1
|
Guan G, Li Z, Ma Y, Ye P, Cao J, Wong MK, Ho VWS, Chan LY, Yan H, Tang C, Zhao Z. Cell lineage-resolved embryonic morphological map reveals signaling associated with cell fate and size asymmetry. Nat Commun 2025; 16:3700. [PMID: 40251161 PMCID: PMC12008310 DOI: 10.1038/s41467-025-58878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
How cells change shape is crucial for the development of tissues, organs and embryos. However, studying these shape changes in detail is challenging. Here we present a comprehensive real-time cellular map that covers over 95% of the cells formed during Caenorhabditis elegans embryogenesis, featuring nearly 400,000 3D cell regions. This map includes information on each cell's identity, lineage, fate, shape, volume, surface area, contact area, and gene expression profiles, all accessible through our user-friendly software and website. Our map allows for detailed analysis of key developmental processes, including dorsal intercalation, intestinal formation, and muscle assembly. We show how Notch and Wnt signaling pathways, along with mechanical forces from cell interactions, regulate cell fate decisions and size asymmetries. Our findings suggest that repeated Notch signaling drives size disparities in the large excretory cell, which functions like a kidney. This work sets the stage for in-depth studies of the mechanisms controlling cell fate differentiation and morphogenesis.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zelin Li
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianfeng Cao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Physics, Peking University, Beijing, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Guan G, Luo C, Tang LH, Tang C. Modulating cell proliferation by asymmetric division: A conserved pattern in the early embryogenesis of nematode species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001006. [PMID: 38505394 PMCID: PMC10949086 DOI: 10.17912/micropub.biology.001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
In the early stage of the nematode Caenorhabditis elegans embryogenesis, the zygote divides asymmetrically into a symmetric fast lineage and an asymmetric slow lineage, producing 16 and 8 cells respectively almost at the same time, followed by the onset of gastrulation. It was recently reported that this cell division pattern is optimal for rapid cell proliferation. In this work, we compare the cell lineages of 9 nematode species, revealing that this pattern is conserved for >60 million years. It further suggests that such lineage design has an important functional role and it might speed up embryonic development in the nematode kingdom, not limited to C. elegans , and independent of the maternal-zygotic transition dynamics.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Current Address: Department of Systems Biology, Harvard Medical School
- Current Address: Department of Data Science, Dana-Farber Cancer Institute
| | - Ce Luo
- Center for Quantitative Biology, Peking University
| | - Lei-Han Tang
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University
| | - Chao Tang
- Center for Quantitative Biology, Peking University
- Peking-Tsinghua Center for Life Sciences, Peking University
- School of Physics, Peking University
| |
Collapse
|
3
|
Wong MK, Ho VWS, Huang X, Chan LY, Xie D, Li R, Ren X, Guan G, Ma Y, Hu B, Yan H, Zhao Z. Initial characterization of gap phase introduction in every cell cycle of C. elegans embryogenesis. Front Cell Dev Biol 2022; 10:978962. [PMID: 36393848 PMCID: PMC9641140 DOI: 10.3389/fcell.2022.978962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Early embryonic cell cycles usually alternate between S and M phases without any gap phase. When the gap phases are developmentally introduced in various cell types remains poorly defined especially during embryogenesis. To establish the cell-specific introduction of gap phases in embryo, we generate multiple fluorescence ubiquitin cell cycle indicators (FUCCI) in C. elegans. Time-lapse 3D imaging followed by lineal expression profiling reveals sharp and differential accumulation of the FUCCI reporters, allowing the systematic demarcation of cell cycle phases throughout embryogenesis. Accumulation of the reporters reliably identifies both G1 and G2 phases only in two embryonic cells with an extended cell cycle length, suggesting that the remaining cells divide either without a G1 phase, or with a brief G1 phase that is too short to be picked up by our reporters. In summary, we provide an initial picture of gap phase introduction in a metazoan embryo. The newly developed FUCCI reporters pave the way for further characterization of developmental control of cell cycle progression.
Collapse
Affiliation(s)
- Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi’an, China
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Boyi Hu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- *Correspondence: Zhongying Zhao,
| |
Collapse
|
4
|
Guan G, Zhao Z, Tang C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 2022; 20:5500-5515. [PMID: 36284714 PMCID: PMC9562942 DOI: 10.1016/j.csbj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The nematode (roundworm) Caenorhabditis elegans is one of the most popular animal models for the study of developmental biology, as its invariant development and transparent body enable in toto cellular-resolution fluorescence microscopy imaging of developmental processes at 1-min intervals. This has led to the development of various computational tools for the systematic and automated analysis of imaging data to delineate the molecular and cellular processes throughout the embryogenesis of C. elegans, such as those associated with cell lineage, cell migration, cell morphology, and gene activity. In this review, we first introduce C. elegans embryogenesis and the development of techniques for tracking cell lineage and reconstructing cell morphology during this process. We then contrast the developmental modes of C. elegans and the customized technologies used for studying them with the ones of other animal models, highlighting its advantage for studying embryogenesis with exceptional spatial and temporal resolution. This is followed by an examination of the physical models that have been devised-based on accurate determinations of developmental processes afforded by analyses of imaging data-to interpret the early embryonic development of C. elegans from subcellular to intercellular levels of multiple cells, which focus on two key processes: cell polarization and morphogenesis. We subsequently discuss how quantitative data-based theoretical modeling has improved our understanding of the mechanisms of C. elegans embryogenesis. We conclude by summarizing the challenges associated with the acquisition of C. elegans embryogenesis data, the construction of algorithms to analyze them, and the theoretical interpretation.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Xiao L, Fan D, Qi H, Cong Y, Du Z. Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Syst 2022; 13:615-630.e9. [PMID: 35882226 DOI: 10.1016/j.cels.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023]
Abstract
Developmental processes are intrinsically robust so as to preserve a normal-like state in response to genetic and environmental fluctuations. However, the robustness and potential phenotypic plasticity of individual developing cells under genetic perturbations remain to be systematically evaluated. Using large-scale gene perturbation, live imaging, lineage tracing, and single-cell phenomics, we quantified the phenotypic landscape of C. elegans embryogenesis in >2,000 embryos following individual knockdown of over 750 conserved genes. We observed that cellular genetic systems are not sufficiently robust to single-gene perturbations across all cells; rather, gene knockdowns frequently induced cellular defects. Dynamic phenotypic analyses revealed many cellular defects to be transient, with cells exhibiting phenotypic plasticity that serves to alleviate, correct, and accommodate the defects. Moreover, potential developmentally related cell modules may buffer the phenotypic effects of individual cell position changes. Our findings reveal non-negligible contributions of cellular plasticity and multicellularity as compensatory strategies to increase developmental robustness.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Abstract
Biological development is often described as a dynamic, emergent process. This is evident across a variety of phenomena, from the temporal organization of cell types in the embryo to compounding trends that affect large-scale differentiation. To better understand this, we propose combining quantitative investigations of biological development with theory-building techniques. This provides an alternative to the gene-centric view of development: namely, the view that developmental genes and their expression determine the complexity of the developmental phenotype. Using the model system Caenorhabditis elegans, we examine time-dependent properties of the embryonic phenotype and utilize the unique life-history properties to demonstrate how these emergent properties can be linked together by data analysis and theory-building. We also focus on embryogenetic differentiation processes, and how terminally-differentiated cells contribute to structure and function of the adult phenotype. Examining embryogenetic dynamics from 200 to 400 min post-fertilization provides basic quantitative information on developmental tempo and process. To summarize, theory construction techniques are summarized and proposed as a way to rigorously interpret our data. Our proposed approach to a formal data representation that can provide critical links across life-history, anatomy and function.
Collapse
|
7
|
Kuang X, Guan G, Wong MK, Chan LY, Zhao Z, Tang C, Zhang L. Computable early Caenorhabditis elegans embryo with a phase field model. PLoS Comput Biol 2022; 18:e1009755. [PMID: 35030161 PMCID: PMC8794267 DOI: 10.1371/journal.pcbi.1009755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/27/2022] [Accepted: 12/14/2021] [Indexed: 01/11/2023] Open
Abstract
Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at cellular and organismic levels is not well understood. Using Caenorhabditis elegans as the model animal, we present a phase field model to compute early embryonic morphogenesis within a confined eggshell. With physical information about cell division obtained from three-dimensional time-lapse cellular imaging experiments, the model can precisely reproduce the early morphogenesis process as seen in vivo, including time evolution of location and morphology of each cell. Furthermore, the model can be used to reveal key cell-cell attractions critical to the development of C. elegans embryo. Our work demonstrates how genetic programming and physical forces collaborate to drive morphogenesis and provides a predictive model to decipher the underlying mechanism. Embryonic development is a precise process involving cell division, cell-cell interaction, and cell migration. During the process, how each cell reaches its supposed location and be in contact with the right neighbors, and what roles genetic factors and physical forces play are important and fascinating questions. Using the worm Caenorhabditis elegans as a model system, we build a phase field model to simulate early morphogenesis. With a few physical inputs, the model can precisely reproduce the early morphological development of the worm. Such an accurate simulator can not only teach us how physical forces work together with genetic factors to shape up the complex process of development, but also make predictions, such as key cell-cell attractions critical in the process.
Collapse
Affiliation(s)
- Xiangyu Kuang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Physics, Peking University, Beijing, China
- * E-mail: (CT); (LZ)
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- * E-mail: (CT); (LZ)
| |
Collapse
|
8
|
Cao J, Guan G, Ho VWS, Wong MK, Chan LY, Tang C, Zhao Z, Yan H. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nat Commun 2020; 11:6254. [PMID: 33288755 PMCID: PMC7721714 DOI: 10.1038/s41467-020-19863-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
The invariant development and transparent body of the nematode Caenorhabditis elegans enables complete delineation of cell lineages throughout development. Despite extensive studies of cell division, cell migration and cell fate differentiation, cell morphology during development has not yet been systematically characterized in any metazoan, including C. elegans. This knowledge gap substantially hampers many studies in both developmental and cell biology. Here we report an automatic pipeline, CShaper, which combines automated segmentation of fluorescently labeled membranes with automated cell lineage tracing. We apply this pipeline to quantify morphological parameters of densely packed cells in 17 developing C. elegans embryos. Consequently, we generate a time-lapse 3D atlas of cell morphology for the C. elegans embryo from the 4- to 350-cell stages, including cell shape, volume, surface area, migration, nucleus position and cell-cell contact with resolved cell identities. We anticipate that CShaper and the morphological atlas will stimulate and enhance further studies in the fields of developmental biology, cell biology and biomechanics.
Collapse
Affiliation(s)
- Jianfeng Cao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, 100871, Beijing, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- Center for Epigenomics Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- School of Physics, Peking University, 100871, Beijing, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, 999077, China.
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
9
|
Guan G, Fang M, Wong MK, Ho VWS, An X, Tang C, Huang X, Zhao Z. Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis. Dev Genes Evol 2020; 230:265-278. [PMID: 32556563 PMCID: PMC7371654 DOI: 10.1007/s00427-020-00662-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022]
Abstract
hlh-1 is a myogenic transcription factor required for body-wall muscle specification during embryogenesis in Caenorhabditis elegans. Despite its well-known role in muscle specification, comprehensive regulatory control upstream of hlh-1 remains poorly defined. Here, we first established a statistical reference for the spatiotemporal expression of hlh-1 at single-cell resolution up to the second last round of divisions for most of the cell lineages (from 4- to 350-cell stage) using 13 wild-type embryos. We next generated lineal expression of hlh-1 after RNA interference (RNAi) perturbation of 65 genes, which were selected based on their degree of conservation, mutant phenotypes, and known roles in development. We then compared the expression profiles between wild-type and RNAi embryos by clustering according to their lineal expression patterns using mean-shift and density-based clustering algorithms, which not only confirmed the roles of existing genes but also uncovered the potential functions of novel genes in muscle specification at multiple levels, including cellular, lineal, and embryonic levels. By combining the public data on protein-protein interactions, protein-DNA interactions, and genetic interactions with our RNAi data, we inferred regulatory pathways upstream of hlh-1 that function globally or locally. This work not only revealed diverse and multilevel regulatory mechanisms coordinating muscle differentiation during C. elegans embryogenesis but also laid a foundation for further characterizing the regulatory pathways controlling muscle specification at the cellular, lineal (local), or embryonic (global) level.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Meichen Fang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
10
|
Patel DS, Xu N, Lu H. Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Anim (NY) 2019; 48:207-216. [PMID: 31217565 DOI: 10.1038/s41684-019-0326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
Deep phenotyping is an emerging conceptual paradigm and experimental approach aimed at measuring and linking many aspects of a phenotype to understand its underlying biology. To date, deep phenotyping has been applied mostly in cultured cells and used less in multicellular organisms. However, in the past decade, it has increasingly been recognized that deep phenotyping could lead to a better understanding of how genetics, environment and stochasticity affect the development, physiology and behavior of an organism. The nematode Caenorhabditis elegans is an invaluable model system for studying how genes affect a phenotypic trait, and new technologies have taken advantage of the worm's physical attributes to increase the throughput and informational content of experiments. Coupling of these technical advancements with computational and analytical tools has enabled a boom in deep-phenotyping studies of C. elegans. In this Review, we highlight how these new technologies and tools are digging into the biological origins of complex, multidimensional phenotypes.
Collapse
Affiliation(s)
- Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nan Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Chen L, Ho VWS, Wong MK, Huang X, Chan LY, Ng HCK, Ren X, Yan H, Zhao Z. Establishment of Signaling Interactions with Cellular Resolution for Every Cell Cycle of Embryogenesis. Genetics 2018; 209:37-49. [PMID: 29567658 PMCID: PMC5937172 DOI: 10.1534/genetics.118.300820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022] Open
Abstract
Intercellular signaling interactions play a key role in breaking fate symmetry during animal development. Identification of signaling interactions at cellular resolution is technically challenging, especially in a developing embryo. Here, we develop a platform that allows automated inference and validation of signaling interactions for every cell cycle of Caenorhabditis elegans embryogenesis. This is achieved by the generation of a systems-level cell contact map, which consists of 1114 highly confident intercellular contacts, by modeling analysis and is validated through cell membrane labeling coupled with cell lineage analysis. We apply the map to identify cell pairs between which a Notch signaling interaction takes place. By generating expression patterns for two ligands and two receptors of the Notch signaling pathway with cellular resolution using the automated expression profiling technique, we are able to refine existing and identify novel Notch interactions during C. elegans embryogenesis. Targeted cell ablation followed by cell lineage analysis demonstrates the roles of signaling interactions during cell division in breaking fate symmetry. Finally, we describe the development of a website that allows online access to the cell-cell contact map for mapping of other signaling interactions by the community. The platform can be adapted to establish cellular interactions from any other signaling pathway.
Collapse
Affiliation(s)
- Long Chen
- Department of Electronic Engineering, City University of Hong Kong, China
| | | | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710126 China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, China
| | | | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| |
Collapse
|
13
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Conserved gene regulatory module specifies lateral neural borders across bilaterians. Proc Natl Acad Sci U S A 2017; 114:E6352-E6360. [PMID: 28716930 DOI: 10.1073/pnas.1704194114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.
Collapse
|
15
|
Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division. Sci Rep 2017; 7:4296. [PMID: 28655887 PMCID: PMC5487359 DOI: 10.1038/s41598-017-04533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.
Collapse
|
16
|
Alicea B, Gordon R. Quantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos. BIOLOGY 2016; 5:E33. [PMID: 27548240 PMCID: PMC5037352 DOI: 10.3390/biology5030033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 01/28/2023]
Abstract
Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research, 1408 Rosewood Drive, Champaign, IL 61821, USA.
- OpenWorm Foundation, Cyberspace, San Diego, CA 92110, USA.
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL 32346, USA.
- C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Wong MK, Guan D, Ng KHC, Ho VWS, An X, Li R, Ren X, Zhao Z. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis. J Biol Chem 2016; 291:12501-12513. [PMID: 27056332 DOI: 10.1074/jbc.m115.705426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.
Collapse
Affiliation(s)
- Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Kaoru Hon Chun Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
18
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
19
|
Santella A, Kovacevic I, Herndon LA, Hall DH, Du Z, Bao Z. Digital development: a database of cell lineage differentiation in C. elegans with lineage phenotypes, cell-specific gene functions and a multiscale model. Nucleic Acids Res 2016; 44:D781-5. [PMID: 26503254 PMCID: PMC4702815 DOI: 10.1093/nar/gkv1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022] Open
Abstract
Developmental systems biology is poised to exploit large-scale data from two approaches: genomics and live imaging. The combination of the two offers the opportunity to map gene functions and gene networks in vivo at single-cell resolution using cell tracking and quantification of cellular phenotypes. Here we present Digital Development (http://www.digital-development.org), a database of cell lineage differentiation with curated phenotypes, cell-specific gene functions and a multiscale model. The database stores data from recent systematic studies of cell lineage differentiation in the C. elegans embryo containing ∼ 200 conserved genes, 1400 perturbed cell lineages and 600,000 digitized single cells. Users can conveniently browse, search and download four categories of phenotypic and functional information from an intuitive web interface. This information includes lineage differentiation phenotypes, cell-specific gene functions, differentiation landscapes and fate choices, and a multiscale model of lineage differentiation. Digital Development provides a comprehensive, curated, multidimensional database for developmental biology. The scale, resolution and richness of biological information presented here facilitate exploration of gene-specific and systems-level mechanisms of lineage differentiation in Metazoans.
Collapse
Affiliation(s)
| | | | | | - David H Hall
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhuo Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhirong Bao
- Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|