1
|
Liu Z, Wu J. Empowering continuous evolution of proteins by in vivo mutagenesis. Trends Genet 2025; 41:364-368. [PMID: 39939233 DOI: 10.1016/j.tig.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
In vivo mutagenesis enriches genetic polymorphism within cells, which is pivotal for triggering continuous evolution. Remarkable strides have been made in this field. Here, we summarize the current in vivo mutagenesis methods focusing on the theme of mutation range and provide an outlook on their future directions, offering inspiration to relevant researchers.
Collapse
Affiliation(s)
- Zhanzhi Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wei T, Lai W, Chen Q, Sun C. Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell. Int J Mol Sci 2024; 26:250. [PMID: 39796105 PMCID: PMC11720261 DOI: 10.3390/ijms26010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process. But, the widely adopted small molecule-dependent inducible system could hardly fulfill this purpose because it always affects all cells homogeneously. In this study, we developed a phage infection-induced gene expression system using modified Escherichia coli (E. coli) phage shock protein operon or sigma factors from Bacillus subtilis. Results showed that this system enabled efficient control of gene expression upon phage infection with dynamic output ranges from small to large using combinations of different engineered phages and corresponding promoters. This system was incorporated into SPACE to function as a phage infection-induced mutagenesis module and successfully facilitated the evolution of T7 RNA polymerase, which generated diverse mutants with altered promoter recognition specificity. We expect that phage infection-induced gene expression system could be further extended to more applications involving partial induction in a portion of a population and targeted induction in specific strains among a mixed bacterial community, which provides an important complement to small molecule-dependent inducible systems.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.L.); (Q.C.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangsheng Lai
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.L.); (Q.C.); (C.S.)
| | - Qian Chen
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.L.); (Q.C.); (C.S.)
| | - Chenjian Sun
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.L.); (Q.C.); (C.S.)
| |
Collapse
|
3
|
Guo Y, Dong X, Li H, Tong Y, Liu Z, Jin J. Cyanophage Engineering for Algal Blooms Control. Viruses 2024; 16:1745. [PMID: 39599859 PMCID: PMC11598953 DOI: 10.3390/v16111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Cyanobacteria represent a prevalent category of photosynthetic autotrophs capable of generating deleterious algal blooms, commonly known as cyanobacteria harmful algal blooms (cyanoHABs). These blooms often produce cyanotoxins, which pose risks to public health and ecosystems by contaminating surface waters and drinking water sources. Traditional treatment methods have limited effectiveness. Therefore, there is an urgent need for a new approach to effectively manage cyanoHABs. One promising approach is the use of cyanophages, which are viruses that specifically target cyanobacteria. Cyanophages serve as an effective biological control method for reducing cyanoHABs in aquatic systems. By engineering cyanophages, it is possible to develop a highly specific control strategy that minimally impacts non-target species and their propagation in the environment. This review explores the potential application of cyanophages as a strategy for controlling cyanoHABs. It includes the identification and isolation of broad-spectrum and novel cyanophages, with a specific focus on freshwater Microcystis cyanophages, highlighting their broad spectrum and high efficiency. Additionally, recent advancements in cyanophage engineering are discussed, including genome modification, functional gene identification, and the construction of artificial cyanophages. Furthermore, the current state of application is addressed. Cyanophage is a promising control strategy for effectively managing cyanoHABs in aquatic environments.
Collapse
Affiliation(s)
- Yujing Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxiao Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiying Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Yu H, Deng H, He J, Keasling JD, Luo X. UniKP: a unified framework for the prediction of enzyme kinetic parameters. Nat Commun 2023; 14:8211. [PMID: 38081905 PMCID: PMC10713628 DOI: 10.1038/s41467-023-44113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Prediction of enzyme kinetic parameters is essential for designing and optimizing enzymes for various biotechnological and industrial applications, but the limited performance of current prediction tools on diverse tasks hinders their practical applications. Here, we introduce UniKP, a unified framework based on pretrained language models for the prediction of enzyme kinetic parameters, including enzyme turnover number (kcat), Michaelis constant (Km), and catalytic efficiency (kcat / Km), from protein sequences and substrate structures. A two-layer framework derived from UniKP (EF-UniKP) has also been proposed to allow robust kcat prediction in considering environmental factors, including pH and temperature. In addition, four representative re-weighting methods are systematically explored to successfully reduce the prediction error in high-value prediction tasks. We have demonstrated the application of UniKP and EF-UniKP in several enzyme discovery and directed evolution tasks, leading to the identification of new enzymes and enzyme mutants with higher activity. UniKP is a valuable tool for deciphering the mechanisms of enzyme kinetics and enables novel insights into enzyme engineering and their industrial applications.
Collapse
Affiliation(s)
- Han Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiahui He
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|