1
|
Narechania A, Bobo D, Deitz K, DeSalle R, Planet PJ, Mathema B. Rapid SARS-CoV-2 surveillance using clinical, pooled, or wastewater sequence as a sensor for population change. Genome Res 2024; 34:1651-1660. [PMID: 39322283 PMCID: PMC11529847 DOI: 10.1101/gr.278594.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The COVID-19 pandemic has highlighted the critical role of genomic surveillance for guiding policy and control. Timeliness is key, but sequence alignment and phylogeny slow most surveillance techniques. Millions of SARS-CoV-2 genomes have been assembled. Phylogenetic methods are ill equipped to handle this sheer scale. We introduce a pangenomic measure that examines the information diversity of a k-mer library drawn from a country's complete set of clinical, pooled, or wastewater sequence. Quantifying diversity is central to ecology. Hill numbers, or the effective number of species in a sample, provide a simple metric for comparing species diversity across environments. The more diverse the sample, the higher the Hill number. We adopt this ecological approach and consider each k-mer an individual and each genome a transect in the pangenome of the species. Structured in this way, Hill numbers summarize the temporal trajectory of pandemic variants, collapsing each day's assemblies into genome equivalents. For pooled or wastewater sequence, we instead compare days using survey sequence divorced from individual infections. Across data from the UK, USA, and South Africa, we trace the ascendance of new variants of concern as they emerge in local populations well before these variants are named and added to phylogenetic databases. Using data from San Diego wastewater, we monitor these same population changes from raw, unassembled sequence. This history of emerging variants senses all available data as it is sequenced, intimating variant sweeps to dominance or declines to extinction at the leading edge of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA;
- Section for Hologenomics, The Globe Institute, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Dean Bobo
- Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, USA
| | - Kevin Deitz
- Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA;
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|
2
|
Kim SW, Park Y, Kim D, Jeong SH. A single-center experience on long-term clinical performance of a rapid SARS-CoV-2 Antigen Detection Test, STANDARD Q COVID-19 Ag Test. Sci Rep 2023; 13:20777. [PMID: 38012319 PMCID: PMC10681986 DOI: 10.1038/s41598-023-48194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
The COVID-19 pandemic in Korea has dynamically changed with the occurrence of more easily transmissible variants. A rapid and reliable diagnostic tool for detection of SARS-CoV-2 is needed. While RT-PCR is currently the gold standard for detecting SARS-CoV-2, the procedure is time-consuming and requires expert technicians. The rapid antigen detection test (RADT) was approved as a confirmatory test on 14 March 2022 due to rapid dissemination of the Omicron variant. The benefits of the RADT are speed, simplicity, and point-of-care feasibility. The aim of our study was to evaluate the clinical performance of RADT compared to RT-PCR in a single center over 15 months, fully covering the SARS-CoV-2 'Variants of Concern (VOC).' A total of 14,194 cases was simultaneously tested by RT-PCR and RADT from January 2021 to March 2022 in Gangnam Severance Hospital and were retrospectively reviewed. PowerChek SARS-CoV-2, Influenza A&B Multiplex Real-time PCR Kit, and STANDARD Q COVID-19 Ag Test were used. Positive rates, sensitivities, specificities, positive predictive values (PPV), and negative predictive values (NPV) were estimated for five periods (3 months/period). Receiver operator characteristic curve (ROC) analysis was performed, and Spearman's rank test assessed the correlation between RT-PCR Ct values and semi-quantitative RADT results. The overall positive rate of RT-PCR was 4.64%. The overall sensitivity and specificity were 0.577 [95% confidence interval (CI) 0.539-0.614] and 0.991 [95% CI 0.989-0.993], respectively. ROC analysis resulted in an area under the curve of 0.786 (P < 0.0001, Yuden's index = 0.568). The PCR positive rates were estimated as 0.11%, 0.71%, 4.51%, 2.02%, and 13.72%, and PPV was estimated as 0.045, 0.421, 0.951, 0.720, and 0.798 in Periods 1, 2, 3, 4, and 5, respectively. A significant and moderate negative correlation between PCR Ct values and semi-quantitative RADT results was observed (Spearman's ρ = - 0.646, P < 0.0001). The RADT exhibited good performance in specimens with low Ct values (Ct ≤ 25.00) by RT-PCR. The PPV was significantly higher in Periods 3 and 5, which corresponds to rapid dissemination of the Delta and Omicron variants. The high PPV implies that individuals with a positive RADT result are very likely infected with SARS-CoV-2 and would require prompt quarantine rather than additional RT-PCR testing. The sensitivity of 0.577 indicates that RADT should not replace RT-PCR. Nonetheless, given the high PPV and the ability to track infected persons through rapid results, our findings suggest that RADT could play a significant role in control strategies for further SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Seo Wan Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Yongjung Park
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Khetran SR, Mustafa R. Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e43906. [PMID: 37485046 PMCID: PMC10353769 DOI: 10.2196/43906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Background COVID-19 and Middle East Respiratory Syndrome are two pandemic respiratory diseases caused by coronavirus species. The novel disease COVID-19 caused by SARS-CoV-2 was first reported in Wuhan, Hubei Province, China, in December 2019, and became a pandemic within 2-3 months, affecting social and economic platforms worldwide. Despite the rapid development of vaccines, there have been obstacles to their distribution, including a lack of fundamental resources, poor immunization, and manual vaccine replication. Several variants of the original Wuhan strain have emerged in the last 3 years, which can pose a further challenge for control and vaccine development. Objective The aim of this study was to comprehensively analyze mutations in SARS-CoV-2 variants of concern (VoCs) using a bioinformatics approach toward identifying novel mutations that may be helpful in developing new vaccines by targeting these sites. Methods Reference sequences of the SARS-CoV-2 spike (YP_009724390) and nucleocapsid (YP_009724397) proteins were compared to retrieved sequences of isolates of four VoCs from 14 countries for mutational and evolutionary analyses. Multiple sequence alignment was performed and phylogenetic trees were constructed by the neighbor-joining method with 1000 bootstrap replicates using MEGA (version 6). Mutations in amino acid sequences were analyzed using the MultAlin online tool (version 5.4.1). Results Among the four VoCs, a total of 143 nonsynonymous mutations and 8 deletions were identified in the spike and nucleocapsid proteins. Multiple sequence alignment and amino acid substitution analysis revealed new mutations, including G72W, M2101I, L139F, 209-211 deletion, G212S, P199L, P67S, I292T, and substitutions with unknown amino acid replacement, reported in Egypt (MW533289), the United Kingdom (MT906649), and other regions. The variants B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), characterized by higher transmissibility and lethality, harbored the amino acid substitutions D614G, R203K, and G204R with higher prevalence rates in most sequences. Phylogenetic analysis among the novel SARS-CoV-2 variant proteins and some previously reported β-coronavirus proteins indicated that either the evolutionary clade was weakly supported or not supported at all by the β-coronavirus species. Conclusions This study could contribute toward gaining a better understanding of the basic nature of SARS-CoV-2 and its four major variants. The numerous novel mutations detected could also provide a better understanding of VoCs and help in identifying suitable mutations for vaccine targets. Moreover, these data offer evidence for new types of mutations in VoCs, which will provide insight into the epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Saima Rehman Khetran
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| | - Roma Mustafa
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| |
Collapse
|
4
|
Amman F, Markt R, Endler L, Hupfauf S, Agerer B, Schedl A, Richter L, Zechmeister M, Bicher M, Heiler G, Triska P, Thornton M, Penz T, Senekowitsch M, Laine J, Keszei Z, Klimek P, Nägele F, Mayr M, Daleiden B, Steinlechner M, Niederstätter H, Heidinger P, Rauch W, Scheffknecht C, Vogl G, Weichlinger G, Wagner AO, Slipko K, Masseron A, Radu E, Allerberger F, Popper N, Bock C, Schmid D, Oberacher H, Kreuzinger N, Insam H, Bergthaler A. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol 2022; 40:1814-1822. [PMID: 35851376 DOI: 10.1038/s41587-022-01387-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.
Collapse
Affiliation(s)
- Fabian Amman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Hupfauf
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Schedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Richter
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | | | - Martin Bicher
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Georg Heiler
- Complexity Science Hub, Vienna, Austria.,Institute of Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Petr Triska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matthew Thornton
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jan Laine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zsofia Keszei
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Klimek
- Complexity Science Hub, Vienna, Austria.,Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
| | - Fabiana Nägele
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Markus Mayr
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Beatrice Daleiden
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Steinlechner
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Heidinger
- Austrian Centre of Industrial Biotechnology GmbH, Graz, Austria
| | - Wolfgang Rauch
- Department of Infrastructure, Universität Innsbruck, Innsbruck, Austria
| | | | - Gunther Vogl
- Institut für Lebensmittelsicherheit, Veterinärmedizin und Umwelt des Landes Kärnten, Klagenfurt am Wörthersee, Austria
| | - Günther Weichlinger
- Abteilung 12 - Wasserwirtschaft, Amt der Kärntner Landesregierung, Klagenfurt am Wörthersee, Austria
| | | | - Katarzyna Slipko
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Amandine Masseron
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Elena Radu
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria.,Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | | - Niki Popper
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Daniela Schmid
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Heribert Insam
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Ng QX, Lim YL, Han MX, Teoh SE, Thumboo J, Tan BH. The Performance of Lateral Flow Tests in the Age of the Omicron: A Rapid Systematic Review. Life (Basel) 2022; 12:1941. [PMID: 36431077 PMCID: PMC9695766 DOI: 10.3390/life12111941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Prompt detection and isolation of COVID-19 cases is vital for preventing further viral transmission, and lateral flow or rapid antigen tests have been an important diagnostic tool in this pandemic. However, concerns have emerged regarding the sensitivity of these devices for the new BA.1, BA.2, and BA.4/5 omicron variants, which have greater transmissibility and extensive mutations in its spike (S) and nucleocapsid (N) proteins. N protein is an important target protein for existing lateral flow devices. This paper therefore aimed to provide a rapid review of available literature on the performance of the lateral flow tests for detecting the omicron coronavirus variant. A systematic literature search of PubMed, EMBASE, OVID Medline, and Google Scholar found six published studies and four preprints investigating the performance of existing lateral flow devices for the omicron variant, as compared to the B.1.617.2 (Delta) variant. Overall, it appears that the devices have poorer performance for the omicron variant and when testing samples with cycle threshold (Ct) values greater than 25 and in asymptomatic individuals. As most available data were preliminary and had small sample sizes, it is recommended that these data be further studied to better inform and adapt our public health responses.
Collapse
Affiliation(s)
- Qin Xiang Ng
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore
- Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore
| | - Yu Liang Lim
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore
| | - Ming Xuan Han
- Department of Community Emergency Health and Paramedic Practice, Monash University, Clayton, VIC 3800, Australia
| | - Seth En Teoh
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr., Singapore 117597, Singapore
| | - Julian Thumboo
- Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ban Hock Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
6
|
Barrera-Avalos C, Mena J, Luraschi R, Rojas P, Mateluna-Flores C, Vallejos-Vidal E, Imarai M, Sandino AM, Valdés D, Vera R, Hernández I, Reyes-López FE, Acuña-Castillo C. Sensitivity analysis of rapid antigen tests for the Omicron SARS-CoV-2 variant detection from nasopharyngeal swab samples collected in Santiago of Chile. Front Public Health 2022; 10:976875. [PMID: 36339133 PMCID: PMC9631301 DOI: 10.3389/fpubh.2022.976875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
The COVID-19 pandemic continues to be a concern and keeps global health authorities on alert. The RT-PCR technique has been the gold-standard assay for detecting the SARS-CoV-2 virus. However, rapid antigen tests (RATs) have been widely used to increase the number of tests faster and more efficiently in the population. Nevertheless, the appearance of new viral variants, with genomic mutations associated with greater contagiousness and immune evasion, highlights the need to evaluate the sensitivity of these RATs. This report evaluates the sensitivity of SD Biosensor-Roche, Panbio™, and Clinitest® RATs widely used in Santiago de Chile in the detection of the Omicron variant from Nasopharyngeal samples (NPSs), the most predominant SARS-CoV-2 variant in Chile and the world. SD Biosensor-Roche shows a detection sensitivity of 95.7% in the viral amplification range of 20 ≤ Cq < 25, while Panbio™ and Clinitest® show 100% and 91.3%, respectively. In the viral amplification ranges of 25 ≤ Cq < 30, the detection sensitivity decreased to 28% for SD Biosensor-Roche, 32% for Panbio™, and 72% for Clinitest®. This study indicates that the tested RATs have high sensitivity in detecting the Omicron variant of concern (VOC) at high viral loads. By contrast, its sensitivity decreases at low viral loads. Therefore, it is suggested to limit the use of RATs as an active search method, considering that infections in patients are increasingly associated with lower viral loads of SARS-CoV-2. These antecedents could prevent contagion outbreaks and reduce the underestimation of the current Omicron variant circulation at the local level.
Collapse
Affiliation(s)
- Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Mena
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto Luraschi
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Mateluna-Flores
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniel Valdés
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vera
- Hospital de Urgencia Asistencia Pública (HUAP), Santiago, Chile
| | - Iván Hernández
- Hospital de Urgencia Asistencia Pública (HUAP), Santiago, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: Felipe E. Reyes-López
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Claudio Acuña-Castillo
| |
Collapse
|
7
|
Ibarra IL, Ratnu VS, Gordillo L, Hwang I, Mariani L, Weinand K, Hammarén HM, Heck J, Bulyk ML, Savitski MM, Zaugg JB, Noh K. Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements. Mol Syst Biol 2022; 18:e10473. [PMID: 35996956 PMCID: PMC9396287 DOI: 10.15252/msb.202110473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
Neuronal stimulation induced by the brain-derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF-specific chromatin-to-gene expression programs. Enhancer activation is an early event in the regulatory control of BDNF-treated neurons, where the bZIP motif-binding Fos protein pioneered chromatin opening and cooperated with co-regulatory transcription factors (Homeobox, EGRs, and CTCF) to induce transcription. Deleting cis-regulatory sequences affect BDNF-mediated Arc expression, a regulator of synaptic plasticity. BDNF-induced accessible regions are linked to preferential exon usage by neurodevelopmental disorder-related genes and the heritability of neuronal complex traits, which were validated in human iPSC-derived neurons. Thus, we provide a comprehensive view of BDNF-mediated genome regulatory features using comparative genomic approaches to dissect mammalian neuronal stimulation.
Collapse
Affiliation(s)
- Ignacio L Ibarra
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
- Institute of Computational BiologyHelmholtz Center MunichOberschleißheimGermany
| | - Vikram S Ratnu
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Lucia Gordillo
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - In‐Young Hwang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Luca Mariani
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Kathryn Weinand
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Henrik M Hammarén
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jennifer Heck
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Martha L Bulyk
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mikhail M Savitski
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Kyung‐Min Noh
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
8
|
De Marco C, Veneziano C, Massacci A, Pallocca M, Marascio N, Quirino A, Barreca GS, Giancotti A, Gallo L, Lamberti AG, Quaresima B, Santamaria G, Biamonte F, Scicchitano S, Trecarichi EM, Russo A, Torella D, Quattrone A, Torti C, Matera G, De Filippo C, Costanzo FS, Viglietto G. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front Microbiol 2022; 13:934993. [PMID: 35966675 PMCID: PMC9366435 DOI: 10.3389/fmicb.2022.934993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021; while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively); C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively); Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant; A701S in Alpha variant; and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha; E484K identified in Gamma; and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- Carmela De Marco
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Alice Massacci
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | | | - Luigia Gallo
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
- *Correspondence: Giuseppe Viglietto
| |
Collapse
|
9
|
Stanley S, Hamel DJ, Wolf ID, Riedel S, Dutta S, Contreras E, Callahan CJ, Cheng A, Arnaout R, Kirby JE, Kanki PJ. Limit of Detection for Rapid Antigen Testing of the SARS-CoV-2 Omicron and Delta Variants of Concern Using Live-Virus Culture. J Clin Microbiol 2022; 60:e0014022. [PMID: 35440165 PMCID: PMC9116160 DOI: 10.1128/jcm.00140-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Donald J. Hamel
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ian D. Wolf
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjucta Dutta
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Elisa Contreras
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Cody J. Callahan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Annie Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ramy Arnaout
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Phyllis J. Kanki
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|