1
|
Qu Y, Wang Z, Dong L, Zhang D, Shang F, Li A, Gao Y, Bai Q, Liu D, Xie X, Ming L. Natural small molecules synergize mesenchymal stem cells for injury repair in vital organs: a comprehensive review. Stem Cell Res Ther 2024; 15:243. [PMID: 39113141 PMCID: PMC11304890 DOI: 10.1186/s13287-024-03856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.
Collapse
Affiliation(s)
- Yanling Qu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Fengqing Shang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Afeng Li
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Yanni Gao
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Qinhua Bai
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Liu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Leiguo Ming
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China.
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Terzo S, Calvi P, Giardina M, Gallizzi G, Di Carlo M, Nuzzo D, Picone P, Puleio R, Mulè F, Scoglio S, Amato A. Positive Impacts of Aphanizomenon Flos Aquae Extract on Obesity-Related Dysmetabolism in Mice with Diet-Induced Obesity. Cells 2023; 12:2706. [PMID: 38067134 PMCID: PMC10705513 DOI: 10.3390/cells12232706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The present study evaluated the ability of KlamExtra®, an Aphanizomenon flos aquae (AFA) extract, to counteract metabolic dysfunctions due to a high fat diet (HFD) or to accelerate their reversion induced by switching an HFD to a normocaloric diet in mice with diet-induced obesity. A group of HFD mice was fed with an HFD supplemented with AFA (HFD-AFA) and another one was fed with regular chow (standard diet-STD) alone or supplemented with AFA (STD-AFA). AFA was able to significantly reduce body weight, hypertriglyceridemia, liver fat accumulation and adipocyte size in HFD mice. AFA also reduced hyperglycaemia, insulinaemia, HOMA-IR and ameliorated the glucose tolerance and the insulin response of obese mice. Furthermore, in obese mice AFA normalised the gene and the protein expression of factors involved in lipid metabolism (FAS, PPAR-γ, SREBP-1c and FAT-P mRNA), inflammation (TNF-α and IL-6 mRNA, NFkB and IL-10 proteins) and oxidative stress (ROS levels and SOD activity). Interestingly, AFA accelerated the STD-induced reversion of glucose dysmetabolism, hepatic and VAT inflammation and oxidative stress. In conclusion, AFA supplementation prevents HFD-induced dysmetabolism and accelerates the STD-dependent recovery of glucose dysmetabolism by positively modulating oxidative stress, inflammation and the expression of the genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | - Pasquale Calvi
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90127 Palermo, Italy
| | - Marta Giardina
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | - Giacoma Gallizzi
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Flavia Mulè
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
| | | | - Antonella Amato
- Department of Biological-Chemical-Pharmaceutical Science and Technology, University of Palermo, 90128 Palermo, Italy
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
3
|
Ragy MM, Ahmed SM. Protective effects of either C-peptide or l-arginine on pancreatic β-cell function, proliferation, and oxidative stress in streptozotocin-induced diabetic rats. J Cell Physiol 2018; 234:11500-11510. [PMID: 30515793 DOI: 10.1002/jcp.27808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
Diabetes and cardiometabolic risk factors including hypertension and dyslipidemia are the major threats to human health in the 21st century. Apoptosis in pancreatic tissue is one of the major causes of diabetes type 1 progression. The aim of this study was to investigate the effects of C-peptide or l-arginine on some cardiometabolic risk factors, pancreatic morphology, function and apoptosis, and the mechanisms of their actions. Forty adult male albino rats were divided into four equal groups: 1-control nondiabetic, 2-diabetic (no treatment), 3-diabetic + C-peptide, and 4-diabetic + l-arginine. Diabetes was induced by a single intraperitoneal injection of high dose streptozotocin. At the end of the experiment, sera glucose, insulin levels, total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), and pancreatic MDA, TAC, and B-cell lymphoma 2 were measured. The morphology and proliferating activity of the pancreas were examined by hematoxylin and eosin histological stain, proliferative cell nuclear antigen (PCNA), and insulin antibodies. Our results showed that induction of diabetes caused hyperglycemia, dyslipidemia, and oxidative stress. However, administration of C-peptide or l-arginine significantly improved the pancreatic histopathology with a significant increase in the area % of insulin immunoreactivity, the number of PCNA immunopositive cells, the number of islets, and the diameter of islets compared with the diabetic group. C-peptide treatment of the diabetic rats completely corrected these errors, while l-arginine partially antagonized the above diabetic complications. So the administration of C-peptide as an adjuvant therapy in type 1 diabetes can significantly decrease apoptosis of pancreas and subsequent progression of diabetes complication.
Collapse
Affiliation(s)
- Merhan Mamdouh Ragy
- Department of Physiology, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
4
|
Gu B, Miao H, Zhang J, Hu J, Zhou W, Gu W, Wang W, Ning G. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. DIABETES & METABOLISM 2018; 44:341-345. [DOI: 10.1016/j.diabet.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/29/2022]
|
5
|
Consequences of AphanizomenonFlos-aquae(AFA) extract (Stemtech (TM) ) on metabolic profile of patients with type 2 diabetes. J Diabetes Metab Disord 2015; 14:50. [PMID: 26131436 PMCID: PMC4485343 DOI: 10.1186/s40200-015-0177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/23/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Blue- green algae is one of the most nutrient dense foods which is rich in substances that have useful effects on human health. The purpose of this study was to evaluate the effectiveness of a water- soluble extract of the cyanophyta Aphanizomenon Flos-aquae (Stemtech (TM) ) as a functional supplement on CD markers, lipid profile, glucose levels as well as its side effects in Iranian patients with type 2 diabetes. METHODS During this randomized, double-blind, placebo-controlled trial 49 type 2 diabetic patients, aged between 20 and 60 years with a HbA1C ≥ 7.5 %, were allocated. Patients were divided into two groups of placebo and treated with an equal ratio 1:1. The subjects in StemtechTM group received one capsule of StemFlo (508 mg) before breakfast and two capsules of StemEnhance (500 mg) after each meal for a period of 12 weeks, and placebo group was instructed to take placebo with the same pattern. During the intervention period, subjects were asked to keep usual diet and prohibited to take any functional foods or dietary supplements. Metabolic panel has been measured as the primary outcome of study at the beginning and end of the intervention period via blood sampling. RESULTS Stemtech (TM) supplementation for 12 weeks decreased fasting blood glucose (FBG) and Glycatedhemoglobin (HbA1c). Mean serum chemistry parameters (Triglyceride, Total Cholesterol, LDL, HDL, CRP, AST, ALT, BUN and Creatinine) as well as CD 34(+), IL-6, TNF-α in treated and control groups before and after the study showed no considerable dissimilarities. CONCLUSION StemtechTM intervention brought in positive consequence on blood glucose levels in Iranian patients with type 2 diabetes, consequently suggests the Stemtech (TM) as a functional food for the management of diabetes.
Collapse
|
6
|
El-Akabawy G, El-Mehi A. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis. Tissue Cell 2015; 47:257-65. [PMID: 25857836 DOI: 10.1016/j.tice.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt.
| | - Abeer El-Mehi
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt
| |
Collapse
|