1
|
Chen Z, Luo Y, Liu J. Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications. Hum Cell 2025; 38:39. [PMID: 39753919 DOI: 10.1007/s13577-024-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/28/2024] [Indexed: 01/14/2025]
Abstract
The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications. Initially, we will discuss the characteristics, origin, and advantages of hAESCs in differentiating into insulin-secreting cells. Subsequently, we will focus on the potential applications of hAESCs in treating diabetes complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, etc. We will scrutinize the progress of relevant clinical studies and trials involving hAESC therapy. In conclusion, as an emerging diabetes treatment method, hAESCs exhibit immense potential and application value. Despite numerous challenges in practical application, we are confident that with scientific advancement and technological progress, hAESCs will play a pivotal role in treating diabetes and its related complications.
Collapse
Affiliation(s)
- Zhenshuo Chen
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Expansion of human amniotic epithelial cells using condition cell reprogramming technology. Hum Cell 2023; 36:602-611. [PMID: 36586053 PMCID: PMC9947022 DOI: 10.1007/s13577-022-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Human amniotic epithelial cells (hAECs) are non-immunogenic epithelial cells that can develop into cells of all three germline lineages. However, a refined clinically reliable method is required to optimize the preparation and banking procedures of hAECs for their successful translation into clinical studies. With the goal of establishing standardized clinically applicable hAECs cultured cells, we described the use of a powerful epithelial cell culture technique, termed Conditionally Reprogrammed Cells (CRC) for ex vivo expansion of hAECs. The well-established CRC culture method uses a Rho kinase inhibitor (Y-27632) and J2 mouse fibroblast feeder cells to drive the indefinite proliferation of all known epithelial cell types. In this study, we used an optimized CRC protocol to successfully culture hAECs in a CRC medium supplemented with xenogen-free human serum. We established that hAECs thrive under the CRC conditions for over 5 passages while still expressing pluripotent stem markers (OCT-4, SOX-2 and NANOG) and non-immunogenic markers (CD80, CD86 and HLA-G) suggesting that even late-passage hAECs retain their privileged phenotype. The hAECs-CRC cells were infected with a puromycin-selectable lentivirus expressing luciferase and GFP (green fluorescent protein) and stably selected with puromycin. The hAECs expressing GFP were injected subcutaneously into the flanks of Athymic and C57BL6 mice to check the tolerability and stability of cells against the immune system. Chemiluminescence imaging confirmed the presence and viability of cells at days 2, 5, and 42 without acute inflammation or any tumor formation. Collectively, these data indicate that the CRC approach offers a novel solution to expanding hAECs in humanized conditions for future clinical uses, while retaining their primary phenotype.
Collapse
|
3
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Naeem A, Gupta N, Arzoo N, Naeem U, Khan MJ, Choudhry MU, Cui W, Albanese C. A Survey and Critical Evaluation of Isolation, Culture, and Cryopreservation Methods of Human Amniotic Epithelial Cells. Cell Cycle 2022; 21:655-673. [PMID: 35289707 PMCID: PMC8973348 DOI: 10.1080/15384101.2021.2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human amniotic epithelial cells (hAECs), derived from an epithelial cell layer of the human amniotic membrane, possess embryonic stem-like properties and are known to maintain multilineage differentiation potential. Unfortunately, an inability to expand hAECs without significantly compromising their stem cell potency has precluded their widespread use for regenerative therapies. This article critically evaluates the methods used for isolation, expansion, and cryopreservation of hAECs. We assessed the impact of these methods on ex-vivo expansion and stem cell phenotype of hAECs. Moreover, the progress and challenges to optimize clinically suitable culture conditions for an efficient ex-vivo expansion and storage of these cells are highlighted. Additionally, we also reviewed the currently used hAECs isolation and characterization methods employed in clinical trials. Despite the developments made in the last decade, significant challenges still exist to overcome limitations of ex-vivo expansion and retention of stemness of hAECs in both xenogeneic and xenofree culture conditions. Therefore, optimization and standardization of culture conditions for robust ex-vivo maintenance of hAECs without affecting tissue regenerative properties is an absolute requirement for their successful therapeutic manipulation. This review may help the researchers to optimize the methods that support ex-vivo survival, proliferation, and self-renewal properties of the hAECs.Abbreviations: AM: Human amniotic membrane; CM-HBSS: Ca++ and Mg++ free HBSS; DMEM: Dulbecco's Modified Eagle Medium; DMEM-HG: DMEM-high glucose; EMEM: Eagle's Modified Essential Medium; EMT: Epithelial-to-mesenchymal transition; EpM: Epi-life complete media; ESC: Embryonic stem cells; ESCM: Epithelial cell surface markers; hAECs: Human amniotic epithelial cells; HLA: Human leukocyte antigen; IM: Immunogenicity markers; iPSC: Induced pluripotent stem cells; KOSR; KSR: Knockout serum replacement; KSI: Key success indicators; CHM: Cell heterogeneity markers; Nanog: NANOG homeobox; Oct-4: Octamer binding transcription factor 4; OR: Operation room; P: Passage; PM: Pluripotency markers; SCM: Stem cell markers for non-differentiated cells; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen; UC: Ultra-culture; XF: Xenogeneic free.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Health Research Governance Department, Ministry of Public Health, Qatar
| | - Nikita Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Natasha Arzoo
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Usra Naeem
- Department of Health Professional Technology, University of Lahore, Pakistan
| | | | - Muhammad Umer Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Wanxing Cui
- Cell Therapy Manufacturing Facility, MedStar Georgetown University Hospital, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Oncology, Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Kalai FZ, Boulaaba M, Ferdousi F, Isoda H. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int J Mol Sci 2022; 23:704. [PMID: 35054888 PMCID: PMC8775402 DOI: 10.3390/ijms23020704] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus, especially type 2 (T2DM), is a major public health problem globally. DM is characterized by high levels of glycemia and insulinemia due to impaired insulin secretion and insulin sensitivity of the cells, known as insulin resistance. T2DM causes multiple and severe complications such as nephropathy, neuropathy, and retinopathy causing cell oxidative damages in different internal tissues, particularly the pancreas, heart, adipose tissue, liver, and kidneys. Plant extracts and their bioactive phytochemicals are gaining interest as new therapeutic and preventive alternatives for T2DM and its associated complications. In this regard, isorhamnetin, a plant flavonoid, has long been studied for its potential anti-diabetic effects. This review describes its impact on reducing diabetes-related disorders by decreasing glucose levels, ameliorating the oxidative status, alleviating inflammation, and modulating lipid metabolism and adipocyte differentiation by regulating involved signaling pathways reported in the in vitro and in vivo studies. Additionally, we include a post hoc whole-genome transcriptome analysis of biological activities of isorhamnetin using a stem cell-based tool.
Collapse
Affiliation(s)
- Feten Zar Kalai
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Mondher Boulaaba
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
6
|
Ferdousi F, Furuya K, Sasaki K, Zheng YW, Oda T, Isoda H. DNA Microarray-Based Global Gene Expression Profiling in Human Amniotic Epithelial Cells Predicts the Potential of Microalgae-Derived Squalene for the Nervous System and Metabolic Health. Biomedicines 2021; 10:48. [PMID: 35052729 PMCID: PMC8772846 DOI: 10.3390/biomedicines10010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent years, perinatal stem cells, such as human amniotic epithelial cells (hAECs), have attracted increasing interest as a novel tool of stem cell-based high-throughput drug screening. In the present study, we investigated the bioactivities of squalene (SQ) derived from ethanol extract (99.5%) of a microalgae Aurantiochytrium Sp. (EEA-SQ) in hAECs using whole-genome DNA microarray analysis. Tissue enrichment analysis showed that the brain was the most significantly enriched tissue by the differentially expressed genes (DEGs) between EEA-SQ-treated and control hAECs. Further gene set enrichment analysis and tissue-specific functional analysis revealed biological functions related to nervous system development, neurogenesis, and neurotransmitter modulation. Several adipose tissue-specific genes and functions were also enriched. Gene-disease association analysis showed nervous system-, metabolic-, and immune-related diseases were enriched. Altogether, our study suggests the potential health benefits of microalgae-derived SQ and we would further encourage investigation in EEA-SQ and its derivatives as potential therapeutics for nervous system- and metabolism-related diseases.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.F.); (K.S.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.-W.Z.); (T.O.)
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan;
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.F.); (K.S.)
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.-W.Z.); (T.O.)
| | - Yun-Wen Zheng
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan;
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan;
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.F.); (K.S.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.-W.Z.); (T.O.)
| |
Collapse
|
7
|
Iezzi G, Scarano A, Valbonetti L, Mazzoni S, Furlani M, Mangano C, Muttini A, Raspanti M, Barboni B, Piattelli A, Giuliani A. Biphasic Calcium Phosphate Biomaterials: Stem Cell-Derived Osteoinduction or In Vivo Osteoconduction? Novel Insights in Maxillary Sinus Augmentation by Advanced Imaging. MATERIALS 2021; 14:ma14092159. [PMID: 33922799 PMCID: PMC8122985 DOI: 10.3390/ma14092159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Maxillary sinus augmentation is often necessary prior to implantology procedure, in particular in cases of atrophic posterior maxilla. In this context, bone substitute biomaterials made of biphasic calcium phosphates, produced by three-dimensional additive manufacturing were shown to be highly biocompatible with an efficient osteoconductivity, especially when combined with cell-based tissue engineering. Thus, in the present research, osteoinduction and osteoconduction properties of biphasic calcium-phosphate constructs made by direct rapid prototyping and engineered with ovine-derived amniotic epithelial cells or amniotic fluid cells were evaluated. More in details, this preclinical study was performed using adult sheep targeted to receive scaffold alone (CTR), oAFSMC, or oAEC engineered constructs. The grafted sinuses were explanted at 90 days and a cross-linked experimental approach based on Synchrotron Radiation microCT and histology analysis was performed on the complete set of samples. The study, performed taking into account the distance from native surrounding bone, demonstrated that no significant differences occurred in bone regeneration between oAEC-, oAFMSC-cultured, and Ctr samples and that there was a predominant action of the osteoconduction versus the stem cells osteo-induction. Indeed, it was proven that the newly formed bone amount and distribution decreased from the side of contact scaffold/native bone toward the bulk of the scaffold itself, with almost constant values of morphometric descriptors in volumes more than 1 mm from the border.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, Dental School, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, CH, Italy; (G.I.); (A.S.); (A.P.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, Dental School, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, CH, Italy; (G.I.); (A.S.); (A.P.)
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, TE, Italy; (L.V.); (A.M.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, RM, Italy
| | - Serena Mazzoni
- Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, AN, Italy; (S.M.); (M.F.)
| | - Michele Furlani
- Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, AN, Italy; (S.M.); (M.F.)
| | | | - Aurelio Muttini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, TE, Italy; (L.V.); (A.M.); (B.B.)
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100 Varese, VA, Italy;
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, TE, Italy; (L.V.); (A.M.); (B.B.)
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, Dental School, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, CH, Italy; (G.I.); (A.S.); (A.P.)
- Fondazione Villaserena per la Ricerca, 65013 Città S. Angelo, PE, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, 65013 Città S. Angelo, PE, Italy
| | - Alessandra Giuliani
- Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, AN, Italy; (S.M.); (M.F.)
- Correspondence: ; Tel.: +39-0712204603
| |
Collapse
|
8
|
Takahashi S, Ferdousi F, Zheng YW, Oda T, Isoda H. Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3- O-Glucoside on Cell Differentiation. Int J Mol Sci 2021; 22:3768. [PMID: 33916494 PMCID: PMC8038597 DOI: 10.3390/ijms22073768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanidin, a kind of anthocyanin, has been reported to have chemotherapeutic activities in humans. Human amniotic epithelial cells (hAECs) are considered a potential source of pluripotent stem cells. hAECs have been used as a novel tool in regenerative cellular therapy and cell differentiation studies. In this study, to explore the effects of cyanidin-3-O-glucoside (Cy3G) on hAECs and their mechanisms, we investigated the transcriptomic changes in the Cy3G-treated cells using microarray analysis. Among the differentially expressed genes (Fold change > 1.1; p-value < 0.05), 109 genes were upregulated and 232 were downregulated. Ratios of upregulated and downregulated genes were 0.22% and 0.47% of the total expressed genes, respectively. Next, we explored the enriched gene ontology, i.e., the biological process, molecular function, and cellular component of the 37 upregulated (>1.3-fold change) and 124 downregulated (<1.3-fold change) genes. Significantly enriched biological processes by the upregulated genes included "response to muscle activity," and the genes involved in this gene ontology (GO) were Metrnl and SRD5A1, which function in the adipocyte. On the other hand, the cell cycle biological process was significantly enriched by the downregulated genes, including some from the SMC gene family. An adipogenesis-associated gene DDX6 was also included in the cell cycle biological process. Thus, our findings suggest the prospects of Cy3G in modulating adipocyte differentiation in hAECs.
Collapse
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| | - Farhana Ferdousi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| | - Yun-Wen Zheng
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tatsuya Oda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| |
Collapse
|
9
|
Gottipamula S, Sundarrajan S, Chokalingam K, Sridhar KN. The effect of human amniotic epithelial cells on urethral stricture fibroblasts. J Clin Transl Res 2019; 5:44-49. [PMID: 31579841 PMCID: PMC6765151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Urethral stricture disease (USD) is effectively managed by buccal mucosa (BM) urethroplasty. Lack of adequate healthy BM has led to the use of autologous tissue-engineered BM grafts. Such grafts are costly, not easily scalable and recurrence of the stricture is still a problem. Hence, there is a requirement for cost-effective, scalable cells with innate antifibrotic properties which seem to be fulfilled by human amniotic epithelial cells (HAMECs). The effect of HAMECs on USD is unknown. AIM To study the effect of HAMECs-CM on human urethral stricture fibroblast (USF) cells by using in-vitro migration assay and molecular techniques. MATERIALS AND METHODS USF cells were derived from six patients undergoing urethroplasty. HAMECs were derived from one placenta after delivery. The effect of HAMECs-CM on USF cell migration was observed using a standard in vitro scratch assay over a period of 3 days. The effect of HAMECs-CM on the expression levels of markers alpha-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinases (TIMP-1) in USF cells was also examined. RESULTS The HAMECs-CM suppressed the migration of USF cells in in vitro scratch assay. The HAMECs-CM consistently downregulated α-SMA, but not TIMP-1. CONCLUSIONS HAMECs have shown antifibrotic activity on USF cells in this in vitro study. RELEVANCE FOR PATIENTS HAMECs could serve as an alternative cell source for tissue-engineered urethroplasty.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India
| | - Sudarson Sundarrajan
- 2Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Bengaluru, Karnataka, India
| | - Kumar Chokalingam
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India
| | - K. N. Sridhar
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India,2Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Bengaluru, Karnataka, India,Corresponding author: K. N. Sridhar Sri Research for Tissue Engineering Pvt. Ltd., Sri Shankara Research Center, Rangadore Memorial Hospital, 1st Cross, Shankarapuram, Bengaluru-560 004, Karnataka, India Tel: +91-80-41076759
| |
Collapse
|