keratinocytes to the underlying dermis. C7 secreted from epidermal keratinocytes and dermal fibroblasts homotrimerizes in the upper dermis to form anchoring fibrils, a critical component of this suture. Clinical manifestations of RDEB are apparent at birth and include exquisite skin fragility, pain and itch, high metabolic demand, and complications downstream of systemic inflammation. Dermal fibrosis is a critical complication of RDEB. Repeated cycles of mechanical injury and healing trigger characteristic fibrotic changes. In addition to functional limitations from joint strictures and pseudosyndactyly formation, dermal fibrosis in RDEB is a nidus for and potential driver of aggressive squamous cell carcinoma (SCC), the leading cause of death in RDEB. A greater understanding of fibrosis in RDEB promises to inform impactful, life‐prolonging clinical trials in this patient population with no proven systemic therapy or cure.
Collapse
Affiliation(s)
- Christen L Ebens
- Pediatric Blood and Marrow Transplantation & Cellular Therapies, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|