1
|
Paltenghi C, van Leeuwen J. Genetic suppression interactions are highly conserved across genetically diverse yeast isolates. G3 (BETHESDA, MD.) 2025; 15:jkaf047. [PMID: 40037589 PMCID: PMC12060245 DOI: 10.1093/g3journal/jkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Genetic suppression occurs when the phenotypic defects caused by a deleterious mutation are rescued by another mutation. Suppression interactions are of particular interest for genetic diseases, as they identify ways to reduce disease severity, thereby potentially highlighting avenues for therapeutic intervention. To what extent suppression interactions are influenced by the genetic background in which they operate remains largely unknown. However, a high degree of suppression conservation would be crucial for developing therapeutic strategies that target suppressors. To gain an understanding of the effect of the genetic context on suppression, we isolated spontaneous suppressor mutations of temperature-sensitive alleles of SEC17, TAO3, and GLN1 in 3 genetically diverse natural isolates of the budding yeast Saccharomyces cerevisiae. After identifying and validating the genomic variants responsible for suppression, we introduced the suppressors in all 3 genetic backgrounds, as well as in a laboratory strain, to assess their specificity. Ten out of 11 tested suppression interactions were conserved in the 4 yeast strains, although the extent to which a suppressor could rescue the temperature-sensitive mutant varied across genetic backgrounds. These results suggest that suppression mechanisms are highly conserved across genetic contexts, a finding that is potentially reassuring for the development of therapeutics that mimic genetic suppressors.
Collapse
Affiliation(s)
- Claire Paltenghi
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
2
|
Worthan SB, Grant MI, Behringer MG. Rho-dependent termination: a bacterial evolutionary capacitor for stress resistance. Transcription 2025:1-14. [PMID: 40044630 DOI: 10.1080/21541264.2025.2474367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Since the Modern Synthesis, interest has grown in resolving the "black box" between genotype and phenotype. Contained within this black box are highly plastic RNA and proteins with global effects on chromosome integrity and gene expression that serve as evolutionary capacitors - elements that enable the accumulation and buffering of genetic variation in normal conditions and reveal hidden genetic variation when induced by environmental stress. Discussion of evolutionary capacitors has primarily focused on eukaryotic translation factors and chaperones, such as Hsp90 and PSI+ prion. However, due to the coupling of transcription and translation in prokaryotes, transcription factors can be equally impactful in the modulation of gene expression and phenotypes. In this review, we discuss the prokaryotic transcription terminator Rho and how mutagenesis and plasticity of Rho influence epistasis, evolvability, and adaptation to stress in bacteria. We discuss the effects of variation in Rho generated by nature, laboratory mutagenesis, and experimental evolution; and how this variation is constrained or encouraged by Rho's extensive network of protein interactors. Exploring Rho's role as an evolutionary capacitor, along with identifying additional elements that can serve this function, can significantly advance our understanding of how organisms adapt to thrive in diverse environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Megan I Grant
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
4
|
Mellis IA, Melzer ME, Bodkin N, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. Genome Biol 2024; 25:217. [PMID: 39135102 PMCID: PMC11320884 DOI: 10.1186/s13059-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
5
|
Ward CM, Onetto CA, Van Den Heuvel S, Cuijvers KM, Hale LJ, Borneman AR. Recombination, admixture and genome instability shape the genomic landscape of Saccharomyces cerevisiae derived from spontaneous grape ferments. PLoS Genet 2024; 20:e1011223. [PMID: 38517929 PMCID: PMC10990190 DOI: 10.1371/journal.pgen.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.
Collapse
Affiliation(s)
- Chris M. Ward
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Cristobal A. Onetto
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Laura J. Hale
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Anthony R. Borneman
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Mellis IA, Bodkin N, Melzer ME, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553318. [PMID: 37645989 PMCID: PMC10462021 DOI: 10.1101/2023.08.14.553318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene can trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, to date, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and contexts. Moreover, how the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. Here we combine computational analysis of existing datasets with stochastic mathematical modeling and machine learning to uncover the widespread prevalence of transcriptional adaptation in mammalian systems and the diverse single-cell manifestations of minimal compensatory gene networks. Regulon gene expression analysis of a pooled single-cell genetic perturbation dataset recapitulates important model predictions. Our integrative approach uncovers several putative hits-genes demonstrating possible transcriptional adaptation-to follow up on experimentally, and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A. Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline E. Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
8
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
9
|
Saeki N, Yamamoto C, Eguchi Y, Sekito T, Shigenobu S, Yoshimura M, Yashiroda Y, Boone C, Moriya H. Overexpression profiling reveals cellular requirements in the context of genetic backgrounds and environments. PLoS Genet 2023; 19:e1010732. [PMID: 37115757 PMCID: PMC10171610 DOI: 10.1371/journal.pgen.1010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/10/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Overexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative). Our results show that adaptive overexpression compensates for deficiencies and increases fitness under stress, like calcium under salt stress. We also investigated the impact of different genetic backgrounds on GOFAs, which varied among three S. cerevisiae strains reflecting differing calcium and potassium requirements for salt stress tolerance. Our study of a knockout collection also suggested that calcium prevents mitochondrial outbursts under salt stress. Mitochondria-enhancing GOFAs were only adaptive when adequate calcium was available and non-adaptive when calcium was deficient, supporting this idea. Our findings indicate that adaptive overexpression meets the cell's needs for maximizing the organism's adaptive capacity in the given environment and genetic context.
Collapse
Affiliation(s)
- Nozomu Saeki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chie Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuichi Eguchi
- Biomedical Business Center, RICOH Futures BU, Kanagawa, Japan
| | - Takayuki Sekito
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Japan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hisao Moriya
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, Artificial Intelligence (AI), and Allostery. J Phys Chem B 2022; 126:6372-6383. [PMID: 35976160 PMCID: PMC9442638 DOI: 10.1021/acs.jpcb.2c04346] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Indexed: 02/08/2023]
Abstract
AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of biological sequence data and artificial intelligence (AI). AlphaFold has appended projects and research directions. The database it has been creating promises an untold number of applications with vast potential impacts that are still difficult to surmise. AI approaches can revolutionize personalized treatments and usher in better-informed clinical trials. They promise to make giant leaps toward reshaping and revamping drug discovery strategies, selecting and prioritizing combinations of drug targets. Here, we briefly overview AI in structural biology, including in molecular dynamics simulations and prediction of microbiota-human protein-protein interactions. We highlight the advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery, which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations. AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhen Zhang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Erić P, Patenković A, Erić K, Tanasković M, Davidović S, Rakić M, Savić Veselinović M, Stamenković-Radak M, Jelić M. Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura. INSECTS 2022; 13:insects13020139. [PMID: 35206713 PMCID: PMC8880146 DOI: 10.3390/insects13020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Does variation in the mitochondrial DNA sequence influence the survival and reproduction of an individual? What is the purpose of genetic variation of the mitochondrial DNA between individuals from the same population? As a simple laboratory model, Drosophila species can give us the answer to this question. Creating experimental lines with different combinations of mitochondrial and nuclear genomic DNA and testing how successful these lines were in surviving in different experimental set-ups enables us to deduce the effect that both genomes have on fitness. This study on D. obscura experimentally validates theoretical models that explain the persistence of mitochondrial DNA variation within populations. Our results shed light on the various mechanisms that maintain this type of variation. Finally, by conducting the experiments on two experimental temperatures, we have shown that environmental variations can support mitochondrial DNA variation within populations. Abstract The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Correspondence: ; Tel.: +381-112-078-334
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Mina Rakić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| |
Collapse
|
12
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
13
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Phillips KN, Cooper TF. The cost of evolved constitutive lac gene expression is usually, but not always, maintained during evolution of generalist populations. Ecol Evol 2021; 11:12497-12507. [PMID: 34594515 PMCID: PMC8462147 DOI: 10.1002/ece3.7994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Beneficial mutations can become costly following an environmental change. Compensatory mutations can relieve these costs, while not affecting the selected function, so that the benefits are retained if the environment shifts back to be similar to the one in which the beneficial mutation was originally selected. Compensatory mutations have been extensively studied in the context of antibiotic resistance, responses to specific genetic perturbations, and in the determination of interacting gene network components. Few studies have focused on the role of compensatory mutations during more general adaptation, especially as the result of selection in fluctuating environments where adaptations to different environment components may often involve trade-offs. We examine whether costs of a mutation in lacI, which deregulated the expression of the lac operon in evolving populations of Escherichia coli bacteria, were compensated. This mutation occurred in multiple replicate populations selected in environments that fluctuated between growth on lactose, where the mutation was beneficial, and on glucose, where it was deleterious. We found that compensation for the cost of the lacI mutation was rare, but, when it did occur, it did not negatively affect the selected benefit. Compensation was not more likely to occur in a particular evolution environment. Compensation has the potential to remove pleiotropic costs of adaptation, but its rarity indicates that the circumstances to bring about the phenomenon may be peculiar to each individual or impeded by other selected mutations.
Collapse
Affiliation(s)
- Kelly N. Phillips
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Tim F. Cooper
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| |
Collapse
|
15
|
Robinson D, Place M, Hose J, Jochem A, Gasch AP. Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. eLife 2021; 10:e70564. [PMID: 34338637 PMCID: PMC8352584 DOI: 10.7554/elife.70564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.
Collapse
Affiliation(s)
- DeElegant Robinson
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Jochem
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
- Department of Medical Genetics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
16
|
Scopel EFC, Hose J, Bensasson D, Gasch AP. Genetic variation in aneuploidy prevalence and tolerance across Saccharomyces cerevisiae lineages. Genetics 2021; 217:iyab015. [PMID: 33734361 PMCID: PMC8049548 DOI: 10.1093/genetics/iyab015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/21/2021] [Indexed: 01/06/2023] Open
Abstract
Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual's genetic makeup influences its tolerance of karyotypic imbalance. Here we investigated within-species variation in aneuploidy prevalence and tolerance, using Saccharomyces cerevisiae as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 S. cerevisiae strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The relationships between lineages with high aneuploidy frequencies suggest that increased aneuploidy prevalence emerged multiple times in S. cerevisiae evolution. Separate from aneuploidy prevalence, analyzing growth phenotypes revealed that some genetic backgrounds-such as the European Wine lineage-show fitness costs in aneuploids compared to euploids, whereas other clades with high aneuploidy frequencies show little evidence of major deleterious effects. Our analysis confirms that chromosome gain can produce phenotypic benefits, which could influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.
Collapse
Affiliation(s)
- Eduardo F C Scopel
- Institute of Bioinformatics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - James Hose
- Laboratory of Genetics and Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douda Bensasson
- Institute of Bioinformatics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Audrey P Gasch
- Laboratory of Genetics and Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Yang F, Todd RT, Selmecki A, Jiang YY, Cao YB, Berman J. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 2021; 218:6218773. [PMID: 33837402 DOI: 10.1093/genetics/iyab056] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress, and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200086, China.,Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200086, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
Klim J, Zielenkiewicz U, Kurlandzka A, Kaczanowski S. The Adaptive Landscape of Genetic Interaction Network Has No Impact on Yeast Adaptive Evolution. Front Genet 2021; 12:640501. [PMID: 33815476 PMCID: PMC8013701 DOI: 10.3389/fgene.2021.640501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
20
|
Development of synthetic lethality in cancer: molecular and cellular classification. Signal Transduct Target Ther 2020; 5:241. [PMID: 33077733 PMCID: PMC7573576 DOI: 10.1038/s41392-020-00358-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Recently, genetically targeted cancer therapies have been a topic of great interest. Synthetic lethality provides a new approach for the treatment of mutated genes that were previously considered unable to be targeted in traditional genotype-targeted treatments. The increasing researches and applications in the clinical setting made synthetic lethality a promising anticancer treatment option. However, the current understandings on different conditions of synthetic lethality have not been systematically assessed and the application of synthetic lethality in clinical practice still faces many challenges. Here, we propose a novel and systematic classification of synthetic lethality divided into gene level, pathway level, organelle level, and conditional synthetic lethality, according to the degree of specificity into its biological mechanism. Multiple preclinical findings of synthetic lethality in recent years will be reviewed and classified under these different categories. Moreover, synthetic lethality targeted drugs in clinical practice will be briefly discussed. Finally, we will explore the essential implications of this classification as well as its prospects in eliminating existing challenges and the future directions of synthetic lethality.
Collapse
|
21
|
Chen Z, Zehraoui E, Atanasoff-Kardjalieff AK, Strauss J, Studt L, Ponts N. Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum. PLoS Genet 2020; 16:e1009125. [PMID: 33091009 PMCID: PMC7608984 DOI: 10.1371/journal.pgen.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/03/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
Fusarium head blight is a destructive disease of grains resulting in reduced yields and contamination of grains with mycotoxins worldwide; Fusarium graminearum is its major causal agent. Chromatin structure changes play key roles in regulating mycotoxin biosynthesis in filamentous fungi. Using a split-marker approach in three F. graminearum strains INRA156, INRA349 and INRA812 (PH-1), we knocked out the gene encoding H2A.Z, a ubiquitous histone variant reported to be involved in a diverse range of biological processes in yeast, plants and animals, but rarely studied in filamentous fungi. All ΔH2A.Z mutants exhibit defects in development including radial growth, sporulation, germination and sexual reproduction, but with varying degrees of severity between them. Heterogeneity of osmotic and oxidative stress response as well as mycotoxin production was observed in ΔH2A.Z strains. Adding-back wild-type H2A.Z in INRA349ΔH2A.Z could not rescue the phenotypes. Whole genome sequencing revealed that, although H2A.Z has been removed from the genome and the deletion cassette is inserted at H2A.Z locus only, mutations occur at other loci in each mutant regardless of the genetic background. Genes affected by these mutations encode proteins involved in chromatin remodeling, such as the helicase Swr1p or an essential subunit of the histone deacetylase Rpd3S, and one protein of unknown function. These observations suggest that H2A.Z and the genes affected by such mutations are part or the same genetic interaction network. Our results underline the genetic plasticity of F. graminearum facing detrimental gene perturbation. These findings suggest that intergenic suppressions rescue deleterious phenotypes in ΔH2A.Z strains, and that H2A.Z may be essential in F. graminearum. This assumption is further supported by the fact that H2A.Z deletion failed in another Fusarium spp., i.e., the rice pathogen Fusarium fujikuroi.
Collapse
Affiliation(s)
| | | | - Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | | |
Collapse
|
22
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
23
|
Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci 2020; 11:5855-5865. [PMID: 32953006 PMCID: PMC7472334 DOI: 10.1039/d0sc01676d] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The search is on for effective specific inhibitors for PI3Kα mutants. PI3Kα, a critical lipid kinase, has two subunits, catalytic and inhibitory. PIK3CA, the gene that encodes the p110α catalytic subunit is a highly mutated protein in cancer. Dysregulation of PI3Kα signalling is commonly associated with tumorigenesis and drug resistance. Despite its vast importance, only recently the FDA approved the first drug (alpelisib by Novartis) for breast cancer. A second (GDC0077), classified as PI3Kα isoform-specific, is undergoing clinical trials. Not surprisingly, these ATP-competitive drugs commonly elicit severe concentration-dependent side effects. Here we briefly review PI3Kα mutations, focus on PI3K drug repertoire and propose new, to-date unexplored PI3Kα therapeutic strategies. These include (1) an allosteric and orthosteric inhibitor combination and (2) taking advantage of allosteric rescue mutations to guide drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
24
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Fumasoni M, Murray AW. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress. eLife 2020; 9:e51963. [PMID: 32043971 PMCID: PMC7069727 DOI: 10.7554/elife.51963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Many biological features are conserved and thus considered to be resistant to evolutionary change. While rapid genetic adaptation following the removal of conserved genes has been observed, we often lack a mechanistic understanding of how adaptation happens. We used the budding yeast, Saccharomyces cerevisiae, to investigate the evolutionary plasticity of chromosome metabolism, a network of evolutionary conserved modules. We experimentally evolved cells constitutively experiencing DNA replication stress caused by the absence of Ctf4, a protein that coordinates the enzymatic activities at replication forks. Parallel populations adapted to replication stress, over 1000 generations, by acquiring multiple, concerted mutations. These mutations altered conserved features of two chromosome metabolism modules, DNA replication and sister chromatid cohesion, and inactivated a third, the DNA damage checkpoint. The selected mutations define a functionally reproducible evolutionary trajectory. We suggest that the evolutionary plasticity of chromosome metabolism has implications for genome evolution in natural populations and cancer.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
26
|
Zhang Z, Bendixsen DP, Janzen T, Nolte AW, Greig D, Stelkens R. Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress. Mol Biol Evol 2020; 37:167-182. [PMID: 31518427 PMCID: PMC6984367 DOI: 10.1093/molbev/msz211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype–environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.
Collapse
Affiliation(s)
- Zebin Zhang
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Devin P Bendixsen
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Thijs Janzen
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Arne W Nolte
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Duncan Greig
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
27
|
Hose J, Escalante LE, Clowers KJ, Dutcher HA, Robinson D, Bouriakov V, Coon JJ, Shishkova E, Gasch AP. The genetic basis of aneuploidy tolerance in wild yeast. eLife 2020; 9:52063. [PMID: 31909711 PMCID: PMC6970514 DOI: 10.7554/elife.52063] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy is highly detrimental during development yet common in cancers and pathogenic fungi – what gives rise to differences in aneuploidy tolerance remains unclear. We previously showed that wild isolates of Saccharomyces cerevisiae tolerate chromosome amplification while laboratory strains used as a model for aneuploid syndromes do not. Here, we mapped the genetic basis to Ssd1, an RNA-binding translational regulator that is functional in wild aneuploids but defective in laboratory strain W303. Loss of SSD1 recapitulates myriad aneuploidy signatures previously taken as eukaryotic responses. We show that aneuploidy tolerance is enabled via a role for Ssd1 in mitochondrial physiology, including binding and regulating nuclear-encoded mitochondrial mRNAs, coupled with a role in mitigating proteostasis stress. Recapitulating ssd1Δ defects with combinatorial drug treatment selectively blocked proliferation of wild-type aneuploids compared to euploids. Our work adds to elegant studies in the sensitized laboratory strain to present a mechanistic understanding of eukaryotic aneuploidy tolerance.
Collapse
Affiliation(s)
- James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
| | - Leah E Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Katie J Clowers
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
| | - Venera Bouriakov
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States
| | - Joshua J Coon
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| | - Evgenia Shishkova
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States
| |
Collapse
|
28
|
Tomala K, Zrebiec P, Hartl DL. Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles. Mol Biol Evol 2019; 36:1874-1883. [PMID: 31058959 PMCID: PMC6735812 DOI: 10.1093/molbev/msz110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous experiments with temperature-sensitive mutants of the yeast enzyme orotidine 5'-phosphate decarboxylase (encoded in gene URA3) yielded the unexpected result that reversion occurs only through exact reversal of the original mutation (Jakubowska A, Korona R. 2009. Lack of evolutionary conservation at positions important for thermal stability in the yeast ODCase protein. Mol Biol Evol. 26(7):1431-1434.). We recreated a set of these mutations in which the codon had two nucleotide substitutions, making exact reversion much less likely. We screened these double mutants for reversion and obtained a number of compensatory mutations occurring at alternative sites in the molecule. None of these compensatory mutations fully restored protein performance. The mechanism of partial compensation is consistent with a model in which protein stabilization is additive, as the same secondary mutations can compensate different primary alternations. The distance between primary and compensatory residues precludes direct interaction between the sites. Instead, most of the compensatory mutants were clustered in proximity to the catalytic center. All of the second-site compensatory substitutions occurred at relatively conserved sites, and the amino acid replacements were to residues found at these sites in a multispecies alignment of the protein. Based on the estimated distribution of changes in Gibbs free energy among a large number of amino acid replacements, we estimate that, for most proteins, the probability that a second-site mutation would have a sufficiently large stabilizing effect to offset a temperature-sensitive mutation in the order of 10-4 or less. Hence compensation is likely to take place only for slightly destabilizing mutations because highly stabilizing mutations are exceeding rare.
Collapse
Affiliation(s)
- Katarzyna Tomala
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Piotr Zrebiec
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
29
|
Gilchrist C, Stelkens R. Aneuploidy in yeast: Segregation error or adaptation mechanism? Yeast 2019; 36:525-539. [PMID: 31199875 PMCID: PMC6772139 DOI: 10.1002/yea.3427] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is the loss or gain of chromosomes within a genome. It is often detrimental and has been associated with cell death and genetic disorders. However, aneuploidy can also be beneficial and provide a quick solution through changes in gene dosage when cells face environmental stress. Here, we review the prevalence of aneuploidy in Saccharomyces, Candida, and Cryptococcus yeasts (and their hybrid offspring) and analyse associations with chromosome size and specific stressors. We discuss how aneuploidy, a segregation error, may in fact provide a natural route for the diversification of microbes and enable important evolutionary innovations given the right ecological circumstances, such as the colonisation of new environments or the transition from commensal to pathogenic lifestyle. We also draw attention to a largely unstudied cross link between hybridisation and aneuploidy. Hybrid meiosis, involving two divergent genomes, can lead to drastically increased rates of aneuploidy in the offspring due to antirecombination and chromosomal missegregation. Because hybridisation and aneuploidy have both been shown to increase with environmental stress, we believe it important and timely to start exploring the evolutionary significance of their co-occurrence.
Collapse
Affiliation(s)
- Ciaran Gilchrist
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| | - Rike Stelkens
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
30
|
Wei X, Zhang J. Patterns and Mechanisms of Diminishing Returns from Beneficial Mutations. Mol Biol Evol 2019; 36:1008-1021. [PMID: 30903691 DOI: 10.1093/molbev/msz035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diminishing returns epistasis causes the benefit of the same advantageous mutation smaller in fitter genotypes and is frequently observed in experimental evolution. However, its occurrence in other contexts, environment dependence, and mechanistic basis are unclear. Here, we address these questions using 1,005 sequenced segregants generated from a yeast cross. Under each of 47 examined environments, 66-92% of tested polymorphisms exhibit diminishing returns epistasis. Surprisingly, improving environment quality also reduces the benefits of advantageous mutations even when fitness is controlled for, indicating the necessity to revise the global epistasis hypothesis. We propose that diminishing returns originates from the modular organization of life where the contribution of each functional module to fitness is determined jointly by the genotype and environment and has an upper limit, and demonstrate that our model predictions match empirical observations. These findings broaden the concept of diminishing returns epistasis, reveal its generality and potential cause, and have important evolutionary implications.
Collapse
Affiliation(s)
- Xinzhu Wei
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
31
|
Blanco C, Janzen E, Pressman A, Saha R, Chen IA. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Annu Rev Biophys 2019; 48:1-18. [PMID: 30601678 DOI: 10.1146/annurev-biophys-052118-115333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Abe Pressman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Irene A Chen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
32
|
Biot-Pelletier D, Pinel D, Larue K, Martin VJJ. Determinants of selection in yeast evolved by genome shuffling. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:282. [PMID: 30356826 PMCID: PMC6190656 DOI: 10.1186/s13068-018-1283-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Genome shuffling (GS) is a widely adopted methodology for the evolutionary engineering of desirable traits in industrially relevant microorganisms. We have previously used genome shuffling to generate a strain of Saccharomyces cerevisiae that is tolerant to the growth inhibitors found in a lignocellulosic hydrolysate. In this study, we expand on previous work by performing a population-wide genomic survey of our genome shuffling experiment and dissecting the molecular determinants of the evolved phenotype. RESULTS Whole population whole-genome sequencing was used to survey mutations selected during the experiment and extract allele frequency time series. Using growth curve assays on single point mutants and backcrossed derivatives, we explored the genetic architecture of the selected phenotype and detected examples of epistasis. Our results reveal cohorts of strongly correlated mutations, suggesting prevalent genetic hitchhiking and the presence of pre-existing founder mutations. From the patterns of apparent selection and the results of direct phenotypic assays, our results identify key driver mutations and deleterious hitchhikers. CONCLUSIONS We use these data to propose a model of inhibitor tolerance in our GS mutants. Our results also suggest a role for compensatory evolution and epistasis in our genome shuffling experiment and illustrate the impact of historical contingency on the outcomes of evolutionary engineering.
Collapse
Affiliation(s)
- Damien Biot-Pelletier
- Department of Biology, Centre for Structural and Functional Genomics, Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
- Present Address: Lallemand Inc., Montréal, QC H4P 2R2 Canada
| | - Dominic Pinel
- Department of Biology, Centre for Structural and Functional Genomics, Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
- Present Address: Amyris Inc, Emeryville, CA 94608 USA
| | - Kane Larue
- Department of Biology, Centre for Structural and Functional Genomics, Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
- Present Address: Charles River Laboratories, Senneville, QC H9X 3R3 Canada
| | - Vincent J. J. Martin
- Department of Biology, Centre for Structural and Functional Genomics, Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| |
Collapse
|
33
|
Ryan CJ, Bajrami I, Lord CJ. Synthetic Lethality and Cancer - Penetrance as the Major Barrier. Trends Cancer 2018; 4:671-683. [PMID: 30292351 DOI: 10.1016/j.trecan.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Abstract
Synthetic lethality has long been proposed as an approach for targeting genetic defects in tumours. Despite a decade of screening efforts, relatively few robust synthetic lethal targets have been identified. Improved genetic perturbation techniques, including CRISPR/Cas9 gene editing, have resulted in renewed enthusiasm for searching for synthetic lethal effects in cancer. An implicit assumption behind this enthusiasm is that the lack of reproducibly identified targets can be attributed to limitations of RNAi technologies. We argue here that a bigger hurdle is that most synthetic lethal interactions (SLIs) are not highly penetrant, in other words they are not robust to the extensive molecular heterogeneity seen in tumours. We outline strategies for identifying and prioritising SLIs that are most likely to be highly penetrant.
Collapse
Affiliation(s)
- Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ilirjana Bajrami
- Breast Cancer Now Toby Robins Research Centre and Cancer Research UK (CRUK) Gene Function Laboratory, Institute of Cancer Research (ICR), London SW3 6JB, UK.
| | - Christopher J Lord
- Breast Cancer Now Toby Robins Research Centre and Cancer Research UK (CRUK) Gene Function Laboratory, Institute of Cancer Research (ICR), London SW3 6JB, UK.
| |
Collapse
|
34
|
Perlaza-Jiménez L, Walther D. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Nucleic Acids Res 2018; 46:8114-8132. [PMID: 29986106 PMCID: PMC6144803 DOI: 10.1093/nar/gky576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
Abstract
The concept of exploiting correlated mutations has been introduced and applied successfully to identify interactions within and between biological macromolecules. Its rationale lies in the preservation of physical interactions via compensatory mutations. With the massive increase of available sequence information, approaches based on correlated mutations have regained considerable attention. We analyzed a set of 10 707 430 single nucleotide polymorphisms detected in 1135 accessions of the plant Arabidopsis thaliana. To measure their covariance and to reveal the global genome-wide sequence correlation structure of the Arabidopsis genome, the adjusted mutual information has been estimated for each possible pair of polymorphic sites. We developed a series of filtering steps to account for genetic linkage and lineage relations between Arabidopsis accessions, as well as transitive covariance as possible confounding factors. We show that upon appropriate filtering, correlated mutations prove indeed informative with regard to molecular interactions, and furthermore, appear to reflect on chromosomal interactions. Our study demonstrates that the concept of correlated mutations can also be applied successfully to within-species sequence variation and establishes a promising approach to help unravel the complex molecular interactions in A. thaliana and other species with broad sequence information.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Li C, Zhang J. Multi-environment fitness landscapes of a tRNA gene. Nat Ecol Evol 2018; 2:1025-1032. [PMID: 29686238 PMCID: PMC5966336 DOI: 10.1038/s41559-018-0549-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/27/2018] [Indexed: 11/09/2022]
Abstract
A fitness landscape (FL) describes the genotype-fitness relationship in a given environment. To explain and predict evolution, it is imperative to measure the FL in multiple environments because the natural environment changes frequently. Using a high-throughput method that combines precise gene replacement with next-generation sequencing, we determine the in vivo FL of a yeast tRNA gene comprising over 23,000 genotypes in four environments. Although genotype-by-environment interaction (G×E) is abundantly detected, its pattern is so simple that we can transform an existing FL to that in a new environment with fitness measures of only a few genotypes in the new environment. Under each environment, we observe prevalent, negatively biased epistasis between mutations (G×G). Epistasis-by-environment interaction (G×G×E) is also prevalent, but trends in epistasis difference between environments are predictable. Our study thus reveals simple rules underlying seemingly complex FLs, opening the door to understanding and predicting FLs in general.
Collapse
Affiliation(s)
- Chuan Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci 2017; 283:rspb.2016.1458. [PMID: 27798299 DOI: 10.1098/rspb.2016.1458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection.
Collapse
Affiliation(s)
- Clara Bleuven
- Département de Biologie, Université Laval, Québec, Québec, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Big Data Research Center, Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| |
Collapse
|
37
|
Abstract
Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.
Collapse
|
38
|
Moser JW, Wilson IBH, Dragosits M. The adaptive landscape of wildtype and glycosylation-deficient populations of the industrial yeast Pichia pastoris. BMC Genomics 2017; 18:597. [PMID: 28797224 PMCID: PMC5553748 DOI: 10.1186/s12864-017-3952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/23/2017] [Indexed: 11/16/2022] Open
Abstract
Background The effects of long-term environmental adaptation and the implications of major cellular malfunctions are still poorly understood for non-model but biotechnologically relevant species. In this study we performed a large-scale laboratory evolution experiment with 48 populations of the yeast Pichia pastoris in order to establish a general adaptive landscape upon long-term selection in several glucose-based growth environments. As a model for a cellular malfunction the implications of OCH1 mannosyltransferase knockout-mediated glycosylation-deficiency were analyzed. Results In-depth growth profiling of evolved populations revealed several instances of genotype-dependent growth trade-off/cross-benefit correlations in non-evolutionary growth conditions. On the genome level a high degree of mutational convergence was observed among independent populations. Environment-dependent mutational hotspots were related to osmotic stress-, Rim - and cAMP signaling pathways. In agreement with the observed growth phenotypes, our data also suggest diverging compensatory mutations in glycosylation-deficient populations. High osmolarity glycerol (HOG) pathway loss-of-functions mutations, including genes such as SSK2 and SSK4, represented a major adaptive strategy during environmental adaptation. However, genotype-specific HOG-related mutations were predominantly observed in opposing environmental conditions. Surprisingly, such mutations emerged during salt stress adaptation in OCH1 knockout populations and led to growth trade-offs in non-adaptive conditions that were distinct from wildtype HOG-mutants. Further environment-dependent mutations were identified for a hitherto uncharacterized species-specific Gal4-like transcriptional regulator involved in environmental sensing. Conclusion We show that metabolic constraints such as glycosylation-deficiency can contribute to evolution on the molecular level, even in non-diverging growth environments. Our dataset suggests universal adaptive mechanisms involving cellular stress response and cAMP/PKA signaling but also the existence of highly species-specific strategies involving unique transcriptional regulators, improving our biological understanding of distinct Ascomycetes species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3952-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josef W Moser
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
39
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
The genomic landscape of evolutionary convergence in mammals, birds and reptiles. Nat Ecol Evol 2017; 1:41. [PMID: 28812724 DOI: 10.1038/s41559-016-0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023]
Abstract
Many lineage-defining (nodal) mutations possess high functionality. However, differentiating adaptive nodal mutations from those that are functionally compensated remains challenging. To address this challenge, we identified functional nodal mutations (fNMs) in ~3,400 nuclear DNA (nDNA) and 4 mitochondrial DNA (mtDNA) protein structures from 91 and 1,003 species, respectively, representing the entire mammalian, bird and reptile phylogeny. A screen for candidate compensatory mutations among co-occurring amino acid changes in close structural proximity revealed that such compensated fNMs encompass 37% and 27% of the mtDNA and nDNA datasets, respectively. Analysis of the remaining (non-compensated) mutations, which are enriched for adaptive mutations, showed that birds and mammals share most such recurrent fNMs (N = 51). Among the latter, we discovered mutations in thermoregulation-related genes. These represent the best candidates to explain the molecular basis of convergent body thermoregulation in birds and mammals. Our analysis reveals the landscape of possible mutational compensation and convergence in amniote phylogeny.
Collapse
|
41
|
Genomics of Compensatory Adaptation in Experimental Populations of Aspergillus nidulans. G3-GENES GENOMES GENETICS 2017; 7:427-436. [PMID: 27903631 PMCID: PMC5295591 DOI: 10.1534/g3.116.036152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knowledge of the number and nature of genetic changes responsible for adaptation is essential for understanding and predicting evolutionary trajectories. Here, we study the genomic basis of compensatory adaptation to the fitness cost of fungicide resistance in experimentally evolved strains of the filamentous fungus Aspergillus nidulans The original selection experiment tracked the fitness recovery of lines founded by an ancestral strain that was resistant to fludioxonil, but paid a fitness cost in the absence of the fungicide. We obtained whole-genome sequence data for the ancestral A. nidulans strain and eight experimentally evolved strains. We find that fludioxonil resistance in the ancestor was likely conferred by a mutation in histidine kinase nikA, part of the two-component signal transduction system of the high-osmolarity glycerol (HOG) stress response pathway. To compensate for the pleiotropic negative effects of the resistance mutation, the subsequent fitness gains observed in the evolved lines were likely caused by secondary modification of HOG pathway activity. Candidate genes for the compensatory fitness increases were significantly overrepresented by stress response functions, and some were specifically associated with the HOG pathway itself. Parallel evolution at the gene level was rare among evolved lines. There was a positive relationship between the predicted number of adaptive steps, estimated from fitness data, and the number of genomic mutations, determined by whole-genome sequencing. However, the number of genomic mutations was, on average, 8.45 times greater than the number of adaptive steps inferred from fitness data. This research expands our understanding of the genetic basis of adaptation in multicellular eukaryotes and lays out a framework for future work on the genomics of compensatory adaptation in A. nidulans.
Collapse
|
42
|
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016; 166:1397-1410.e16. [PMID: 27610566 PMCID: PMC5018251 DOI: 10.1016/j.cell.2016.08.020] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/04/2022]
Abstract
Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today’s industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PaperClip
We sequenced and phenotyped 157 S. cerevisiae yeasts Present-day industrial yeasts originate from only a few domesticated ancestors Beer yeasts show strong genetic and phenotypic hallmarks of domestication Domestication of industrial yeasts predates microbe discovery
Collapse
Affiliation(s)
- Brigida Gallone
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Troels Prahl
- White Labs, 9495 Candida Street, San Diego, CA 92126, USA
| | - Leah Soriaga
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Adriaan Merlevede
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Loren Miraglia
- Encinitas Brewing Science, 141 Rodney Avenue, Encinitas, CA 92024, USA
| | | | - Brian Steffy
- Illumina, 5200 Illumina Way, San Diego, CA 92122, USA
| | - Maryann Taylor
- Biological & Popular Culture (BioPop), 2205 Faraday Avenue, Suite E, Carlsbad, CA 92008, USA
| | - Ariel Schwartz
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Toby Richardson
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
43
|
|
44
|
Gasch AP, Hose J, Newton MA, Sardi M, Yong M, Wang Z. Further support for aneuploidy tolerance in wild yeast and effects of dosage compensation on gene copy-number evolution. eLife 2016; 5:e14409. [PMID: 26949252 PMCID: PMC4798956 DOI: 10.7554/elife.14409] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022] Open
Abstract
In our prior work by Hose et al., we performed a genome-sequencing survey and reported that aneuploidy was frequently observed in wild strains of S. cerevisiae. We also profiled transcriptome abundance in naturally aneuploid isolates compared to isogenic euploid controls and found that 10–30% of amplified genes, depending on the strain and affected chromosome, show lower-than-expected expression compared to gene copy number. In Hose et al., we argued that this gene group is enriched for genes subject to one or more modes of dosage compensation, where mRNA abundance is decreased in response to higher dosage of that gene. A recent manuscript by Torres et al. refutes our prior work. Here, we provide a response to Torres et al., along with additional analysis and controls to support our original conclusions. We maintain that aneuploidy is well tolerated in the wild strains of S. cerevisiae that we studied and that the group of genes enriched for those subject to dosage compensation show unique evolutionary signatures. DOI:http://dx.doi.org/10.7554/eLife.14409.001 Cells package their DNA into structures called chromosomes. Sometimes when a cell divides, it fails to allocate the right number of chromosomes to each new cell and so they end up with too many or too few chromosomes. The extra copies of the genes on an additional chromosome can be harmful to the cells, because the levels of the proteins encoded by those genes may rise abnormally. Some organisms counteract the harmful effect of having additional chromosomes through a process called dosage compensation. Proteins are produced using genetic information via two steps: first a gene’s DNA sequence is copied into a molecule of RNA, which is then translated into a protein. Dosage compensation can inactivate single genes or whole chromosomes via various means to ensure that the levels of RNA expressed remain normal, even in the presence of extra genes. In 2015, researchers from the University of Wisconsin-Madison reported that dosage compensation occurs in wild strains of budding yeast and effectively protects against the harmful effects of having extra chromosomes. However, these findings conflicted with earlier studies of laboratory strains of this yeast, and earlier in 2016, other researchers re-analysed the previous study’s data and challenged its findings. Now, Gasch et al. – who conducted the work reported in 2015 – provide additional controls and computational experiments that support their original analysis. The latest analysis confirmed that the genes identified in the first study are indeed commonly duplicated in wild yeast populations, yet the expression of these genes remains controlled. This is consistent with a model of dosage compensation, for at least some of duplicated genes. Gasch et al. believe that part of the difference in interpretation of the data relates to perspective. The challenging researchers tested to see if there was a mechanism of dosage compensation that acted across entire chromosomes, which is known to occur in the case of sex chromosomes in mammals. Gasch et al. on the other hand took a different approach and looked to identify effects at the level of individual genes. Together, the analyses show that, while there is no evidence for a widespread mechanism, the expression of a select set of genes in wild yeast is consistent with gene-specific dosage compensation. Future work will now undoubtedly test the mechanisms behind the gene-specific effects, and explore why wild yeast strains are more tolerant to extra chromosomes than laboratory strains. DOI:http://dx.doi.org/10.7554/eLife.14409.002
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| | - James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Michael A Newton
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States.,Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Maria Sardi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Mun Yong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|