1
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
2
|
Huang Z, Xiao Y, Chen X, Li H, Gao J, Wei W, Zhang X, Feng X. Cotransplantation of Umbilical Cord Mesenchymal Stem Cells Promotes the Engraftment of Umbilical Cord Blood Stem Cells in Iron Overload NOD/SCID Mice. Transplant Cell Ther 2021; 27:230.e1-230.e7. [PMID: 35348116 DOI: 10.1016/j.jtct.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Iron overload aggravates the difficulty of umbilical cord blood (UCB) stem cell engraftment and reduces the survival of patients undergoing hematopoietic stem cell (HSC) transplantation. Mesenchymal stem cells (MSCs) have been suggested to have a significant role in HSC engraftment. This study aimed to determine the effect of intra-bone marrow (IBM) and i.v. cotransplantation of UBC mononuclear cells (MNCs) and umbilical cord (UC) MSCs on engraftment and hematopoietic recovery in an iron overload hematopoietic microenvironment. The iron overload model was established by dose-escalation intraperitoneal injection of iron dextran in NOD/SCID mice. Iron deposition in the bone marrow, heart, and liver was examined using hematoxylin and eosin (H&E) staining. Serum levels of ferritin and iron status in the liver were measured. The iron overload NOD/SCID mice were sublethally irradiated and divided into 5 groups for transplantation: (1) control group; (2) IBM+ group: IBM injection of combined UCB-MNCs/UC-MSCs; (3) IV+ group: i.v. injection of combined UCB-MNCs/UC-MSCs; (4) IBM group: IBM injection of only UCB-MNCs; and (5) IV group: i.v. injection of UCB-MNCs. At 6 weeks after transplantation, the human CD45+ cells in the bone marrow were analyzed by flow cytometry. The semiquantitative analysis of vascular endothelial growth factor (VEGF-A), osteopontin (OPN), and stromal cell-derived factor-1a (SDF-1a) were examined by immunohistochemical staining (IHC). Compared with the IBM and IV groups, the survival rate and the percentages of human CD45+ cells and CD34+ cells and colony-forming units (CFU) in bone marrow were elevated in the IBM+ and IV+ groups. In addition, the levels of VEGF-A, OPN, and SDF-1a in bone marrow were all higher in the IBM+ and IV+ groups. Our data show that IBM and i.v. cotransplantation of UC-MSCs can improve the engraftment and proliferation of UCB-MNCs in iron overload NOD/SCID mice. The increased expression of VEGF-A, OPN, and SDF-1a in the bone marrow may be involved in improving the hematopoietic microenvironment and promoting the implantation of human UCB stem cells in the bone marrow with iron overload.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Xiao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Gao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wei
- Experimental Center, Guangdong Cord Blood Bank, Guangzhou, China
| | - Xinyao Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhao Y, Li X, Zhao W, Wang J, Yu J, Wan Z, Gao K, Yi G, Wang X, Fan B, Wu Q, Chen B, Xie F, Wu J, Zhang W, Chen F, Yang H, Wang J, Xu X, Li B, Liu S, Hou Y, Liu X. Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. Gigascience 2019; 8:giz047. [PMID: 31049560 PMCID: PMC6497034 DOI: 10.1093/gigascience/giz047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND For both pediatric and adult patients, umbilical cord blood (UCB) transplant is a therapeutic option for a variety of hematologic diseases, such as blood cancers, myeloproliferative disorders, genetic diseases, and metabolic disorders. However, the level of cellular heterogeneity and diversity of nucleated cells in UCB has not yet been assessed in an unbiased and systemic fashion. In the present study, nucleated cells from UCB were subjected to single-cell RNA sequencing to simultaneously profile the gene expression signatures of thousands of cells, generating a rich resource for further functional studies. Here, we report the transcriptomes of 17,637 UCB cells, covering 12 major cell types, many of which can be further divided into distinct subpopulations. RESULTS Pseudotemporal ordering of nucleated red blood cells identifies wave-like activation and suppression of transcription regulators, leading to a polarized cellular state, which may reflect nucleated red blood cell maturation. Progenitor cells in UCB also comprise 2 subpopulations with activation of divergent transcription programs, leading to specific cell fate commitment. Detailed profiling of cytotoxic cell populations unveiled granzymes B and K signatures in natural killer and natural killer T-cell types in UCB. CONCLUSIONS Taken together, our data form a comprehensive single-cell transcriptomic landscape that reveals previously unrecognized cell types, pathways, and mechanisms of gene expression regulation. These data may contribute to the efficacy and outcome of UCB transplant, broadening the scope of research and clinical innovations.
Collapse
Affiliation(s)
- Yi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weihua Zhao
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | | | - Jiawei Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ziyun Wan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Gang Yi
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Bingbing Fan
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Qinkai Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Xie
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | - Wei Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Bin Li
- BGI-Shenzhen, Shenzhen 518083, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
4
|
Cooper K, SenMajumdar A, Viswanathan C. Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. Int J Stem Cells 2014; 3:119-28. [PMID: 24855549 DOI: 10.15283/ijsc.2010.3.2.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES With increasing use of mesenchymal stem cells (MSCs) in regenerative medicine, there is greater awareness towards the need to have clinical grade products. The bovine media currently used allow good expansion to give large number of MSCs of the right quality. This report brings the significance of using cord blood serum (CBS) in the derivation of MSCs from umbilical cord matrix, to help its clinical applicability. METHODS AND RESULTS MSCs isolated from the cord by explant cultures were expanded and characterized by flow cytometry. Cord blood serum while helping expansion, has the ability to preserve the immunophenotype and differentiation potential of the MSCs derived from the umbilical cords. CONCLUSIONS Our results suggest that MSCs derived and expanded in cord blood serum are better suited for clinical applications.
Collapse
Affiliation(s)
- Khushnuma Cooper
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, R-282, TTC Area of MIDC, Thane-Belapur Rd., Rabale, Navi Mumbai - 400701, Maharashtra, India
| | - Anish SenMajumdar
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, R-282, TTC Area of MIDC, Thane-Belapur Rd., Rabale, Navi Mumbai - 400701, Maharashtra, India
| | - Chandra Viswanathan
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, R-282, TTC Area of MIDC, Thane-Belapur Rd., Rabale, Navi Mumbai - 400701, Maharashtra, India
| |
Collapse
|